\bullet involve a journal of mathematics

A note on moments in finite von Neumann algebras Jon Bannon, Donald Hadwin and Maureen Jeffery

A note on moments in finite von Neumann algebras

Jon Bannon, Donald Hadwin and Maureen Jeffery
(Communicated by David R. Larson)

Abstract

By a result of the second author, the Connes embedding conjecture (CEC) is false if and only if there exists a self-adjoint noncommutative polynomial $p\left(t_{1}, t_{2}\right)$ in the universal unital C^{*}-algebra $\mathscr{A}=\left\langle t_{1}, t_{2}: t_{j}=t_{j}^{*}, 0<t_{j} \leq 1\right.$ for $\left.1 \leq j \leq 2\right\rangle$ and positive, invertible contractions x_{1}, x_{2} in a finite von Neumann algebra \mathcal{M} with trace τ such that $\tau\left(p\left(x_{1}, x_{2}\right)\right)<0$ and $\operatorname{Tr}_{k}\left(p\left(A_{1}, A_{2}\right)\right) \geq 0$ for every positive integer k and all positive definite contractions A_{1}, A_{2} in $M_{k}(\mathbb{C})$. We prove that if the real parts of all coefficients but the constant coefficient of a self-adjoint polynomial $p \in \mathscr{A}$ have the same sign, then such a p cannot disprove CEC if the degree of p is less than 6 , and that if at least two of these signs differ, the degree of p is 2 , the coefficient of one of the t_{i}^{2} is nonnegative and the real part of the coefficient of $t_{1} t_{2}$ is zero then such a p disproves CEC only if either the coefficient of the corresponding linear term t_{i} is nonnegative or both of the coefficients of t_{1} and t_{2} are negative.

1. Introduction

The Connes embedding conjecture (CEC) is true if every separable type II_{1} factor \mathcal{M} embeds in a tracial ultrapower \mathscr{R}^{ω} of the amenable type II_{1} factor \mathscr{R}. This question concerns the matricial approximation of the elements of a type II_{1} factor \mathcal{M} with faithful normal trace state τ in the sense we now recall. For an N-tuple $\left(x_{1}, \ldots, x_{N}\right)$ of self-adjoint elements in $\mathcal{M}, R>0, n, k \in \mathbb{N}$ and $\varepsilon>0$, we let

$$
\Gamma_{R}\left(x_{1}, \ldots, x_{N}: n, k, \varepsilon\right)
$$

denote the set of tuples $\left(A_{1}, \ldots, A_{N}\right)$ of those $k \times k$ self-adjoint matrices over \mathbb{C} of operator norm at most R satisfying

$$
\left|\tau\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{p}}\right)-\frac{1}{k} \operatorname{Tr}\left(A_{i_{1}} A_{i_{2}}, \ldots A_{i_{p}}\right)\right|<\varepsilon
$$

MSC2000: primary 46L10; secondary 46L54.
Keywords: von Neumann algebras, noncommutative moment problems, Connes embedding conjecture.
Jeffery is an undergraduate at Siena College in Loudonville, New York.
whenever $1 \leq p \leq n$ and $\left(i_{1}, i_{2}, \ldots, i_{p}\right) \in\{1,2, \ldots, N\}^{p}$. We call the elements of $\Gamma_{R}\left(x_{1}, \ldots, x_{N}: n, k, \varepsilon\right)$ approximating microstates for $\left(x_{1}, \ldots, x_{N}\right)$ of precision (n, ε) using $k \times k$ matrices of norm at most R. A separable type II_{1} factor \mathcal{M} embeds in an ultrapower \mathscr{R}^{ω} if and only if for all tuples $\left(x_{1}, \ldots, x_{N}\right)$ of selfadjoint elements in \mathcal{M}, all $n \in \mathbb{N}$ and all $\varepsilon>0$, it is possible to find $k \in \mathbb{N}$ and $R>0$ such that $\Gamma_{R}\left(x_{1}, \ldots, x_{N}: n, k, \varepsilon\right) \neq \varnothing$. In [Rădulescu 1999] it is proved that this statement is true under the restriction that $n \in\{2,3\}$, and that if the statement were true for $n=4$, the CEC would follow.

Our paper concerns the following reformulation of the CEC:
Theorem 1.1 [Hadwin 2001, Corollary 2.3]. Let He be a separable Hilbert space. The Connes embedding conjecture is false if and only if there is a positive integer n, a noncommutative polynomial $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in the universal unital C^{*}-algebra $\mathscr{A}_{n}=\left\langle t_{1}, t_{2}, \ldots, t_{n}: t_{j}=t_{j}^{*},-1<t_{j} \leq 1\right.$ for $\left.1 \leq j \leq n\right\rangle$ and an n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of self-adjoint contractions in $B(H)$ such that
(i) $\operatorname{Tr}_{k}\left(p\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right) \geq 0$ for every positive integer k and every n-tuple $\left(A_{1}, \ldots, A_{n}\right)$ of self-adjoint contractions $A_{1}, A_{2}, \ldots, A_{n}$ in $M_{k}(\mathbb{C})$, and
(ii) $W^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has a faithful tracial state τ and $\tau\left(p\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)<0$.

It is well known that a separable type II_{1} factor \mathcal{M} embeds in an \mathscr{R}^{ω} if and only if $\mathcal{M} \otimes M_{k}(\mathbb{C})$ does for all $k \in \mathbb{N}$. If \mathcal{M} is generated by k self-adjoint elements then $\mathcal{M} \otimes M_{k}(\mathbb{C})$ is generated by two self-adjoint elements [Sinclair and Smith 2008, Proposition 16.1.1]. Whenever $x \in B(H)$ is a self-adjoint contraction and $\varepsilon>0$, it follows (e.g., by the continuous functional calculus for x) that

$$
\frac{(1+\varepsilon)+x}{2+\varepsilon}
$$

is a positive invertible contraction. Therefore, if we replace \mathscr{A}_{n} by

$$
\mathscr{A}=\left\langle t_{1}, t_{2}: t_{j}=t_{j}^{*}, 0<t_{j} \leq 1 \text { for } 1 \leq j \leq 2\right\rangle,
$$

and repeat the argument in [Hadwin 2001, Section 2], we obtain the following.
Theorem 1.2. Let \mathscr{H} be a separable Hilbert space. The Connes embedding conjecture is false if and only if there is a noncommutative polynomial $p\left(t_{1}, t_{2}\right)$ in the universal unital C^{*}-algebra $\mathscr{A}=\left\langle t_{1}, t_{2}: t_{j}=t_{j}^{*}\right.$, with $0<t_{j} \leq 1$ for $\left.1 \leq j \leq 2\right\rangle$, and positive, invertible contractions x_{1} and x_{2} in $B(H)$ such that
(i) $\operatorname{Tr}_{k}\left(p\left(A_{1}, A_{2}\right)\right) \geq 0$ for every positive integer k and all positive definite contractions A_{1} and A_{2} in $M_{k}(\mathbb{C})$, and
(ii) $W^{*}\left(x_{1}, x_{2}\right)$ has a faithful tracial state τ and $\tau\left(p\left(x_{1}, x_{2}\right)\right)<0$.

Also note that if a polynomial $p \in \mathscr{A}$ satisfies (i) and (ii) in the theorem, then so does the polynomial $p+p^{*}$. We may therefore assume that the polynomial appearing in the theorem is self-adjoint.

Note that, even if we restrict our attention in Theorem 1.1 (or Theorem 1.2) to the case where the degree of p is less than or equal to 3 , we cannot use [Rădulescu 1999] to rule out the possibility of finding such a p that will disprove the CEC, because existing methods only allow us to use, when $R^{\prime}<R$, the existence of a microstate in $\Gamma_{R}\left(x_{1}, \ldots, x_{N}: n, k, \varepsilon\right)$ to guarantee the existence of a microstate in $\Gamma_{R^{\prime}}\left(x_{1}, \ldots, x_{N}: n^{\prime}, k, \varepsilon^{\prime}\right)$, where $\varepsilon^{\prime}<\varepsilon$ and $n^{\prime}>n$ - that is, decreasing R comes at the expense of increasing n. See, for example, Proposition 2.4 of [Voiculescu 1994] or Lemma 4 of [Dostál and Hadwin 2003]. Even if this difficulty were overcome, there is no guarantee that the matrices in any approximating microstates found would be positive definite. It behooves us, therefore, to either look for a noncommutative polynomial that may be used to disprove the CEC as prescribed in Theorem 1.1, or to proceed inductively, by degree, to show that such a polynomial cannot exist.

In Section 2 of this paper we prove, in Corollary 2.5 and Theorem 2.6 that if the real parts of all coefficients but the constant coefficient of a self-adjoint noncommutative polynomial $p \in \mathscr{A}$ share the same sign, then such a p cannot disprove the CEC if the degree of p is less than 6 . We prove in Section 3 that if the degree of a self-adjoint noncommutative polynomial $p \in \mathscr{A}$ is 2 , the real part of the coefficient of $t_{1} t_{2}$ is zero and the coefficient of one of the t_{i}^{2} is nonnegative, then such a p disproves the CEC only if either the coefficient of the corresponding linear term t_{i} is nonnegative or if both of the coefficients of t_{1} and t_{2} are negative.

From here on in this paper, the symbols t_{1} and t_{2} will denote the standard generators of the universal C^{*}-algebra

$$
\mathscr{A}=\left\langle t_{1}, t_{2}: t_{j}=t_{j}^{*}, \quad 0<t_{j} \leq 1 \text { for } 1 \leq j \leq 2\right\rangle .
$$

We refer the reader to [Kadison and Ringrose 1983; Sinclair and Smith 2008] for the basic theory of finite von Neumann algebras.

2. $\boldsymbol{\tau}$-symmetrizable monomials

We prove that if the real parts of all coefficients but the constant coefficient of self-adjoint $p \in \mathscr{A}$ share the same sign, and the constant coefficient is positive, then p cannot disprove the CEC if its degree is less than six. Let \mathcal{M} be a finite von Neumann algebra with faithful trace state τ, and $0<x_{1}, x_{2} \leq 1$ self-adjoint contractions in \mathcal{M}.

Definition 2.1. A symmetric expression in x_{1}, x_{2} is a finite sequence

$$
\left(w_{0}, w_{1}, \ldots, w_{N-1}, w_{N}\right)
$$

of elements in \mathcal{M}, where $N \in \mathbb{N}, w_{k}=x_{i}^{s}$ with $i \in\{1,2\}, s \in\{1,1 / 2\}$ and $w_{k}=w_{N-k}$ for all $k \in\{0,1, \ldots, N\}$. A monic monomial $m\left(x_{1}, x_{2}\right)=x_{i_{1}} x_{i_{2}} \ldots x_{i_{l}} \in \mathcal{M}$ with $i_{j} \in\{1,2\}$ for $j \in\{1,2, \ldots, l\}$ is τ-symmetrizable if there exists a symmetric expression $\left(w_{0}, w_{1}, \ldots, w_{N-1}, w_{N}\right)$ in x_{1}, x_{2} such that

$$
\tau\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{l}}\right)=\tau\left(w_{0} w_{1} \ldots w_{N-1} w_{N}\right)
$$

The element $w_{0} w_{1} \ldots w_{N-1} w_{N} \in \mathcal{M}$ is called the element associated to the symmetric expression $\left(w_{0}, w_{1}, \ldots, w_{N-1}, w_{N}\right)$.
Lemma 2.2. If $\left(w_{0}, w_{1}, \ldots, w_{N-1}, w_{N}\right)$ is a symmetric expression in x_{1}, x_{2}, then the associated element $w_{0} w_{1} \ldots w_{N-1} w_{N}$ in \mathcal{M} is a nonnegative contraction.

Proof. We prove this by induction on $N+1$. If $N+1=1$, then $N=0$ and the result is clear from the assumptions on the x_{i}.

Assume now that the result holds for $N+1 \leq l$, that is, for all symmetric expressions $\left(w_{0}, w_{1}, \ldots, w_{j-1}, w_{j}\right)$ in x_{1}, x_{2} with $j<l$. Let $\left(w_{0}, w_{1}, \ldots, w_{l-1}, w_{l}\right)$ be a symmetric expression in x_{1}, x_{2}. Then so is $\left(w_{1}, \ldots, w_{l-1}\right)$. By the induction hypothesis, $w_{1} \ldots w_{l-1} \in \mathcal{M}$ is a nonnegative contraction. Since $w_{0}=w_{l}=x_{i}^{s}$ for some $i \in\{1,2\}$ and $s \in\left\{1, \frac{1}{2}\right\}$, we have

$$
0 \leq w_{0} w_{1} \ldots w_{l-1} w_{l}=x_{i}^{s} w_{1} \ldots w_{l-1} x_{i}^{s} \leq x_{i}^{2 s} \leq x_{i} \leq 1
$$

Remark 2.3. It is a straightforward exercise to verify that every monic noncommutative monomial $m\left(x_{1}, x_{2}\right)$ of degree less than six is τ-symmetrizable in any finite von Neumann algebra \mathcal{M} with faithful trace state τ. (Here, of course, it is essential that $0<x_{1}, x_{2} \leq 1$!)
Corollary 2.4. If $m\left(x_{1}, x_{2}\right)=x_{i_{1}} x_{i_{2}} \ldots x_{i_{l}} \in \mathcal{M}$ is a τ-symmetrizable monic monomial, then $1-\tau\left(m\left(x_{1}, x_{2}\right)\right) \geq 0$.
Proof. Since m is τ-symmetrizable, there exists a symmetric expression

$$
\left(w_{0}, w_{1}, \ldots, w_{N-1}, w_{N}\right)
$$

in x_{1}, x_{2} such that

$$
\tau\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{l}}\right)=\tau\left(w_{0} w_{1} \ldots w_{N-1} w_{N}\right)
$$

By Lemma 2.2 and the fact that τ is a state, $\tau\left(w_{0} w_{1} \ldots w_{N-1} w_{N}\right) \leq 1$.
In the following two results, $J=J \backslash\{0\}$ denotes a finite index set, and for all $j \in J, c_{j} \in \mathbb{C}$, and $m_{j}\left(t_{1}, t_{2}\right) \neq 1$ denotes a monic monomial in \mathscr{A}.
Corollary 2.5. If $0<x_{1}, x_{2} \leq 1$ in \mathcal{M} and $p\left(t_{1}, t_{2}\right)=c_{0} 1+\sum_{j \in J} c_{j} m_{j}\left(t_{1}, t_{2}\right)$ is a self-adjoint noncommutative polynomial in \mathscr{A} such that, such that $c_{0}>0$, $\operatorname{Re}\left(c_{j}\right) \geq 0$ for all $j \in J, p(1,1) \geq 0$ and $m_{j}\left(x_{1}, x_{2}\right)$ is τ-symmetrizable for every $j \in J$, then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$.

Proof. This is trivial application of Corollary 2.4.
Theorem 2.6. If $0<x_{1}, x_{2} \leq 1$ in \mathcal{M} and $p\left(t_{1}, t_{2}\right)=c_{0} 1+\sum_{j \in J} c_{j} m_{j}\left(t_{1}, t_{2}\right)$ is a self-adjoint noncommutative polynomial in \mathscr{A} such that $c_{0}>0, \operatorname{Re}\left(c_{j}\right)<0$ for all $j \in J, p(1,1) \geq 0$ and $m_{j}\left(x_{1}, x_{2}\right)$ is τ-symmetrizable for every $j \in J$, then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$.
Proof. Suppose $p\left(t_{1}, t_{2}\right)$ satisfies the hypotheses. We have

$$
p(1,1)=c_{0} 1+\sum_{j \in J} c_{j} \geq 0
$$

and therefore

$$
\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq \sum_{j \in J} c_{j}\left(m_{j}\left(x_{1}, x_{2}\right)-1\right) \geq 0
$$

3. Degrees 1 and 2

In degree 1 it is convenient to consider the statement of Theorem 1.1 above. The next result rules out the possibility of finding a polynomial p of degree 1 that will disprove the CEC via Theorem 1.1. Observe that if $p(s, t)=c_{0}+c_{1} s+c_{2} t=$ $\bar{c}_{0}+\bar{c}_{1} s+\bar{c}_{2} t$ for any real numbers $-1 \leq s, t \leq 1$ and that $p(s, t) \geq 0$ for any such s and t, then $c_{0} \geq\left|c_{1}+c_{2}\right|$.

Theorem 3.1. Let \mathscr{H} be a separable Hilbert space. Let x_{1} and x_{2} be self-adjoint contraction operators in $B(H)$ such that $W^{*}\left(x_{1}, x_{2}\right)$ has a faithful trace state τ. If $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}=\bar{c}_{0}+\bar{c}_{1} t_{1}+\bar{c}_{2} t_{2}$ is a self-adjoint polynomial in \mathcal{A} with $c_{0} \geq\left|c_{1}+c_{2}\right|$ then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$.
Proof. Observe that $\tau\left(c_{0}+c_{1} x_{1}+c_{2} x_{2}\right)=c_{0}+c_{1} \tau\left(x_{1}\right)+c_{2} \tau\left(x_{2}\right) \geq c_{0}-\left|c_{1}+c_{2}\right|$, since $-1 \leq \tau\left(x_{i}\right) \leq 1$ for $i \in\{1,2\}$.

We now turn to degree 2. We first prove in Theorem 3.4 that if

$$
p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{4} t_{1} t_{2}+\bar{c}_{4} t_{2} t_{1}+c_{5} t_{2}^{2}
$$

is a quadratic, self-adjoint noncommutative polynomial such that either c_{4} is the only nonzero degree 2 term with $2 \operatorname{Re}\left(c_{4}\right) \neq 0$ or one of c_{3} or c_{5} is positive, then whenever $p(s, t)$ is nonnegative for all real numbers $0<s, t \leq 1$, it follows that $\operatorname{Tr}_{k}(p(A, B)) \geq 0$ for all positive definite contractions A and B in $M_{k}(\mathbb{C})$, for any $k \in \mathbb{N}$.

To prove the result above, we shall need the fact that any positive definite square matrix has strictly positive entries on its main diagonal. This is a direct consequence of Sylvester's minorant criterion for positive definiteness.
Lemma 3.2. Let $A=\left(A_{i j}\right)_{i=1}^{k} \in M_{k}(\mathbb{C})$ be positive definite. Then $A_{i i}>0$ for all i $\in\{1,2, \ldots, k\}$.

Proof. We prove this by induction on k. Recognize that the case $k=1$ is clear. Assume the claim holds for $k=l$, and that $A=\left(A_{i j}\right)_{i=1}^{l+1}$ is a positive definite matrix. By Sylvester's criterion, $A=\left(A_{i j}\right)_{i=1}^{l}$ is also positive definite, and therefore, by the induction hypothesis, $A_{i i}>0$ if $i \in\{1,2, \ldots l\}$. We need only show $A_{(l+1)(l+1)}>0$. Let $v \in \mathbb{C}^{l+1}$ be the vector with 1 in its $(l+1)$-st row and zero elsewhere. Then $\langle A v, v\rangle=A_{(l+1)(l+1)}>0$ by the positive definiteness of A.

We now observe that if a polynomial is nonnegative on $(0,1] \times(0,1]$, then its constant term must be nonnegative.
Lemma 3.3. If $p(s, t)=c_{0}+c_{1} s+c_{2} t+c_{3} s^{2}+2 \operatorname{Re}\left(c_{4}\right) s t+c_{5} t^{2} \geq 0$ for all real numbers $0<s, t \leq 1$, then $c_{0} \geq 0$.

Proof. For any $\varepsilon>0$ we have

$$
0<p(\varepsilon, \varepsilon)=c_{0}+\left(c_{1}+c_{2}+\left(c_{3}+2 \operatorname{Re}\left(c_{4}\right)+c_{5}\right) \varepsilon\right) \varepsilon
$$

hence $c_{0} \geq 0$.
Theorem 3.4. Let $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{4} t_{1} t_{2}+\bar{c}_{4} t_{2} t_{1}+c_{5} t_{2}^{2}$ be a self-adjoint noncommutative polynomial in A. Suppose

$$
p(s, t)=c_{0}+c_{1} s+c_{2} t+c_{3} s^{2}+2 \operatorname{Re}\left(c_{4}\right) s t+c_{5} t^{2} \geq 0
$$

for all real numbers $0<s, t \leq 1$, and either $c_{3}=0, c_{5}=0$ and $2 \operatorname{Re}\left(c_{4}\right) \neq 0$ or $c_{3}>0$ or $c_{5}>0$. Then $\operatorname{Tr}_{k}(p(A, B)) \geq 0$ for any positive definite contractions A, B in $M_{k}(\mathbb{C})$.
Proof. For simplicity, let us assume $c_{5} \geq 0$. Let A, B be positive definite contractions in $M_{k}(\mathbb{C})$. By the spectral theorem, we may assume $A=\operatorname{diag}\left(A_{i}\right)_{i=1}^{k}$ is diagonal. A simple computation establishes that, for all $i \in\{1,2, \ldots, k\}$,

$$
(p(A, B))_{i i}=p\left(A_{i}, B_{i i}\right)+\sum_{j \in\{1,2, \ldots, k\} \backslash i\}} c_{5}\left|B_{i j}\right|^{2}
$$

Since A is a positive definite contraction, each A_{i} satisfies $0<A_{i} \leq 1$. If we could establish that the matrix $B_{0}:=\operatorname{diag}\left(B_{i i}\right)_{i=1}^{k}$ is a positive definite contraction, then each $p\left(A_{i}, B_{i i}\right)$ would follow nonnegative by assumption and therefore $\operatorname{Tr}_{k}(p(A, B))=\sum_{i=1}^{k}(p(A, B))_{i i} \geq 0$. Positivity of B_{0} is a simple consequence of the positive definiteness of B, since every diagonal entry of a positive definite matrix is strictly positive by Lemma 3.2. It remains to show that B_{0} is a contraction, which is equivalent to proving that $I-B_{0}$ is positive semidefinite. We know, however, that $I-B$ is positive semidefinite, and hence that for all $\varepsilon>0$ that $(I+\varepsilon)-B$ is positive definite. Again as a consequence of Sylvester's criterion, $((I+\varepsilon)-B)_{i i}>0$ for all $i \in\{1,2, \ldots, n\}$, therefore for all such i it follows that $1+\varepsilon>B_{i i}$, and hence $1 \geq B_{i i}$. It follows that $I-B_{0}$ is positive semidefinite, hence B_{0} is a contraction.

Let \mathcal{M} be a von Neumann algebra with faithful trace state τ. Below,

$$
\langle x, y\rangle_{2}=\tau\left(y^{*} x\right) \quad \text { and } \quad\|x\|_{2}^{2}=\tau\left(x^{*} x\right)^{1 / 2}, \quad \text { for } x, y \in \mathcal{M} .
$$

Let $n \in \mathbb{N}$ and x_{1}, x_{2} be positive invertible contractions in \mathcal{M}. For every $k \in \mathbb{N}$, there are spectral projections $\left\{P_{i}^{(k)}\right\}_{i=1}^{k}$ in $\left\{1, x_{1}\right\}^{\prime \prime}$ such that $\tau\left(P_{i}^{(k)}\right)=1 / k$ for each i and

$$
\left\|x_{1}-\sum_{i=1}^{k} \frac{i-1}{k} P_{i}^{(k)}\right\|<\frac{1}{k} .
$$

If $i=j$, let $V_{i j}^{(k)}=P_{i}^{(k)}$, and if $i \neq j$, let $V_{i j}^{(k)}$ be a partial isometry in \mathcal{M} with initial projection $P_{j}^{(k)}$ (meaning that $V_{i j}^{(k)}\left(V_{i j}^{(k)}\right)^{*}=P_{j}$) and final projection $P_{i}^{(k)}$ (meaning that $\left.\left(V_{i j}^{(k)}\right)^{*} V_{i j}^{(k)}=P_{i}^{(k)}\right)$. We now prove that if x_{2} is sufficiently close (in $\|\cdot\|_{2}$) to a positive definite element in the type I subfactor of \mathcal{M} generated by $\left\{V_{i j}^{(k)}\right\}_{i, j=1}^{k}$, then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$ when p satisfies the hypotheses of Theorem 3.4. In the statement of the theorem, we regard x_{2} as an operator matrix and compare it entry-wise to the element $\left(b_{i j} V_{i j}^{(k)}\right)_{i, j=1}^{k}$.
Theorem 3.5. Let \mathcal{M} be a finite von Neumann algebra with faithful trace state τ, let x_{1}, x_{2} be positive, invertible elements in \mathcal{M}, and adopt the notation in the previous paragraph. Let $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{4} t_{1} t_{2}+\bar{c}_{4} t_{2} t_{1}+c_{5} t_{2}^{2}$ be a self-adjoint noncommutative polynomial in A. Suppose that

$$
p(s, t)=c_{0}+c_{1} s+c_{2} t+c_{3} s^{2}+2 \operatorname{Re}\left(c_{4}\right) s t+c_{5} t^{2} \geq 0
$$

for all real numbers $0<s, t \leq 1$, that either $c_{3}=0, c_{5}=0$ and $2 \operatorname{Re}\left(c_{4}\right) \neq 0$ or $c_{3}>0$ or $c_{5}>0$, and that for all $k \in \mathbb{N}$ there exists a type I subfactor of \mathcal{M} generated by $\left\{V_{i j}^{(k)}\right\}_{i, j=1}^{k}$ as in the previous paragraph, and a positive definite contraction $\left(b_{i j}\right)_{i, j=1}^{k} \in M_{k}(\mathbb{C})$ such that

$$
\left\|P_{i}^{(k)} x_{2} P_{j}^{(k)}-b_{i j} V_{i j}^{(k)}\right\|_{2}<\frac{1}{k^{100}}, \quad \text { for all } i, j \in\{1,2, \ldots, k\}
$$

Then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$.
Proof. Let $D_{k}=\sum_{i=1}^{k} \frac{i-1}{k} P_{i}^{(k)}$ and $B_{k}=\sum_{i, j=1}^{k} b_{i j} V_{i j}^{(k)}$. Writing $x_{1}=D_{k}+\left(x_{1}-D_{k}\right)$ and $x_{2}=B_{k}+\left(x_{2}-B_{k}\right)$, we have

$$
\begin{aligned}
\tau\left(p\left(x_{1}\right),\right. & \left.p\left(x_{2}\right)\right) \\
=c_{0} & +c_{1} \tau\left(D_{k}+\left(x_{1}-D_{k}\right)\right)+c_{2} \tau\left(B_{k}+\left(x_{2}-B_{k}\right)\right)+c_{3} \tau\left(\left(D_{k}+\left(x_{1}-D_{k}\right)\right)^{2}\right) \\
& +2 \operatorname{Re}\left(c_{4}\right) \tau\left(\left(D_{k}+\left(x_{1}-D_{k}\right)\right)\left(B_{k}+\left(x_{2}-B_{k}\right)\right)\right)+c_{5} \tau\left(\left(B_{k}+\left(x_{2}-B_{k}\right)\right)^{2}\right) \\
=p(& \left.\tau\left(D_{k}\right), \tau\left(B_{k}\right)\right)+c_{1} \tau\left(x_{1}-D_{k}\right)+c_{2} \tau\left(x_{2}-B_{k}\right) \\
& +2 c_{3} \tau\left(D_{k}\left(x_{1}-D_{k}\right)\right)+c_{3} \tau\left(x_{1}-D_{k}\right)^{2}+2 \operatorname{Re}\left(c_{4}\right) \tau\left(D_{k}\left(x_{2}-B_{k}\right)\right) \\
& +2 \operatorname{Re}\left(c_{4}\right) \tau\left(B_{k}\left(x_{1}-D_{k}\right)\right)+2 \operatorname{Re}\left(c_{4}\right) \tau\left(\left(x_{1}-D_{k}\right)\left(x_{2}-B_{k}\right)\right) \\
& +2 c_{5} \tau\left(B_{k}\left(x_{2}-B_{k}\right)\right)+c_{5} \tau\left(\left(x_{2}-B_{k}\right)^{2}\right) .
\end{aligned}
$$

Therefore, by the triangle and Cauchy-Schwartz inequalities and the fact that the operator norm dominates the $\|\cdot\|_{2}$-norm,

$$
\left|\tau\left(p\left(x_{1}\right), p\left(x_{2}\right)\right)-p\left(\tau\left(D_{k}\right), \tau\left(B_{k}\right)\right)\right| \leq\left(\left|c_{1}\right|+\left|c_{2}\right|+3\left|c_{3}\right|+6 \operatorname{Re}\left(c_{4}\right)+3 c_{5}\right) \frac{1}{k}
$$

Since $W^{*}\left(D_{k}, B_{k}\right) \cong W^{*}\left(\operatorname{diag}((i-1) / k, i \in\{1, \ldots, k\}),\left(b_{i j}\right)_{i, j=1}^{k}\right) \subseteq M_{k}(\mathbb{C})$ via the obvious trace-preserving $*$-isomorphism, it follows that

$$
\tau\left(p\left(x_{1}\right), p\left(x_{2}\right)\right) \geq 0
$$

Proposition 3.6. Let $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{4} t_{1} t_{2}+\bar{c}_{4} t_{2} t_{1}+c_{5} t_{2}^{2}$ be a self-adjoint noncommutative polynomial in \mathfrak{A} satisfying the hypotheses of Theorem 3.4, and let \mathcal{M} be a finite von Neumann algebra with faithful trace state τ. If $0<x_{1}, x_{2} \leq 1$ in \mathcal{M} then $\tau\left(p\left(x_{1}, x_{2}\right)\right)<0$ if and only if

$$
\left.\left.\begin{array}{rl}
c_{5}\left\|x_{2}-\tau\left(x_{2}\right)\right\|_{2}^{2}+c_{3}\left\|x_{1}-\tau\left(x_{1}\right)\right\|_{2}^{2}+2 \operatorname{Re}\left(c_{4}\right)\left\langle x_{1}-\tau\left(x_{1}\right),\right. & x_{2}
\end{array}\right) \tau\left(x_{2}\right)\right\rangle_{2},
$$

Proof. Writing each $\tau\left(x_{i} x_{j}\right)$ as $\tau\left(\left(x_{i}-\tau\left(x_{i}\right) 1\right)\left(x_{j}-\tau\left(x_{j}\right) 1\right)\right)+\tau\left(x_{i}\right) \tau\left(x_{j}\right)$, we see that

$$
\begin{aligned}
& \tau\left(p\left(x_{1}, x_{2}\right)\right)=p\left(\tau\left(x_{1}\right), \tau\left(y_{1}\right)\right)+c_{5}\left\|x_{2}-\tau\left(x_{2}\right)\right\|_{2}^{2}+c_{3}\left\|x_{1}-\tau\left(x_{1}\right)\right\|_{2}^{2} \\
&+2 \operatorname{Re}\left(c_{4}\right)\left\langle x_{1}-\tau\left(x_{1}\right), x_{2}-\tau\left(x_{2}\right)\right\rangle_{2} .
\end{aligned}
$$

The result follows.
In the rest of this section, we narrow down the possibilities for disproving the CEC using polynomials satisfying the hypotheses of Theorem 3.4 in the nonrotated case, where $\operatorname{Re}\left(c_{4}\right)=0$. We point out that if $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2}$ is a self-adjoint noncommutative polynomial in \mathscr{A} satisfying the hypotheses of Theorem 3.4 with both $c_{5} \geq 0$ and $c_{3} \geq 0$, then $\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0$ by the proof of Proposition 3.6.

Theorem 3.7. Let $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2}$ be a self-adjoint noncommutative polynomial in \mathscr{A} satisfying the hypotheses of Theorem 3.4 with $c_{3}>0$, $c_{5}<0$ and such that $c_{1} \geq 0$ and $c_{2} \leq 0$. Then, for any finite von Neumann algebra \mathcal{M} with faithful trace state τ, we have

$$
\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0
$$

for any positive definite contractions x_{1} and x_{2} in \mathcal{M}.
Proof. Assume that $p\left(t_{1}, t_{2}\right)$ satisfies the hypotheses. Suppose that there exists a finite von Neumann algebra \mathcal{M} with faithful trace state τ and positive definite
contractions x_{1} and x_{2} such that $\tau\left(p\left(x_{1}, x_{2}\right)\right)<0$. If $c_{1} \geq 0$ and $c_{2} \leq 0$, then

$$
p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2}
$$

so $c_{0}+\left(c_{1}+c_{3} \varepsilon\right) \varepsilon+c_{2}+c_{5} \geq 0$ for every $\varepsilon>0$, and hence $c_{0} \geq-c_{5}-c_{2}$. Thus

$$
\begin{aligned}
0 & >c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2} \\
& \geq-c_{5}-c_{2}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2} \\
& =-c_{5}\left(1-t_{2}^{2}\right)+c_{3} t_{1}^{2}+c_{1} t_{1}-c_{2}\left(1-t_{2}\right)
\end{aligned}
$$

and

$$
0>-c_{5} \tau\left(1-x_{2}^{2}\right)+c_{3} \tau\left(x_{1}^{2}\right)+c_{1} \tau\left(x_{1}\right)-c_{2} \tau\left(1-x_{2}\right) \geq 0 .
$$

This is a contradiction.
Theorem 3.8. Let $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2}$ be a self-adjoint noncommutative polynomial in \mathscr{A} satisfying the hypotheses of Theorem 3.4 with $c_{3}>0$, $c_{5}<0$ and such that $c_{1}<0$ and $c_{2}=0$. Then for any finite von Neumann algebra \mathcal{M} with faithful trace state τ,

$$
\tau\left(p\left(x_{1}, x_{2}\right)\right) \geq 0
$$

for any positive definite contractions x_{1} and x_{2} in \mathcal{M}.
Proof. Assume that $p\left(t_{1}, t_{2}\right)$ satisfies the hypotheses. Let \mathcal{M} be a finite von Neumann algebra with faithful trace state τ and let x_{1} and x_{2} be positive definite contractions. If $c_{1}<0$ and $c_{2}=0$, then for every $\varepsilon>0$ letting $t_{1}=\varepsilon-c_{1} /\left(2 c_{3}\right)$,

$$
c_{0}+c_{3} \varepsilon^{2}-\frac{c_{1}^{2}}{4 c_{3}}+c_{5} \geq 0
$$

and therefore $c_{0} \geq \frac{c_{1}^{2}}{4 c_{3}}-c_{5}$. Then

$$
\begin{aligned}
p\left(t_{1}, t_{2}\right) & =c_{0}+c_{3}\left(t_{1}+\frac{c_{1}}{2 c_{3}}\right)^{2}-\frac{c_{1}^{2}}{4 c_{3}}+c_{5} t_{2}^{2} \\
& \geq \frac{c_{1}^{2}}{4 c_{3}}-c_{5}+c_{3}\left(t_{1}+\frac{c_{1}}{2 c_{3}}\right)^{2}-\frac{c_{1}^{2}}{4 c_{3}}+c_{5} t_{2}^{2}=-c_{5}\left(1-t_{2}^{2}\right)+c_{3}\left(t_{1}+\frac{c_{1}}{2 c_{3}}\right)^{2}
\end{aligned}
$$

Therefore

$$
\tau\left(p\left(x_{1}, x_{2}\right)\right)=-c_{5} \tau\left(1-x_{2}^{2}\right)+c_{3} \tau\left(\left(x_{1}+\frac{c_{1}}{2 c_{3}}\right)^{2}\right) \geq 0
$$

The previous two theorems establish that any polynomial $p\left(t_{1}, t_{2}\right)=c_{0}+c_{1} t_{1}+$ $c_{2} t_{2}+c_{3} t_{1}^{2}+c_{5} t_{2}^{2}$ in \mathscr{A} that has a chance to disprove the CEC must satisfy either $c_{2}>0$ or both $c_{1}<0$ and $c_{2}<0$.

References

[Dostál and Hadwin 2003] M. Dostál and D. Hadwin, "An alternative to free entropy for free group factors", Acta Math. Sin. (Engl. Ser.) 19:3 (2003), 419-472. MR 2005a:46136 Zbl 1115.46054
[Hadwin 2001] D. Hadwin, "A noncommutative moment problem", Proc. Amer. Math. Soc. 129:6 (2001), 1785-1791. MR 2003a:46101 Zbl 0982.44005
[Kadison and Ringrose 1983] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, I: Elementary theory, Pure and Applied Mathematics 100-I, Academic Press, New York, 1983. MR 85j:46099
[Rădulescu 1999] F. Rădulescu, "Convex sets associated with von Neumann algebras and Connes' approximate embedding problem", Math. Res. Lett. 6:2 (1999), 229-236. MR 2000c:46119
[Sinclair and Smith 2008] A. M. Sinclair and R. R. Smith, Finite von Neumann algebras and masas, London Math. Soc. Lecture Note Series 351, Cambridge University Press, 2008. MR $2009 \mathrm{~g}: 46116$ Zbl 1154.46035
[Voiculescu 1994] D. Voiculescu, "The analogues of entropy and of Fisher's information measure in free probability theory, II", Invent. Math. 118:3 (1994), 411-440. MR 96a:46117 Zbl 0820.60001

Received: 2010-07-09 Accepted: 2011-02-26
jbannon@siena.edu
don@math.unh.edu Department of Mathematics and Statistics, The University of New Hampshire, Durham, NH 03824, United States
me03jeff@siena.edu Department of Mathematics, Siena College, Loudonville, NY 12211, United States

involve
 pjm.math.berkeley.edu/involve
 EDITORS

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@ wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100 /$ year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers

A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
Copyright © 2011 by Mathematical Sciences Publishers

involve

The arithmetic of trees 1
Adriano Bruno and Dan Yasaki
Vertical transmission in epidemic models of sexually transmitted diseases with isolation 13 from reproduction

Daniel Maxin, Timothy Olson and Adam Shull
On the maximum number of isosceles right triangles in a finite point set 27
Bernardo M. Ábrego, Silvia Fernández-Merchant and David B. Roberts
Stability properties of a predictor-corrector implementation of an implicit linear 43 multistep method

Scott Sarra and Clyde Meador
Five-point zero-divisor graphs determined by equivalence classes 53
Florida Levidiotis and Sandra Spiroff
A note on moments in finite von Neumann algebras 65
Jon Bannon, Donald Hadwin and Maureen Jeffery
Combinatorial proofs of Zeckendorf representations of Fibonacci and Lucas products 75
Duncan McGregor and Michael Jason Rowell
A generalization of even and odd functions 91
Micki Balaich and Matthew Ondrus

