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Let Q be a finite set of points in the plane. For any set P of points in the plane,
SQ(P) denotes the number of similar copies of Q contained in P . For a fixed n,
Erdős and Purdy asked for the maximum possible value of SQ(P), denoted by
SQ(n), over all sets P of n points in the plane. We consider this problem when
Q=4 is the set of vertices of an isosceles right triangle. We give exact solutions
when n ≤ 9, and provide new upper and lower bounds for S4(n).

1. Introduction

Paul Erdős and George Purdy [1971; 1975; 1976] posed the question: Given a finite
set of points Q, what is the maximum number SQ(n) of similar copies that can be
contained in an n-point set in the plane? This problem remains open in general.
However, there has been some progress regarding the order of magnitude of this
maximum as a function of n. Elekes and Erdős [1994] noted that SQ (n)≤n (n− 1)
for any pattern Q and they also gave a quadratic lower bound for SQ(n) when
|Q| = 3 or when all the coordinates of the points in Q are algebraic numbers.
They also proved a slightly subquadratic lower bound for all other patterns Q.
Later, Laczkovich and Ruzsa [1997] characterized precisely those patterns Q for
which SQ (n)=2(n2). In spite of this, the coefficient of the quadratic term is not
known for any nontrivial pattern; it is not even known if limn→∞ SQ(n)/n2 exists!

Apart from being a natural question in discrete geometry, this problem also arose
in connection with the optimization of algorithms designed to look for patterns
among data obtained from scanners, digital cameras, telescopes, and so on [Brass
2002; Brass et al. 2005; Brass and Pach 2005].

Our paper considers the case where Q is the set of vertices of an isosceles right
triangle. The case where Q is the set of vertices of an equilateral triangle has been
considered in [Ábrego and Fernández-Merchant 2000]. To avoid redundancy, we
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refer to an isosceles right triangle as an IRT for the remainder of the paper. We
begin with some definitions. Let P denote a finite set of points in the plane. We
define S4(P) to be the number of triplets in P that are the vertices of an IRT.
Furthermore, let

S4(n)= max
|P|=n

S4(P).

As mentioned before, Elekes and Erdős established that S4(n) = 2(n2) and it is
implicit from their work that 1/18 ≤ lim infn→∞ S4(n)/n2

≤ 1. The main goal
of this paper is to derive improved constants that bound the function S4(n)/n2.
Specifically, in Sections 2 and 3, we prove:

Theorem 1. 0.433064< lim inf
n→∞

S4(n)
n2 ≤

2
3
< 0.66667.

We proceed to determine in Section 4 the exact values of S4(n) when 3≤ n≤ 9.
Several ideas for the proofs of these bounds come from the equivalent bounds for
equilateral triangles in [Ábrego and Fernández-Merchant 2000].

2. Lower bound

For z ∈ P , let Rπ/2(z, P) be the π/2 counterclockwise rotation of P with center z.
Let degπ/2(z) be the number of isosceles right triangles in P such that z is the
right-angle vertex of the triangle. If z ∈ P , then degπ/2(z) can be computed by
simply rotating our point set P by π/2 about z and counting the number of points
in the intersection other than z. Therefore,

degπ/2(z)=
∣∣P ∩ Rπ/2(z, P)

∣∣− 1. (1)

Since an IRT has only one right angle,

S4(P)=
∑
z∈P

degπ/2(z).

That is, the sum computes the number of IRTs in P . From this identity an initial
lower bound of 5

12 can be derived for lim infn→∞ S4(n)/n2 using the set

P =
{
(x, y) ∈ Z2

: 0≤ x ≤
√

n, 0≤ y ≤
√

n
}
.

We now improve this bound.
The following theorem generalizes our method for finding a lower bound. We

denote by 3 the lattice generated by the points (1, 0) and (0, 1), and we refer to
points in 3 as lattice points. The next result provides a formula for the leading
term of S4(P) when our points in P are lattice points enclosed by a given shape.
This theorem, its proof, and notation, are similar to those of Theorem 2 in [Ábrego
and Fernández-Merchant 2000], where we obtained a similar result for equilateral
triangles in place of IRTs.
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Theorem 2. Let K be a compact set with finite perimeter and area 1. Define

fK : C→ R+ as fK (z)= Area(K ∩ Rπ/2(z, K )), where z ∈ K .

If Kn is a similar copy of K intersecting 3 in exactly n points, then

S4(Kn ∩3)=

(∫
K

fK (z) dz
)

n2
+ O(n3/2).

Proof. Given a compact set L with finite area and perimeter, we have

|r L ∩3| = Area(r L)+ O(r)= r2Area(L)+ O(r),

where r L is the scaling of L by a factor r . Therefore,

S4(Kn ∩3)=
∑

z∈Kn∩3

|(3∩ Kn)∩ Rπ/2(z, (Kn ∩3))| − 1

=
∑

z∈Kn∩3

Area(Kn ∩ Rπ/2(z, Kn))+ O(
√

n).

We see that each error term in the sum is bounded by the perimeter of Kn , which
is finite by hypothesis. Thus,

S4(Kn ∩3)= n2 ∑
z∈Kn∩3

1
n2 Area(Kn ∩ Rπ/2(z, Kn))+ O(n3/2)

= n2 ∑
z∈Kn∩3

1
n

Area
(

1
√

n
(Kn ∩ Rπ/2(z, Kn))

)
+ O(n3/2)

= n2 ∑
z∈Kn∩3

1
n

Area
(

1
√

n
Kn ∩ Rπ/2

(
z
√

n
,

1
√

n
Kn

))
+ O(n3/2).

The last sum is a Riemann approximation for the function f(1/√n)Kn
over the region

(1/
√

n)Kn; thus

S4(Kn ∩3)= n2
(∫

1
√

n Kn

f 1
√

n Kn
(z) dz+ O

(
1
√

n

))
+ O(n3/2).

Since

Area
(

1
√

n
Kn

)
=

1
n

Area(Kn)=
1
n
(n+ O(

√
n))

= 1+ O
(

1
√

n

)
= Area(K )+ O

(
1
√

n

)
,

it follows that ∫
1
√

n Kn

f 1
√

n Kn
(z) dz =

∫
K

fK (z) dz+ O
(

1
√

n

)
.
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As a result,

S4(Kn ∩3)= n2
∫

1
√

n Kn

f 1
√

n Kn
(z) dz+ O(n3/2)= n2

∫
K

fK (z) dz+ O(n3/2). �

The importance of this theorem can be seen immediately. Although our lower
bound of 5

12 for lim infn→∞ S4(n)/n2 was derived by summing the degrees of each
point in a square lattice, the same result can be obtained by letting K be the square{
(x, y) : |x | ≤ 1

2 , |y| ≤
1
2

}
. It follows that fK (x, y)= (1−|x |−|y|)

(
1−

∣∣|x |−|y|∣∣)
and

S4(Kn ∩3)=

(∫
K

fK (z) dz
)

n2
+ O(n3/2)= 5

12 n2
+ O(n3/2).

An improved lower bound will follow provided that we find a set K such that
the value for the integral in Theorem 2 is larger than 5

12 . We get a larger value for
the integral by letting K be the circle {z ∈ C : |z| ≤ 1/

√
π}. In this case

fK (z)=
2
π

arccos
(√2π

2
|z|
)
− |z|

√
2
π
− |z|2 (2)

and

S4(Kn ∩3)=
(∫

K
fK (z) dz

)
n2
+ O(n3/2)=

(3
4
−

1
π

)
n2
+ O(n3/2).

It was conjectured in [Ábrego and Fernández-Merchant 2000] that not only does
limn→∞ E(n)/n2 exist, but it is attained by the uniform lattice in the shape of a
circle. (E(n) denotes the maximum number of equilateral triangles determined by
n points in the plane.) The corresponding conjecture in the case of the isosceles
right triangle turns out to be false. That is, if limn→∞ S4(n)/n2 exists, then it must
be strictly greater than 3

4 −π
−1. Define 3 to be the translation of 3 by the vector

( 1
2 ,

1
2). The following lemma will help us to improve our lower bound.

Lemma 3. If ( j, k) ∈ R2 and 3′ =3 or 3′ =3, then

Rπ/2(( j, k),3′)∩3′ =
{
3′ if ( j, k) ∈3∪3,
∅ else.

Proof. Observe that

Rπ/2(( j, k), (s, t))=
(

0 −1
1 0

)(
s− j
t−k

)
+

(
j
k

)
=

(
k−t+ j
s− j+k

)
.

First suppose (s, t) ∈ 3. Since s, t ∈ Z, then (k−t+ j, s− j+k) ∈ 3 if and only
if k− j ∈ Z and k + j ∈ Z. This can only happen when either both j and k are
half-integers (i.e., ( j, k) ∈3), or both j and k are integers (i.e., ( j, k) ∈3). Now
suppose (s, t)∈3. In this case, because both s and t are half-integers, we conclude
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that (k − t + j, s − j + k) ∈ 3 if and only if both k − j ∈ Z and k + j ∈ Z. Once
again this occurs if and only if ( j, k) ∈3∪3. �

Recall that if K denotes the circle of area 1, then ( 3
4 − π

−1)n2 is the leading
term of S4(Kn ∩ 3). The previous lemma implies that, if we were to adjoin a
point z ∈ R2 to Kn ∩ 3 such that z has half-integer coordinates and is located
near the center of the circle formed by the points of Kn ∩3, then degπ/2(z) will
approximately equal |Kn ∩3|. We obtain the next theorem by further exploiting
this idea.

Theorem 4. 0.43169≈
3
4
−

1
π
< 0.433064< lim inf

n→∞

S4(n)
n2 .

Proof. Let K be the circle of area 1 and set A= Km1∩3, B= Km2∩3. Position B
so that its points are centered on the circle formed by the points in A (see Figure 1).
We let n = m1+m2 = |A∪ B| and m2 = x ·m1, where 0< x < 1 is a constant to
be determined.

We proceed to maximize the leading coefficient of S4(A∪ B) as x varies from
0 to 1. By Lemma 3, there cannot exist an IRT whose right-angle vertex lies in A
while one π/4 vertex lies in A and the other lies in B. Similarly, there cannot exist
an IRT whose right angle-vertex lies in B while one π/4 vertex lies in A and the
other lies in B. Therefore, each IRT with vertices in A∪ B must fall under one of
four cases:

Case 1: All three vertices in A. By Theorem 2, there are ( 3
4−π

−1)m2
1+O(m3/2

1 )

IRTs in this case. Since m1 = n/(1+ x), the number of IRTs in terms of n equals(3
4
−

1
π

) n2

(1+ x)2
+ O(n3/2). (3)

Figure 1. Left: set B (open dots) centered on set A (black dots).
Right: plot of the n2 coefficient of S4(A∪ B) for x from 0 to 1.
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Case 2: All three vertices in B. By Theorem 2, there are (3
4−π

−1)m2
2+O(m3/2

2 )

IRTs in this case. This time m2 = nx/(1+ x) and the number of IRTs in terms of
n equals (3

4
−

1
π

) n2x2

(1+ x)2
+ O(n3/2). (4)

Case 3: Right-angle vertex in B, π/4 vertices in A. The relationship given by
Lemma 3 allows us to slightly adapt the proof of Theorem 2 in order to compute
the number of IRTs in this case. The integral approximation to the number of IRTs
in this case is given by∑
z∈Km2∩3

∣∣(Km1∩3)∩Rπ/2(z, (Km1∩3))
∣∣= m2

1

(∫
1
√m1

Km2

f 1
√m1

Km1
(z) dz

)
+O(m3/2

1 ).

But

Area
(

1
√

m1
Km2

)
= Area

(√
m2

m1
K
)
+ O(
√

m1),

so

m2
1

(∫
1
√m1

Km2

f 1
√m1

Km1
(z) dz

)
+ O(m3/2

1 )= m2
1

(∫
√

m2
m1

K
fK (z) dz

)
+ O(m3/2

1 ).

Expressing this value in terms of n gives(∫
√

x K
fK (z) dz

)
n2

(1+ x)2
+ O(n3/2). (5)

Case 4: Right-angle vertex in A, π/4 vertices in B. As in Case 3, the number of
IRTs is given by∑
z∈Km1∩3

∣∣(Km2 ∩3)∩ Rπ/2(z, (Km2 ∩3))
∣∣

= m2
2

(∫
1
√m2

Km1

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 ). (6)

Now recall that f(1/√m2)Km2
(z)=Area

(
(1/
√

m2)Km2 ∩ Rπ/2(z, (1/
√

m2)Km2)
)
.

It follows that f(1/√m2)Km2
(z0)= 0 if and only if z0 is farther than

√
2/π from the

center of (1/
√

m2)Km2 . Thus for small enough values of m2, the region of inte-
gration in (6) is actually (

√
2/m2)Km2 , so it does not depend on m1. We consider

two subcases.
First, if x ≤ 1

2 (i.e., m2 ≤ m1/2), then√
2
π
=

1
√

m2

√
2m2
√
π
≤

1
√

m2

√
2
√
π

√
m1
√

2
=

1
√

m2

√
m1

π
.
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The left side of this inequality is the radius of (
√

2/m2)Km2 , while the right side
is the radius of (1/

√
m2)Km1 ; thus the region of integration where f(1/√m2)Km2

is
nonzero equals (

√
2/m2)Km2 . Hence, the number of IRTs equals

m2
2

(∫
√

2
m2

Km2

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 )= m2
2

(∫
√

2K
fK (z) dz

)
+ O(m3/2

2 )

=

(∫
√

2K
fK (z) dz

)
n2x2

(1+x)2
+ O(n3/2).

(7)

Now we consider the case x > 1
2 (i.e., m2 > m1/2). In this case, f(1/√m2)Km2

is
nonzero for all points in (1/

√
m2)Km1 . Thus the number of IRTs is then

m2
2

(∫
1
√m2

Km1

f 1
√m2

Km2
(z) dz

)
+ O(m3/2

2 )= m2
2

(∫
√

m1
m2

K
fK (z) dz

)
+O(m3/2

2 )

=

(∫
√

1
x K

fK (z) dz
)

n2x2

(1+x)2
+ O(n3/2).

(8)

By (2), we have, for t > 0,∫
t K

fK (z) dz = 2π
∫ t/
√
π

0

(
2
π

arccos
(√2π

2
r
)
− r

√
2
π
− r2

)
r dr

=
1

2π

(
4t2 arccos t

√
2
+ 2 arcsin t

√
2
− t (t2

+ 1)
√

2− t2
)
.

Therefore, putting all four cases together — i.e., expressions (3)–(5), and either (7)
or (8) — we obtain that the n2 coefficient of S4(A∪ B) equals

1
4π(x + 1)2

(
8x arccos

√
x
2
+ 4 arcsin

√
x
2
+ (5π − 4)x2

+ (3π − 4)

− 2(x + 1)
√

2x − x2

)
if 0< x ≤ 1

2 , or

1
4π(x + 1)2

(
8x
(

arccos
√

x
2
+ arccos

√
1

2x

)
+ 4 arcsin

√
x
2
+ 4x2 arcsin

√
1

2x

+(3π − 4)(x2
+ 1)− 2(x + 1)

(√
2x − x2+

√
2x − 1

))
,

if 1
2 < x<1. Letting x vary from 0 to 1, this coefficient is maximized (see Figure 1)

when x ≈ 0.0356067, corresponding to a radius of B approximately 18.87% of the
radius of A. Letting x equal this value gives 0.433064 as a decimal approximation
to the maximum value attained by the n2 coefficient. �
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At this point, one might be tempted to further increase the quadratic coefficient
by placing a third set of lattice points arranged in a circle and centered on the circle
formed by B. It turns out that forming such a configuration does not improve the
results in the previous theorem. This is due to Lemma 3. More specifically, given
our construction from the previous theorem, there is no place to adjoin a point z to
the center of A∪ B such that z ∈ 3 or z ∈ 3. Hence, if we were to add the point
z to the center of A ∪ B, then any new IRTs would have their right-angle vertex
located at z with one π/4 vertex in A and the other π/4 vertex in B. Doing so can
produce at most 2m2 = 2xm1 ≈ 0.0712m1 new IRTs (recall that x ≈ 0.0356066
in our construction). On the other hand, adding z to the perimeter of A, gives us
m1 fK (1/

√
π)≈ 0.1817m1 new IRTs.

3. Upper bound

We now turn our attention to finding an upper bound for S4(n)/n2. It is easy to
see that S4(n) ≤ n2

− n, since any pair of points can be the vertices of at most
six IRTs. Our next theorem improves this bound. The idea is to prove that there
exists a point in P that does not belong to many IRTs. First, we need the following
definition.

For every z ∈ P , let R+π/4(z, P) and R−π/4(z, P) be the dilations of P , centered
at z, with factor

√
2 and 1/

√
2, respectively, followed by a π/4 counterclockwise

rotation with center z. Let deg+π/4(z) and deg−π/4(z) be the number of isosceles right
triangles zxy with x, y ∈ P such that zxy occur in counterclockwise order, and zy,
respectively zx , is the hypotenuse of the triangle zxy.

Much like the case of degπ/2, deg+π/4 and deg−π/4 can be computed with the
identities

deg+π/4(z)=
∣∣P ∩ R+π/4(z, P)

∣∣− 1, deg−π/4(z)=
∣∣P ∩ R−π/4(z, P)

∣∣− 1.

Theorem 5. S4(n)≤
⌊ 2

3(n− 1)2− 5
3

⌋
for n ≥ 3.

Proof. By induction on n. If n=3, then S4(3)≤1=
⌊1

3(2·4−5)
⌋

. Now suppose the
theorem holds for n=k. We must show this implies the theorem holds for n=k+1.
Suppose that there is a point z ∈ P such that degπ/2(z)+ deg+π/4(z)+ deg−π/4(z)≤⌊1

3(4n− 5)
⌋
. Then, by induction,

S4(k+ 1)≤ degπ/2(z)+ deg+π/4(z)+ deg−π/4(z)+ S4(k)

≤
⌊ 1

3(4k−1)
⌋
+
⌊ 2

3(k− 1)2− 5
3

⌋
=
⌊ 2

3 k2
−

5
3

⌋
.

The last equality can be verified by considering the three possible residues of k
when divided by 3. Hence, our theorem is proved if we can find a point z ∈ P with
the desired property.
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Let x, y ∈ P be points such that x and y form the diameter of P . In other words,
if w ∈ P , then the distance from w to any other point in P is less than or equal
to the distance from x to y. We now prove that either x or y is a point with the
desired property mentioned above. We begin by analyzing deg−π/4. We use the
notation from [Ábrego and Fernández-Merchant 2000, Theorem 1].

Define Nx = P∩R−π/4(x, P)\{x} and Ny = P∩R−π/4(y, P)\{y}. It follows from
our identities that, deg−π/4(x) = |Nx | and deg−π/4(y) = |Ny|. Furthermore, by the
inclusion-exclusion principle for finite sets, we have

|Nx | + |Ny| = |Nx ∪ Ny| + |Nx ∩ Ny|.

We shall prove by contradiction that |Nx ∩ Ny| ≤ 1. Suppose that there are two
points u, v ∈ Nx ∩ Ny . This means that there are points ux , vx , u y, vy ∈ P such
that the triangles xux u, xvxv, yu yu, yvyv are IRTs oriented counterclockwise with
right angle at either u or v.

But notice that the line segments ux u y and vxvy are simply the (π/2)-counter-
clockwise rotations of xy about centers u and v, respectively. Hence, ux u yvxvy is
a parallelogram with two sides having length xy as shown in Figure 2, left. This is
a contradiction since one of the diagonals of the parallelogram is longer than any of
its sides. Thus, |Nx∩Ny|≤1. Furthermore, x /∈ Ny and y /∈ Nx , so |Nx∪Ny|≤n−2
and thus deg−π/4(x)+ deg−π/4(y) = |Nx ∪ Ny| + |Nx ∩ Ny| ≤ n − 2+ 1 = n − 1.
This also implies that deg+π/4(x)+deg+π/4(y)≤ n−1, since we can follow the same
argument applied to the reflection of P about the line xy.

We now look at degπ/2(x) and degπ/2(y). We claim that, for every p ∈ P , at
most one of Rπ/2(x, p) or Rπ/2(y, p) belongs to P . Indeed, let px = Rπ/2(x, p)
and py= Rπ/2(y, p) (see Figure 2, right). The distance px py is exactly the distance
xy but scaled by

√
2. This contradicts the fact that xy is the diameter of P .

Define a graph G with vertex set V (G)= P\{x, y} and edge set given by saying
that uv ∈ E(G) if and only if v = Rπ/2(x, u) or v = Rπ/2(y, u). We show that

0≤ degπ/2(x)+ degπ/2(y)− |E(G)| ≤ 1. (9)

x y

u

v

uy

vy

vx

ux

x y

p

px

py

Figure 2. Proof of Theorem 5.
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The left inequality follows from the fact each edge counts an IRT in either
degπ/2(x) or degπ/2(y) and possibly in both. However, if uv is an edge of G
so that v = Rπ/2(x, u) and u = Rπ/2(y, v), then xuyv is a square, so this can only
happen for at most one edge.

Now, let degG(u) be the number of edges in E(G) incident to u. We claim that

degG(u)≤ 2 for every u ∈ V (G). (10)

Indeed, take uv1 ∈ E(G); we can assume, without loss, that u = Rπ/2(y, v1). If
v3 = Rπ/2(y, u) ∈ P , then we conclude that xv3 > xy or
xv1 > xy, because 6 xyv3 ≥ π/2 or 6 xyv1 ≥ π/2. This
contradicts the fact that xy is the diameter of P . Sim-
ilarly, if v2 and v4 are defined as u = Rπ/2(x, v4)

and v2= Rπ/2(x, u), then at most one of v2 or v4

can be in P .

Claim. All paths in G have length at most 2.

Proof. We prove this claim by contradiction. Suppose we can
have a path of length 3 or more. To assist us, let us place
our points on a cartesian coordinate system with our diam-
eter xy relabeled as the points (0, 0) and (r, 0), further-
more, assume p, q≥0 and that the four vertices of the
path of length 3 are (p,−q), (q, p), (r−p, q−r),
and (r−q, r−p). Our aim is to show that the dis-
tance between (r−q, r−p) and (r−p, q−r) contra-
dicts that r is the diameter of P . Now, if paths of length 3
were possible, the distance between every pair of points in
the figure on the right must be less than or equal to r . Since d((p,−q), (q, p))≤ r ,
we have p2

+ q2
≤ r2/2.

Now let us analyze the square of the distance from (r−q, r−p) to (r−p, q−r).
Because 2(p2

+ q2)≥ (p+ q)2, it follows that

d2((r − q, r − p), (r − p, q − r)
)
= (−q + p)2+ (2r − p− q)2

= 4r2
− 4r(p+ q)+ 2(p2

+ q2)

≥ 4r2
− 4
√

2r
√

p2+ q2+ 2(p2
+ q2)

=
(
2r −

√
2(p2+ q2)

)2
.

But
√

2(p2+ q2)≤ r , so
(
2r −

√
2(p2+ q2)

)
≥ r and thus

d2((r − q, r − p), (r − p, q − r)
)
≥ r2.

Equality occurs if and only if p= r/2 and q= r/2; otherwise, the distance between
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(r−q, r−p) and (r−p, q−r) is strictly greater than r , contradicting the fact that
the diameter of P is r . Therefore if p 6= r/2 or q 6= r/2 then there is no path of
length 3. In the case that p = r/2 and q = r/2 the points (q, p) and (r−q, r−p)
become the same and so do the points (p,−q) and (r−p, q−r). Thus we are left
with a path of length 1. �

It follows from (10) and the Claim that all paths of length 2 are disjoint. Thus,
G is the union of disjoint paths of length at most 2. If a denotes the number of
paths of length 2 and b the number of paths of length 1, then

|E(G)| = 2a+ b and 3a+ 2b ≤ n− 2.

Recall from (9) that either

degπ/2(x)+ degπ/2(y)= |E(G)| or degπ/2(x)+ degπ/2(y)= |E(G)| + 1.

If degπ/2(x)+ degπ/2(y)= |E(G)|, then

2 |E(G)| = 4a+ 2b ≤ n− 2+ a ≤ n− 2+ n−2
3
,

so degπ/2(x)+ degπ/2(y)= |E(G)| ≤
2
3(n− 2). Moreover, if

degπ/2(x)+ degπ/2(y)= |E(G)| + 1,

then b ≥ 1 and we get a minor improvement,

2 |E(G)| = 4a+ 2b ≤ n− 2+ a ≤ n− 4+ n−2
3
,

so degπ/2(x)+ degπ/2(y)= |E(G)| + 1≤ (2n− 7) /3< 2
3(n− 2).

We are now ready to put everything together. Between the two points x and y,
we derived the bounds:

degπ/2(x)+ degπ/2(y)≤
2
3(n− 2),

deg+π/4(x)+ deg+π/4(y)≤ (n− 1),

deg−π/4(x)+ deg−π/4(y)≤ (n− 1).

Because the degree of a point must take on an integer value, it must be the case
that either x or y satisfies degπ/2+ deg+π/4+ deg−π/4 ≤ b(4n− 5)/3c. �

4. Small cases

In this section we determine the exact values of S4(n) when 3≤ n ≤ 9.

Theorem 6. For 3 ≤ n ≤ 9, S4(3) = 1, S4(4) = 4, S4(5) = 8, S4(6) = 11,
S4(7)= 15, S4(8)= 20, and S4(9)= 28.
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n=3 n=4 n=5 n=6

n=7 n=8

n=9

Figure 3. Optimal sets achieving equality for S4(n).

The corresponding optimal sets are shown in Figure 3.

Proof. We begin with n = 3. Since three points uniquely determine a triangle,
and there is an IRT with three points, shown in Figure 4(a), this situation becomes
trivial and we conclude that S4(3)= 1.

Now let n = 4. In Figure 4(b) we show a point set P such that S4(P)= 4. This
implies that S4(4)≥ 4. However, S4(4) is also bounded above by

(4
3

)
= 4. Hence,

S4(4)= 4.
To continue with the proof for the remaining values of n, we need the following

two lemmas.

Lemma 7. Suppose |P| = 4 and S4(P) ≥ 2. The sets in parts (b)–(e) of Figure 4
are the only possibilities for such a set P , not counting symmetric repetitions.

Proof. Having S4(P)≥ 2 implies that we must always have more than one IRT in
P . Hence, we can begin with a single IRT and examine the possible ways of adding
a point and producing more IRTs. We accomplish this task in Figure 4(a). The 10
numbers in the figure indicate the location of a point, and the total number of IRTs
after its addition to the set of black dots. All other locations not labeled with a
number do not increase the number of IRTs. Therefore, except for symmetries, all
the possibilities for P are shown in Figure 4(b)–(e). �

Lemma 8. Let P be a finite set with |P| = n. Suppose that S4(A) ≤ b for all
A ⊆ P with |A| = k. Then

S4(P)≤
⌊

n (n− 1) (n− 2) b
k (k− 1) (k− 2)

⌋
.

Proof. Suppose that within P , every k-point configuration contains at most b IRTs.
The number of IRTs in P can then be counted by adding all the IRTs in every k-
point subset of P . However, in doing so, we end up counting a fixed IRT exactly
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Figure 4. Proof of Theorem 6. Each circle with a number indi-
cates the location of a point and the total number of IRTs resulting
from its addition to the base set of black dots.
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k−3

)
times. Because S4(A)≤ b we get,(

n− 3
k− 3

)
S4(P)=

∑
A⊆P
|A|=k

S4(A)≤
(

n
k

)
b.

Notice that S4(P) can only take on integer values so,

S4(P)≤

⌊ (n
k

)
b(n−3

k−3

)⌋= ⌊n(n− 1)(n− 2)b
k(k− 1)(k− 2)

⌋
. �

Now suppose |P|=5. If S4(A)≤1 for all A⊆ P with |A|=4, then by Lemma 8,
S4(P)≤ 2. Otherwise, by Lemma 7, P must contain one of the four sets shown in
Figure 4(b)–(e). The result now follows by examining the possibilities for produc-
ing more IRTs by placing a fifth point in the four distinct sets. In Figure 4(b)–(e),
we accomplish this task. Just as in Lemma 7, every number in a figure indicates
the location of a point, and the total number of IRTs after its addition to the set
of black dots. It follows that the maximum value achieved by placing a fifth point
is 8 and so S4(5) = 8. The point set that uniquely achieves equality is shown
in Figure 4(f). Moreover, there is exactly one set P with S4(P) = 6 (shown in
Figure 4(g)), and two sets P with S4(P)= 5 (Figures 4(h) and 4(i)).

Now suppose |P| = 6. If S4(A) ≤ 4 for all A ⊆ P with |A| = 5, then by
Lemma 8, S4(P)≤ 8. Otherwise, P must contain one of the sets in Figure 4(f)–(i).
We now check all possibilities for adding more IRTs by joining a sixth point to our
four distinct sets. This is shown in Figure 4(f)–(i). It follows that the maximum
value achieved is 11 and so S4(6) = 11. The point set that uniquely achieves
equality is shown in Figure 4(j). Also, except for symmetries, there are exactly
three sets P with S4(P)=10 (Figure 4(k)–(m)) and only one set P with S4(P)=9
(Figure 4(n)).

Now suppose |P| = 7. If S4(A) ≤ 8 for all A ⊆ P with |A| = 6, we have
S4(P) ≤ 14, by Lemma 8. Otherwise, P must contain one of the sets in parts
(j)–(n) of Figure 4. We now check all possibilities for adding more IRTs by joining
a seventh point to our 5 distinct configurations. We complete this task in parts
(j)–(n). Because the maximum value achieved is 15, we deduce that S4(7) = 15.
In this case, there are exactly two point sets that achieve 15 IRTs.

The proof for the values n= 8 and n= 9 follows along the same lines, but there
are many more intermediate sets to be considered. We omit the details. �

Inspired by our method used for proving exact values of S4(n), a computer
algorithm was devised to construct the best one-point extension of a given base
set. This algorithm, together with appropriate heuristic choices for some initial
sets, led to the construction of point sets with many IRTs giving us our best lower



MAXIMUM NUMBER OF ISOSCELES RIGHT TRIANGLES IN A FINITE POINT SET 41

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bound 35 43 52 64 74 85 97 112 124 139 156 176 192 210 229 252

Table 1. Best lower bounds for S4(n).

bounds for S4(n) when 10 ≤ n ≤ 25. These lower bounds are shown in Table 1
and the point sets achieving them in Figure 5.

Figure 5. Best constructions An for n ≤ 25. Each set An is ob-
tained as the union of the starting set (in white) and the points with
label ≤ n. The value S4(An) is given by Table 1.
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