0 involve a journal of mathematics

Combinatorial proofs of Zeckendorf representations of Fibonacci and Lucas products

Duncan McGregor and Michael Jason Rowell

Combinatorial proofs of Zeckendorf representations of Fibonacci and Lucas products

Duncan McGregor and Michael Jason Rowell
(Communicated by Arthur T. Benjamin)

In 1998, Filipponi and Hart introduced many Zeckendorf representations of Fibonacci, Lucas and mixed products involving two variables. In 2008, Artz and Rowell proved the simplest of these identities, the Fibonacci product, using tilings. This paper extends the work done by Artz and Rowell to many of the remaining identities from Filipponi and Hart's work. We also answer an open problem raised by Artz and Rowell and present many Zeckendorf representations of mixed products involving three variables.

1. Preliminaries

Definition 1.1. The n-th Fibonacci number is the term f_{n} of the Fibonacci sequence defined recursively by

$$
f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} .
$$

This definition is shifted relative to the standard Fibonacci sequence, which begins at 0 . This is done to ensure that the combinatorial interpretation matches our sequence without having to shift indices.

Benjamin and Quinn [2003] presented a combinatorial interpretation for the Fibonacci sequence: f_{n} is the number of possible tilings of an $1 \times n$ board with 1×2 dominoes and 1×1 squares. ${ }^{1}$ They also gave a combinatorial interpretation for a related sequence introduced by Edouard Lucas:
Definition 1.2. The n-th Lucas number is the term L_{n} of the Lucas sequence, defined recursively by

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} .
$$

MSC2000: 05A19, 11B39.
Keywords: number theory, Fibonacci numbers, Zeckendorf representations, combinatorics.
${ }^{1}$ The $1 \times n$ board, or n-board, is divided into 1×1 squares, called cells. In a tiling, the board is entirely covered by tiles without overlap. (A tile is either a domino or a square.) Two tilings are equivalent if, given any pair of cells, they belong to the same tile in one tiling if and only if they belong to the same tile in the other.
L_{n} is the number of possible square-and-domino tilings of an n-bracelet, that is, an n-board with ends identified. (One can think of such a board as a ring of curved cells.) We do not consider as equivalent tilings superimposable by a rotation or reflection; the equivalence relation is the same as for a linear board (see note 1). An n-bracelet has a designated starting cell and ending cell. If these two cells are covered by the same domino, we say that the board is out of phase. Otherwise, the board is in phase.

The combinatorial interpretation of f_{n} and L_{n} given by Benjamin and Quinn is easy to prove by induction. (For instance, in the linear case, consider the first cell of the n-board: either it's covered by a domino, in which case there are, by the induction assumption, f_{n-2} possible tilings of the $n-2$ leftover cells, or it's covered by a square, in which case there are f_{n-1} possibilities.) Since the introduction of these interpretations, many Fibonacci and Lucas identities have been proved combinatorially. Some identities are presented below and will be used repeatedly throughout the paper.
Lemma 1.1. For any positive integer $n \geq 0$,

$$
f_{n}= \begin{cases}f_{0}+f_{2}+\cdots+f_{n-1} & \text { for } n \text { odd } \\ f_{1}+f_{3}+\cdots+f_{n-1}+1 & \text { for } n \text { even } .\end{cases}
$$

A combinatorial proof of the odd case of Lemma 1.1 appears as Identity 2 in [Benjamin and Quinn 2003]. The even case can be proved similarly.

In the next proof and later one, we say that a tiling has a fault at m if the m-th and $(m+1)$-st cells belong to different tiles.
Lemma 1.2. For any positive integers $m, n \geq 1$,

$$
f_{m+n}-f_{m} f_{n}=f_{m-1} f_{n-1}
$$

Proof. Consider the tilings of an $(m+n)$-board; we know there are f_{m+n} of them. Divide the board into an m-board and an n-board. For tilings that have a fault at m, there are f_{m} possibilities for the m-board and f_{n} for the n-board, for a total of $f_{m} f_{n}$ possibilities. The complementary case is where there is a domino straddling tiles m and $m+1$. Then we're left with subboards of lengths $m-1$ and $n-1$, and there are $f_{m-1} f_{n-1}$ such possibilities.

Lemma 1.3. For any positive integer $n \geq 2$,

$$
L_{n}=f_{n}+f_{n-2}
$$

A combinatorial proof of this appears under Identity 32 in [Benjamin and Quinn 2003]. We will repeatedly apply this lemma in our identities that involve Lucas products so that we can work with n-boards rather than bracelets. For example,

$$
L_{m} L_{n}=f_{m} f_{n}+f_{m-2} f_{n}+f_{m} f_{n-2}+f_{m-2} f_{n-2}
$$

Each of the four terms on the right-hand side are each of the combinations of two bracelets either being in or out of phase.

Edouard Zeckendorf, an amateur mathematician and a doctor in the Belgian army, proved [1972] an interesting property of Fibonacci numbers (here \mathbb{N} stands for the natural numbers, not including 0):
Theorem 1.4. Every $N \in \mathbb{N}$ can be expressed uniquely as a sum

$$
\sum_{i=1}^{M} f_{a_{i}}=N
$$

where $M \in \mathbb{N}, a_{i} \in \mathbb{N}$ for $1 \leq i \leq M$, and $a_{i+1}>a_{i}+1$ for $1 \leq i<M$.
We call this decomposition the Zeckendorf representation of N. Note that, since $a_{i+1}>a_{i}+1$, repeated or consecutive Fibonacci numbers cannot appear in the representation.

An open exercise in [Benjamin and Quinn 2003] lists a number of identities involving Zeckendorf representations of multiples of Fibonacci numbers and asks for combinatorial proofs:

$$
\begin{aligned}
& 2 f_{n}=f_{n-2}+f_{n+1} \\
& 3 f_{n}=f_{n-2}+f_{n+2} \\
& 4 f_{n}=f_{n-2}+f_{n}+f_{n+2}
\end{aligned}
$$

Wood [2007] provided combinatorial proofs for several of these identities, but without a unified method. Gerdemann [2009] gave a combinatorial algorithm for finding the Zeckendorf representation of any particular $m f_{n}$, but it does not give a general closed-form representation.

Artz and Rowell [2009] found combinatorial proofs of certain Zeckendorf representations of $f_{m} f_{n}$ originally proved in [Filipponi and Hart 1998] by other means:
Theorem 1.5. For $n>2 k+1$,

$$
f_{2 k+1} f_{n}=\sum_{i=1}^{k+1} f_{n-2 k-4+4 i}
$$

Theorem 1.6. For $n>2 k$,

$$
f_{2 k} f_{n}=f_{n-2 k}+\sum_{i=1}^{k} f_{n-2 k-1+4 i}
$$

To sketch the proof for the case of $f_{2 k+1} f_{n}$, one must break the set of all tilings of an $(n+2 k+1)$-board with a fault at n into many disjoint sets where the closest square is i dominoes away from the fault at n. Further our closest square can be no further than k dominoes away from the fault; therefore, $0 \leq i \leq k$.

In Sections 2 and 3 we provide combinatorial proofs of additional Zeckendorf representations of Fibonacci and Lucas products given in [Filipponi and Hart 1998], namely those for $2 f_{m} f_{n}$ and $L_{m} L_{n}$. In Section 4 we answer an open problem from [Artz and Rowell 2009] and present many new Fibonacci and Lucas product Zeckendorf representations.

2. The Zeckendorf representation of $\mathbf{2} \boldsymbol{f}_{\boldsymbol{m}} f_{\boldsymbol{n}}$

A Zeckendorf representation for $2 f_{m} f_{n}$ was given in [Filipponi and Hart 1998]. We provide a combinatorial proof for this identity, extending the combinatorial methods from [Artz and Rowell 2009].

Theorem 2.1. For integers k and n such that $n>2 k+1>0$,

$$
2 f_{2 k+1} f_{n}=f_{n+2 k+1}+\sum_{i=1}^{k} f_{n+2 k+3-4 i}+f_{n-2 k-2}
$$

Proof. The tilings of an $(n+2 k+1)$-board having a fault at n make up a $f_{n} f_{2 k+1^{-}}$ element set. We will partition this set into a union of four sequences of subsets R_{i}, S_{i}, T_{i}, and U_{i}, for $0 \leq i \leq k$, according to Figure 1 . Specifically, given a ($n+2 k+1$)board tiling having a fault at n, let i be the number of dominos between the fault and a square closest to the fault: then $i \leq k$ (there is at least one square in the $(2 k+1)$-board to the right of the fault). Next assign this tiling to the set
R_{i} if there are i dominos adjacent to the fault on each side, followed by a square on each side;
S_{i} if there are i dominos adjacent to the fault on each side, followed by yet another domino on the left and a square on the right;

Figure 1. Configurations charaterizing membership in the sets R_{i}, S_{i}, T_{i} and U_{i}.
T_{i} if there are i dominos adjacent to the fault on each side, followed by two squares on the left and a domino on the right;
U_{i} if there are i dominos adjacent to the fault on each side, followed by a square and a domino on the left and a domino on the right.
(Note that T_{k} and U_{k} are empty.) Thus, the sets $R_{i}, S_{i}, T_{i}, U_{i}$ for $0 \leq i \leq k$ account exactly once for each tiling having a fault at n.

Further, we take a second copy of each of these sets, denoting them by R_{i}^{*}, S_{i}^{*}, T_{i}^{*}, and U_{i}^{*}, and we define

$$
A_{i}=R_{i} \cup R_{i}^{*} \cup S_{i} \cup T_{i} \cup T_{i}^{*} \cup U_{i}, \quad B_{i}=S_{i}^{*} \cup U_{i}^{*}
$$

It follows that the sets A_{i} and B_{i}, for $0 \leq i \leq k$, account exactly twice for each tiling having a fault at n. Therefore

$$
\sum_{i=0}^{k}\left|A_{i} \cup B_{i}\right|=2 f_{n} f_{2 k+1}
$$

by the first sentence of the proof. To complete the proof, we will show the following equalities:

$$
\begin{aligned}
\left|A_{0}\right| & =f_{n+2 k+1} ; \\
\left|A_{i} \cup B_{i-1}\right| & =f_{n+2 k+3-4 i} \quad \text { for } 1 \leq i \leq k ; \\
\left|B_{k}\right| & =f_{n-2 k-2} .
\end{aligned}
$$

We prove each equality by exhibiting a bijection from the set of tilings of a board of the appropriate size to the set in the left-hand side of the equality. For instance, to show that $\left|A_{0}\right|=f_{n+2 k+1}$, we start from the set of all tilings of the $(n+2 k+1)$ board; this set, as we know, has $f_{n+2 k+1}$ elements. So consider any tiling of the ($n+2 k+1$)-board.

- If the tiling has a fault at n and a square next to the fault, on either or both sides, do nothing. This gives an element of $R_{0} \cup S_{0} \cup T_{0} \cup U_{0}$.
- If the tiling has a fault at n and a domino on both sides of the fault, replace the domino to the left of the fault with two squares, obtaining an element of T_{0}^{*}.
- If the tiling does not have a fault at n, split the domino covering cells n and $n+1$ into two squares, obtaining an element of R_{0}^{*}.

Since $A_{0}=R_{0} \cup R_{0}^{*} \cup S_{0} \cup T_{0} \cup T_{0}^{*} \cup U_{0}$ and all elements of the component sets are accounted for, we have shown that $\left|A_{0}\right|=f_{n+2 k+1}$.

Next we show that $\left|A_{i} \cup B_{i-1}\right|=f_{n+2 k+3-4 i}$ for $1 \leq i \leq k$. Consider any tiling of an $(n+2 k+3-4 i)$-board, and remove the last tile. Suppose first that the removed tile was a domino, which leaves an $(n+2 k+1-4 i)$-board.

- If the tiling has a fault at $n-2 i$ and a square next to the fault, on either or both sides, insert $2 i$ dominos at the fault. This gives an element of $R_{i} \cup S_{i} \cup T_{i} \cup U_{i}$.
- If the tiling has a fault at $n-2 i$ and a domino on both sides of the fault, replace the domino to the left of the fault with two squares and insert $2 i$ dominos at the fault, obtaining an element of T_{i}^{*}.
- If the tiling does not have a fault at $n-2 i$, replace the domino covering the fault with two squares and insert $2 i$ dominos between the two squares, obtaining an element of R_{i}^{*}.
This accounts for each element of A_{i} once. Now suppose instead that the tile we removed was a square, which leaves an $(n+2 k+2-4 i)$-board.
- If the tiling has a fault at $n-2 i$, insert $2 i-1$ dominos followed by a square at the fault, obtaining an element of S_{i-1}^{*}.
- If the tiling does not have a fault at $n-2 i$, insert a square followed by $2 i-1$ dominos just before the domino that covers cell $n-2 i$. This gives an element of U_{i-1}^{*}.
This accounts for each element of B_{i-1} once. Thus $A_{i} \cup B_{i-1}$ is in bijection with the set of tilings of the $(n+2 k+3-4 i)$-board.

Lastly, we must show that $\left|B_{k}\right|=f_{n-2 k-2}$. Given any tiling of an ($n-2 k-2$)board, append $2 k+1$ dominos followed by a square at the right edge, to obtain an element of $B_{k}=S_{k}^{*}$ (recall that U_{k}^{*} is empty). This concludes the proof.

We only present, but do not prove, the case $2 f_{2 k} f_{n}$. Its proof is similar to the case presented above and is left to the interested reader.
Theorem 2.2. For integers k and n such that $n>2 k+1>0$,

$$
2 f_{2 k} f_{n}=f_{n+2 k}+\sum_{i=1}^{k} f_{n+2 k+2-4 i}+f_{n-2 k}
$$

3. Zeckendorf representations of $\boldsymbol{L}_{\boldsymbol{m}} \boldsymbol{L}_{\boldsymbol{n}}$

Also given in [Filipponi and Hart 1998] is a Zeckendorf representation of $L_{m} L_{n}$. We again extend the notion of squares closest to a given fault to prove our theorem combinatorially.

Lemma 3.1. Let m and n be positive integers such that $n>m>1$. Then

$$
f_{n} f_{m-2}-f_{n-1} f_{m-1}=(-1)^{m} f_{n-m} .
$$

Proof. Let $A^{\{n+m-2, n\}}$ be the set of all tilings of an $(n+m-2)$-board with a fault at n.

For $0 \leq i \leq\lfloor(m-2) / 2\rfloor$, let $A_{2 i}^{\{n+m-2, n\}}$ be the set of all tilings of an $(n+m-2)$ board with a fault at n, i dominos on both sides of the fault and a square at cell

Figure 2. Configurations characterizing membership in various sets.
$n-2 i$. For $0 \leq i \leq\lfloor(m-3) / 2\rfloor$, let $A_{2 i+1}^{\{n+m-2, n\}}$ be the set of all tilings of an ($n+m-2$)-board with a fault at n, i dominos on either side of the fault, a domino at cell $n-2 i-1$ and a square at cell $n+2 i+1$. See Figure 2. For m odd we have

$$
A^{\{n+m-2, n\}}=\bigcup_{i=0}^{m-2} A_{i}^{\{n+m-2, n\}}
$$

If m is even, we need one more set to complete our construction of $A^{\{n+m-2, n\}}$. Let $A_{m-1}^{\{n+m-2, n\}}$ be the set of all tilings of an $(n+m-2)$-board with a fault at n, $m / 2-1$ dominos on the right side of the fault and $m / 2$ dominos on the left side of the fault. Then

$$
A^{\{n+m-2, n\}}=\bigcup_{i=0}^{m-1} A_{i}^{\{n+m-2, n\}}
$$

Let $B^{\{n+m-2, n-1\}}$ be the set of all tilings of an $(n+m-2)$-board with a fault at $n-1$.

For $0 \leq i \leq\lfloor(m-2) / 2\rfloor$, let $B_{2 i}^{\{n+m-2, n-1\}}$ be the set of all tilings of an $(n+m-2)$ board with a fault at $n-1, i$ dominos on either side of the fault and a square at cell $n+2 i$. For $0 \leq i \leq\lfloor(m-3) / 2\rfloor$, let $B_{2 i+1}^{\{n+m-2, n-1\}}$ be the set of all tilings of an $(n+m-2)$-board with a fault at $n-1, i$ dominos on either side of the fault, a square at cell $n-2 i-1$ and a domino at cell $n+2 i$. See again Figure 2. For m even we have

$$
B^{\{n+m-2, n-1\}}=\bigcup_{i=0}^{m-2} B_{i}^{\{n+m-2, n-1\}}
$$

If m is odd, we need one more set to complete our construction of $B^{\{n+m-2, n-1\}}$. Let $B_{m-1}^{\{n+m-2, n-1\}}$ be the set of all tilings of an $(n+m-2)$-board with a fault at $n-1$ and $(m-1) / 2$ dominos on either side of the fault. Then

$$
B^{\{n+m-2, n-1\}}=\bigcup_{i=0}^{m-2} B_{i}^{\{n+m-2, n-1\}}
$$

Note that $\left|A_{i}^{\{n+m-2, n\}}\right|=\left|B_{i}^{\{n+m-2, n-1\}}\right|$ for $0 \leq i \leq m-2$, since the cardinality of each of these sets is just $f_{n-i-1} f_{m-i-2}$. Thus

$$
\left|A^{\{n+m-2, n\}}\right|-\left|B^{\{n+m-2, n-1\}}\right|= \begin{cases}\left|A_{m-1}^{\{n+m-2, n\}}\right| & \text { if } m \text { is even }, \\ -\left|B_{m-1}^{\{n+m-2\}}\right| & \text { if } m \text { is odd. }\end{cases}
$$

Noting that

$$
\begin{gathered}
\left|A^{\{n+m-2, n\}}\right|=f_{n} f_{m-2}, \quad\left|B^{\{n+m-2, n-1\}}\right|=f_{n-1} f_{m-1} \\
\left|A_{m-1}^{\{n+m-1, n\}}\right|=\left|B_{m-1}^{\{n+m-2\}}\right|=f_{n-m}
\end{gathered}
$$

we see that

$$
\begin{aligned}
f_{n} f_{m-2}-f_{n-1} f_{m-1} & =\left|A^{\{n+m-2, n\}}\right|-\left|B^{\{n+m-2, n-1\}}\right| \\
& = \begin{cases}\left|A_{m-1}^{\{n+m-2, n\}}\right| & \text { if } m \text { is even }, \\
-\left|B_{m-1}^{\{n+m-2\}}\right| & \text { if } m \text { is odd }, \\
& =(-1)^{m} f_{n-m} .\end{cases}
\end{aligned}
$$

We present four corollaries helpful in proving the Zeckendorf representation of $L_{m} L_{n}$. In each of them, an application of Lemma 1.2 is used.
Corollary 3.2. For integers k and n such that $n>2 k>1$,

$$
f_{n} f_{2 k-2}-\left(f_{n+2 k}-f_{n} f_{2 k}\right)=f_{n-2 k}
$$

Proof. Let $m \rightarrow 2 k$ in Lemma 3.1 and note that

$$
f_{n-1} f_{2 k-1}=f_{n+2 k}-f_{n} f_{2 k}
$$

Corollary 3.3. For integers k and n such that $n-2>2 k>1$,

$$
f_{n-2} f_{2 k-2}-\left(f_{n+2 k-2}-f_{n-2} f_{2 k}\right)=f_{n-2 k-2}
$$

Proof. Let $m \rightarrow 2 k$ and $n \rightarrow n-2$ in Lemma 3.1 and note that

$$
f_{n-3} f_{2 k-1}=f_{n+2 k-2}-f_{n-2} f_{2 k}
$$

Corollary 3.4. For integers k and n such that $n-1>2 k+2>1$,

$$
\left(f_{n+2 k+1}-f_{n} f_{2 k+1}\right)-f_{n-2} f_{2 k+1}=f_{n-2 k-3}
$$

Proof. Let $m \rightarrow 2 k+2$ and $n \rightarrow n-1$ in Lemma 3.1 and note that

$$
f_{n-1} f_{2 k}=f_{n+2 k+1}-f_{n} f_{2 k+1}
$$

Corollary 3.5. For integers k and n such that $n-1>2 k>1$,

$$
\left(f_{n+2 k-1}-f_{n} f_{2 k-1}\right)-f_{n-2} f_{2 k-1}=f_{n-2 k-1}
$$

Proof. Let $m \rightarrow 2 k$ and $n \rightarrow n-1$ in Lemma 3.1 and note that

$$
f_{n-1} f_{2 k-2}=f_{n+2 k-1}-f_{n} f_{2 k-1}
$$

Theorem 3.6. For integers k and n such that $n-2>2 k>1$,

$$
L_{2 k} L_{n}=f_{n+2 k}+f_{n+2 k-2}+f_{n-2 k}+f_{n-2 k-2}
$$

Proof. By Lemma 1.3 we know that

$$
L_{2 k} L_{n}=f_{n} f_{2 k}+f_{n} f_{2 k-2}+f_{n-2} f_{2 k}+f_{n-2} f_{2 k-2}
$$

Rearranging terms we see that our theorem can be rewritten as
$f_{n} f_{2 k-2}-\left(f_{n+2 k}-f_{n} f_{2 k}\right)+f_{n-2} f_{2 k-2}-\left(f_{n+2 k-2}-f_{n-2} f_{2 k}\right)=f_{n-2 k}+f_{n-2 k-2}$.
Applying Corollaries 3.2 and 3.3 concludes our proof.
Before moving on to the case $L_{n} L_{2 k+1}$, we need another lemma:
Lemma 3.7. For integers k and n such that $n+2>2 k-1>0$,

$$
\begin{aligned}
f_{n-2 k-4}+f_{n-2 k-1}+f_{n+2 k+1}+\sum_{j=1}^{2 k-1} & f_{n-2 k+2 j} \\
& =f_{n+2 k+1}+f_{n+2 k-1}-f_{n-2 k-1}-f_{n-2 k-3}
\end{aligned}
$$

Proof. We will first turn our eye to the summation on the left-hand side of our identity. Applying Lemma 1.1 we can collapse this sum to two terms:

$$
\begin{aligned}
\sum_{j=1}^{2 k-1} f_{n-2 k+2 j} & =\left(f_{0}+f_{2}+\cdots+f_{n+2 k-2}\right)-\left(f_{0}+f_{2}+\cdots+f_{n-2 k}\right) \\
& =f_{n+2 k-1}-f_{n-2 k+1}
\end{aligned}
$$

It is left to show that

$$
\begin{aligned}
f_{n-2 k-4}+f_{n-2 k-1}+f_{n+2 k+1}+f_{n+2 k-1} & -f_{n-2 k+1} \\
& =f_{n+2 k+1}+f_{n+2 k-1}-f_{n-2 k-1}-f_{n-2 k-3}
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
f_{n-2 k-4}+f_{n-2 k-3}+f_{n-2 k-1}=f_{n-2 k+1}-f_{n-2 k-1} \tag{3-1}
\end{equation*}
$$

We do this by showing that both sides of our identity count the total number of ways of tiling an $(n-2 k)$-board.

On the left-hand side of (3-1) we have all the tilings of an ($n-2 k-4$)-board, an ($n-2 k-3$)-board and an $(n-2 k-1)$-board. To each of the tilings of length $n-2 k-4$ add two dominos at the end of the board. To those of length $n-2 k-3$ add a square followed by a domino at the end of the board. To the tilings of length $n-2 k-1$ add a square at the end of the board. This constructs all tilings of length $n-2 k$.

On the right-hand side of (3-1) we have all the tilings of an $(n-2 k+1)$-board and an $(n-2 k-1)$-board. If we append a domino to all of our tilings of length $n-2 k-1$, we see that our right-hand side can be interpreted as all tilings of length $n-2 k+1$ that do not end in a domino. Thus, we are counting all tilings of length $n-2 k+1$ that end in a square. Removing the square in each of the tilings leaves us with all tilings of length $n-2 k$.

Theorem 3.8. For integers k and n such that $n-3>2 k>1$,

$$
L_{2 k+1} L_{n}=f_{n-2 k-4}+f_{n-2 k-1}+f_{n+2 k+1}+\sum_{j=1}^{2 k-1} f_{n-2 k+2 j}
$$

Proof. Applying Lemmas 1.3 and 3.7, we can rewrite this equality as

$$
\begin{aligned}
f_{n} f_{2 k+1}+f_{n-2} f_{2 k+1}+f_{n} f_{2 k-1}+f_{n-2} & f_{2 k-1} \\
& =f_{n+2 k+1}+f_{n+2 k-1}-f_{n-2 k-1}-f_{n-2 k-3}
\end{aligned}
$$

Rearranging terms, we see that this is equivalent to

$$
\begin{aligned}
f_{n-2 k-3} & +f_{n-2 k-1} \\
& =\left(f_{n+2 k+1}-f_{n} f_{2 k+1}\right)-f_{n-2} f_{2 k+1}+\left(f_{n+2 k-1}-f_{n} f_{2 k-1}\right)-f_{n-2} f_{2 k-1} .
\end{aligned}
$$

Applying Corollaries 3.4 and 3.5 concludes our proof.

4. Answering an open problem and new Zeckendorf representations

In [Artz and Rowell 2009], the following theorem was given and an open problem was posed to find a combinatorial proof. The following proof gives an answer to the open question.

Theorem 4.1. For integers m and n such that $n>m>0$,

$$
\left(f_{m+1}+f_{m-1}\right) f_{n}=f_{n+m+1}-(-1)^{m} f_{n-m-1}
$$

Proof. Let $m \rightarrow 2 k+1$ in Lemma 3.1. Then

$$
f_{n} f_{2 k-1}-f_{n-1} f_{2 k}=-f_{n-2 k-1}
$$

Applying Lemma 1.2, we see that this is equivalent to

$$
f_{n} f_{2 k-1}-\left(f_{n+2 k+1}-f_{n} f_{2 k+1}\right)=-f_{n-2 k-1}
$$

Rearranging terms we see that this proves the case m odd of our theorem. Similarly, we use Corollary 3.2 to prove the case m even.

Filipponi and Hart introduced Zeckendorf representations of mixed triple products including both Fibonacci and Lucas numbers, namely of the form $f_{m}^{2} L_{n}$ and $L_{m}^{2} f_{n}$. We extend their work and present the Zeckendorf representations of a mixed products including three variables. In each of the following identities we assume that our variables take on appropriate integer values.

The remainder of this section was motivated almost entirely by the even case of Theorem 4.1. For sufficiently large values of n, we can ensure that our Zeckendorf representations do not overlap.
Theorem 4.2. For $n>2 j>m$ and $n>2 j+m$,

$$
f_{m} L_{2 j} f_{n}= \begin{cases}f_{n+2 j-m}+f_{n-2 j-m}+\sum_{i=1}^{m / 2} f_{n+2 j+m-4 i-1}+\sum_{i=1}^{m / 2} f_{n-2 j+m-4 i-1} \\ \text { for m even }, \\ \sum_{i=1}^{(m+1) / 2} f_{n+2 j-m-3+4 i}+\sum_{i=1}^{(m+1) / 2} f_{n-2 j-m-3+4 i} & \text { for } m \text { odd } .\end{cases}
$$

Proof. We begin with the first case, say $m=2 k$ for some positive integer k. Applying Theorem 4.1 with $m \rightarrow 2 j$, followed by Theorem 1.6 with $n \rightarrow n+2 j$ and $n \rightarrow n-2 j$, we get

$$
\begin{aligned}
f_{2 k} L_{2 j} f_{n} & =f_{2 k}\left(f_{n+2 j}+f_{n-2 j}\right) \\
& =f_{n+2 j-2 k}+f_{n-2 j-2 k}+\sum_{i=1}^{k-1} f_{n+2 j+2 k-4 i-1}+\sum_{i=1}^{k-1} f_{n-2 j+2 k-4 i-1} .
\end{aligned}
$$

Next let $m=2 k+1$ instead. Apply Theorem 4.1 with $m \rightarrow 2 j$, followed by Theorem 1.5 with $n \rightarrow n+2 j$ and $n \rightarrow n-2 j$ to see that

$$
\begin{aligned}
f_{2 k+1} L_{2 j} f_{n} & =f_{2 k+1} f_{n+2 j}+f_{2 k+1} f_{n-2 j} \\
& =\sum_{i=1}^{k+1} f_{n+2 j-2 k-4+4 i}+\sum_{i=1}^{k+1} f_{n-2 j-2 k-4+4 i}
\end{aligned}
$$

Noting that $L_{m}=f_{m-2}+f_{m}$, it is easy to extend our previous theorem to the following:
Theorem 4.3. For $n>2 j>m$ and $n>2 j+m$

$$
L_{m} L_{2 j} f_{n}= \begin{cases}f_{n-2 j-m}+f_{n-2 j+m}+f_{n+2 j-m}+f_{n+2 j+m} & \text { for } m \text { even } \\ \sum_{i=1}^{m-1} f_{n+2 j-m-1+2 i}+\sum_{i=1}^{m} f_{n-2 j-m-1+2 i} & \text { for } m \text { odd }\end{cases}
$$

Proof. Let $m=2 k$ for some positive integer k. Applying Theorem 4.1 with $m \rightarrow 2 j$, followed by Theorem 4.1 twice more with $m \rightarrow n+2 j$ and $m \rightarrow n-2 j$, we see that

$$
L_{2 k} L_{2 j} f_{n}=L_{2 k}\left(f_{n+2 j}+f_{n-2 j}\right)=f_{n-2 j-2 k}+f_{n-2 j+2 k}+f_{n+2 j-2 k}+f_{n+2 j+2 k}
$$

If instead $m=2 k+1$, rewriting $L_{2 k+1}$ as $f_{2 k+1}+f_{2 k-1}$ and applying Theorem 4.2 twice yields our result.

We next consider the Zeckendorf representation of a Lucas triple product.
Lemma 4.4. For $k>1$,

$$
2 \sum_{i=1}^{k} f_{n+2 i-2}=f_{n-2}+f_{n+2 k}+\sum_{i=1}^{k-2} f_{n+2 i}
$$

Proof. Noting $2 f_{m}=f_{m-2}+f_{m+1}$ [Benjamin and Quinn 2003, Identity 16, page 13], we see that

$$
\begin{aligned}
2 \sum_{i=1}^{k} f_{n+2 i-2} & =\sum_{i=1}^{k} 2 f_{n+2 i-2}=\sum_{i=1}^{k} f_{n+2 i-4}+f_{n+2 i-1}=\sum_{i=1}^{k} f_{n-4+2 i}+\sum_{i=1}^{k} f_{n+2 i-1} \\
& =f_{n-2}+\sum_{i=1}^{k-1} f_{n+2 i-2}+\sum_{i=1}^{k-1} f_{n+2 i-1}+f_{n+2 k-1}
\end{aligned}
$$

Finally, noting that $f_{m}=f_{m-1}+f_{m-2}$, we see that

$$
\begin{aligned}
2 \sum_{i=1}^{k} f_{n+2 i-2} & =f_{n-2}+\sum_{i=1}^{k-1} f_{n+2 i-2}+\sum_{i=1}^{k-1} f_{n+2 i-1}+f_{n+2 k-1} \\
& =f_{n-2}+\sum_{i=1}^{k-1} f_{n+2 i}+f_{n+2 k-1}=f_{n-2}+\sum_{i=1}^{k-2} f_{n+2 i}+f_{n+2 k-2}+f_{n+2 k-1} \\
& =f_{n-2}+\sum_{i=1}^{k-2} f_{n+2 i}+f_{n+2 k}
\end{aligned}
$$

Theorem 4.5. For $n>2 j>m$ and $n>2 j+m+2$

$$
L_{m} L_{2 j} L_{n}=\left\{\begin{array}{cc}
f_{n-2 j-m}+f_{n-2 j+m}+f_{n+2 j-m}+f_{n+2 j+m}+f_{n-2 j-m-2} \\
\quad+f_{n-2 j+m-2}+f_{n+2 j-m-2}+f_{n+2 j+m-2} & \text { for m even } \\
& \\
\begin{array}{cc}
n+2 j-m-3
\end{array}+f_{n+2 j-m}+\sum_{i=1}^{m} f_{n+2 j-m+2 i+1} & \\
& f_{n-2 j-m-3}+f_{n-2 j-m}+\sum_{i=1}^{m} f_{n-2 j-m+2 i+1}
\end{array}\right. \text { for m odd. }
$$

Proof. Let $m=2 k$ for some positive integer k. Rewriting L_{n} as $f_{n}+f_{n+2}$ and applying Theorem 4.3 twice yields the result for m even.

Let $m=2 k+1$. Rewriting L_{n} as $f_{n}+f_{n-2}$ and applying Theorem 4.3 twice we see that

$$
\begin{aligned}
L_{2 k+1} L_{2 j} L_{n} & =f_{n+2 j-2 k-2}+f_{n+2 j+2 k} \\
& +2 \sum_{i=1}^{2 k} f_{n+2 j-2 k-2+2 i}+f_{n-2 j-2 k-2}+f_{n-2 j+2 k}+2 \sum_{i=1}^{2 k} f_{n-2 j-2 k-2+2 i}
\end{aligned}
$$

Applying Lemma 4.4 to each of our series with $n \rightarrow n+2 j-2 k, k \rightarrow 2 k$ and $n \rightarrow n-2 j-2 k, k \rightarrow 2 k$, respectively, yields,

$$
\begin{aligned}
& L_{2 k+1} L_{2 j} L_{n}=2 f_{n+2 j-2 k-2}+f_{n+2 j+2 k}+f_{n+2 j+2 k+2}+\sum_{i=1}^{2 k-1} f_{n+2 j-2 k+2 i} \\
&+2 f_{n-2 j-2 k-2}+f_{n-2 j+2 k}+f_{n-2 j+2 k+2}+\sum_{i=1}^{2 k-1} f_{n-2 j-2 k+2 i}
\end{aligned}
$$

Finally, we will apply Theorem 1.6 with $2 k \rightarrow 2$ and with $n \rightarrow n+2 j-2 k-2$ and $n \rightarrow n-2 j-2 k-2$, respectively.

We present our last Zeckendorf representation of a triple product,
Theorem 4.6. For $n>m>2 j$ and $n>m+2 j$,
$L_{2 j} f_{m} f_{n}=\left\{\begin{array}{r}f_{n-m+2 j-1}+f_{n+m-2 j}+\sum_{i=1}^{j} \begin{array}{r}f_{n-m-2 j-3+4 i}+\sum_{i=1}^{j} f_{n+m-2 j-1+4 i} \\ m / 2-j \\ +\sum_{i=1} f_{n-m+2 j+4 i} \quad \text { for } m \text { odd },\end{array} \\ f_{n-m-2 j}+f_{n+m-2 j}+\sum_{i=1}^{j} f_{n-m-2 j-1+4 i}+\sum_{i=1}^{j} f_{n+m-2 j-1+4 i} \\ +\sum_{i=1}^{m / 2-j} f_{n-m+2 j-2+4 i} \quad \text { for } m \text { even } .\end{array}\right.$
Proof. Let $m=2 k$ for some positive integer k. Applying Theorem 1.6 we see that

$$
L_{2 j} f_{2 k} f_{n}=L_{2 j}\left(f_{n-2 k}+\sum_{i=1}^{k} f_{n-2 k-1+4 i}\right)
$$

Now distribute $L_{2 j}$ and apply Theorem 4.1 to each term. Rearranging terms we see that

$$
\begin{aligned}
& L_{2 j} f_{2 k} f_{n}= f_{n-2 k-2 j}+f_{n-2 k+2 j}+\sum_{i=1}^{k}\left(f_{n-2 k-2 j-1+4 i}+\right. \\
&\left.f_{n-2 k+2 j-1+4 i}\right) \\
&=f_{n-2 k-2 j}+f_{n-2 k+2 j}+\sum_{i=1}^{j} f_{n-2 k-2 j-1+4 i}+2 \sum_{i=1}^{k-j} f_{n-2 k+2 j-1+4 i} \\
&+\sum_{i=1}^{j} f_{n+2 k-2 j-1+4 i}
\end{aligned}
$$

We can now apply Theorem 1.6 , with $2 k \rightarrow 2$. Recalling that $f_{n}=f_{n-1}+f_{n-2}$, we obtain

$$
\begin{aligned}
L_{2 j} f_{2 k} f_{n}= & f_{n-2 k-2 j}+f_{n-2 k+2 j}+\sum_{i=1}^{j} f_{n-2 k-2 j-1+4 i}+\sum_{i=1}^{j} f_{n+2 k-2 j-1+4 i} \\
& +\sum_{i=1}^{k-j}\left(f_{n-2 k+2 j+4 i}+f_{n-2 k+2 j-3+4 i}\right) \\
= & f_{n-2 k-2 j}+f_{n-2 k+2 j}+\sum_{i=1}^{j} f_{n-2 k-2 j-1+4 i}+\sum_{i=1}^{j} f_{n+2 k-2 j-1+4 i} \\
\quad+f_{n-2 k+2 j+1}+f_{n+2 k-2 j} & +\sum_{i=1}^{k-j-1}\left(f_{n-2 k+2 j+4 i}+f_{n-2 k+2 j+1+4 i}\right)
\end{aligned}
$$

We turn to the case m odd, $m=2 k+1$. Applying Theorem 1.5 we can see that

$$
L_{2 j} f_{2 k+1} f_{n}=L_{2 j}\left(\sum_{i=1}^{k+1} f_{n-2 k-4+4 i}\right) .
$$

Now distribute $L_{2 j}$ and apply Theorem 4.1 to each term. Rewriting terms reveals

$$
L_{2 j} f_{2 k+1} f_{n}=\sum_{i=1}^{j} f_{n-2 k-2 j-4+4 i}+\sum_{i=1}^{j} f_{n+2 k-2 j+4 i}+2 \sum_{i=1}^{k-j+1} f_{n-2 k+2 j-4+4 i}
$$

We now apply Theorem 1.6 with $2 k \rightarrow 2$, recalling the recursion relation of the Fibonacci sequence, which shows

$$
\begin{aligned}
L_{2 j} f_{2 k+1} f_{n}= & \sum_{i=1}^{j} f_{n-2 k-2 j-4+4 i}+\sum_{i=1}^{j} f_{n+2 k-2 j+4 i} \\
& +\sum_{i=1}^{k-j+1} f_{n-2 k+2 j-3+4 i}+f_{n-2 k+2 j-6+4 i} \\
= & f_{n-2 k+2 j-2}+f_{n+2 k-2 j+1}+\sum_{i=1}^{j} f_{n-2 k-2 j-4+4 i}+\sum_{i=1}^{j} f_{n+2 k-2 j+4 i} \\
& +\sum_{i=1}^{k-j} f_{n-2 k+2 j-1+4 i} .
\end{aligned}
$$

5. Conclusions and future work

Having proved the Zeckendorf representation of $2 f_{n} f_{m}$, we can see that we can prove individual cases of $k f_{n} f_{m}$ using similar methods. Further, Lemma 3.1 seems to hold the key to many interesting Zeckendorf representations involving Lucas numbers. We find it especially intriguing that it led to mixed products of three variables involving even Lucas numbers. We did, however, have little luck finding closed form Zeckendorf representation of $f_{p} L_{m} f_{n}$ where m is odd.

The Zeckendorf representations in Section 4 are proved using many combinatorial mappings of our boards and bracelets to produce their Zeckendorf representations. We believe much insight into the problem could be found by proving each with a single mapping.

References

[Artz and Rowell 2009] J. Artz and M. Rowell, "A tiling approach to Fibonacci product identities", Involve 2:5 (2009), 581-587. MR 2601578 Zbl 1194.05008
[Benjamin and Quinn 2003] A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, The Dolciani Mathematical Expositions 27, Mathematical Association of America, Washington, DC, 2003. MR 2004f:05001 Zbl 1044.11001
[Filipponi and Hart 1998] P. Filipponi and E. L. Hart, "The Zeckendorf decomposition of certain Fibonacci-Lucas products", Fibonacci Quart. 36:3 (1998), 240-247. MR 99d:11006 Zbl 0942. 11012
[Gerdemann 2009] D. Gerdemann, "Combinatorial proofs of Zeckendorf family identities", Fibonacci Quart. 46/47:3 (2009), 249-261. MR 2010j:11025 Zbl 05614043
[Wood 2007] P. M. Wood, "Bijective proofs for Fibonacci identities related to Zeckendorf's theorem", Fibonacci Quart. 45:2 (2007), 138-145. MR 2009b:05032 Zbl 1162.11014
[Zeckendorf 1972] E. Zeckendorf, "Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas", Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182. MR 46 \#7147 Zbl 0252.10011

Received: 2010-08-10 Accepted: 2010-10-24

mcgr5577@pacificu.edu	Department of Mathematics and Computer Science, Pacific University, 2043 College Way, rowell@pacificu.edu Forest Grove, OR 97116, United States University, 2043 College Way, http://www.pacificu.edu/as/math/

involve
 pjm.math.berkeley.edu/involve
 EDITORS

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@ wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100 /$ year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers

A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
Copyright © 2011 by Mathematical Sciences Publishers

involve

The arithmetic of trees 1
Adriano Bruno and Dan Yasaki
Vertical transmission in epidemic models of sexually transmitted diseases with isolation 13 from reproduction

Daniel Maxin, Timothy Olson and Adam Shull
On the maximum number of isosceles right triangles in a finite point set 27
Bernardo M. Ábrego, Silvia Fernández-Merchant and David B. Roberts
Stability properties of a predictor-corrector implementation of an implicit linear 43 multistep method

Scott Sarra and Clyde Meador
Five-point zero-divisor graphs determined by equivalence classes 53
Florida Levidiotis and Sandra Spiroff
A note on moments in finite von Neumann algebras 65
Jon Bannon, Donald Hadwin and Maureen Jeffery
Combinatorial proofs of Zeckendorf representations of Fibonacci and Lucas products 75
Duncan McGregor and Michael Jason Rowell
A generalization of even and odd functions 91
Micki Balaich and Matthew Ondrus

