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In 1998, Filipponi and Hart introduced many Zeckendorf representations of
Fibonacci, Lucas and mixed products involving two variables. In 2008, Artz
and Rowell proved the simplest of these identities, the Fibonacci product, using
tilings. This paper extends the work done by Artz and Rowell to many of the
remaining identities from Filipponi and Hart’s work. We also answer an open
problem raised by Artz and Rowell and present many Zeckendorf representations
of mixed products involving three variables.

1. Preliminaries

Definition 1.1. The n-th Fibonacci number is the term fn of the Fibonacci se-
quence defined recursively by

f0 = 1, f1 = 1, fn = fn−1+ fn−2.

This definition is shifted relative to the standard Fibonacci sequence, which
begins at 0. This is done to ensure that the combinatorial interpretation matches
our sequence without having to shift indices.

Benjamin and Quinn [2003] presented a combinatorial interpretation for the
Fibonacci sequence: fn is the number of possible tilings of an 1× n board with
1× 2 dominoes and 1× 1 squares.1 They also gave a combinatorial interpretation
for a related sequence introduced by Edouard Lucas:

Definition 1.2. The n-th Lucas number is the term Ln of the Lucas sequence,
defined recursively by

L0 = 2, L1 = 1, Ln = Ln−1+ Ln−2.

MSC2000: 05A19, 11B39.
Keywords: number theory, Fibonacci numbers, Zeckendorf representations, combinatorics.

1The 1× n board, or n-board, is divided into 1× 1 squares, called cells. In a tiling, the board
is entirely covered by tiles without overlap. (A tile is either a domino or a square.) Two tilings are
equivalent if, given any pair of cells, they belong to the same tile in one tiling if and only if they
belong to the same tile in the other.
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Ln is the number of possible square-and-domino tilings of an n-bracelet, that
is, an n-board with ends identified. (One can think of such a board as a ring of
curved cells.) We do not consider as equivalent tilings superimposable by a rotation
or reflection; the equivalence relation is the same as for a linear board (see note
1). An n-bracelet has a designated starting cell and ending cell. If these two cells
are covered by the same domino, we say that the board is out of phase. Otherwise,
the board is in phase.

The combinatorial interpretation of fn and Ln given by Benjamin and Quinn
is easy to prove by induction. (For instance, in the linear case, consider the first
cell of the n-board: either it’s covered by a domino, in which case there are, by the
induction assumption, fn−2 possible tilings of the n−2 leftover cells, or it’s covered
by a square, in which case there are fn−1 possibilities.) Since the introduction
of these interpretations, many Fibonacci and Lucas identities have been proved
combinatorially. Some identities are presented below and will be used repeatedly
throughout the paper.

Lemma 1.1. For any positive integer n ≥ 0,

fn =

{
f0+ f2+ · · ·+ fn−1 for n odd,
f1+ f3+ · · ·+ fn−1+ 1 for n even.

A combinatorial proof of the odd case of Lemma 1.1 appears as Identity 2 in
[Benjamin and Quinn 2003]. The even case can be proved similarly.

In the next proof and later one, we say that a tiling has a fault at m if the m-th
and (m+1)-st cells belong to different tiles.

Lemma 1.2. For any positive integers m, n ≥ 1,

fm+n − fm fn = fm−1 fn−1.

Proof. Consider the tilings of an (m+n)-board; we know there are fm+n of them.
Divide the board into an m-board and an n-board. For tilings that have a fault at
m, there are fm possibilities for the m-board and fn for the n-board, for a total of
fm fn possibilities. The complementary case is where there is a domino straddling
tiles m and m+1. Then we’re left with subboards of lengths m−1 and n−1, and
there are fm−1 fn−1 such possibilities. �

Lemma 1.3. For any positive integer n ≥ 2,

Ln = fn + fn−2.

A combinatorial proof of this appears under Identity 32 in [Benjamin and Quinn
2003]. We will repeatedly apply this lemma in our identities that involve Lucas
products so that we can work with n-boards rather than bracelets. For example,

Lm Ln = fm fn + fm−2 fn + fm fn−2+ fm−2 fn−2.
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Each of the four terms on the right-hand side are each of the combinations of two
bracelets either being in or out of phase.

Edouard Zeckendorf, an amateur mathematician and a doctor in the Belgian
army, proved [1972] an interesting property of Fibonacci numbers (here N stands
for the natural numbers, not including 0):

Theorem 1.4. Every N ∈ N can be expressed uniquely as a sum

M∑
i=1

fai = N ,

where M ∈ N, ai ∈ N for 1≤ i ≤ M , and ai+1 > ai + 1 for 1≤ i < M.

We call this decomposition the Zeckendorf representation of N . Note that, since
ai+1 > ai + 1, repeated or consecutive Fibonacci numbers cannot appear in the
representation.

An open exercise in [Benjamin and Quinn 2003] lists a number of identities
involving Zeckendorf representations of multiples of Fibonacci numbers and asks
for combinatorial proofs:

2 fn = fn−2+ fn+1,

3 fn = fn−2+ fn+2,

4 fn = fn−2+ fn + fn+2,
...

Wood [2007] provided combinatorial proofs for several of these identities, but
without a unified method. Gerdemann [2009] gave a combinatorial algorithm for
finding the Zeckendorf representation of any particular m fn , but it does not give a
general closed-form representation.

Artz and Rowell [2009] found combinatorial proofs of certain Zeckendorf repre-
sentations of fm fn originally proved in [Filipponi and Hart 1998] by other means:

Theorem 1.5. For n > 2k+ 1,

f2k+1 fn =
k+1∑
i=1

fn−2k−4+4i .

Theorem 1.6. For n > 2k,

f2k fn = fn−2k +
k∑

i=1
fn−2k−1+4i .

To sketch the proof for the case of f2k+1 fn , one must break the set of all tilings
of an (n+2k+1)-board with a fault at n into many disjoint sets where the closest
square is i dominoes away from the fault at n. Further our closest square can be
no further than k dominoes away from the fault; therefore, 0≤ i ≤ k.
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In Sections 2 and 3 we provide combinatorial proofs of additional Zeckendorf
representations of Fibonacci and Lucas products given in [Filipponi and Hart 1998],
namely those for 2 fm fn and Lm Ln . In Section 4 we answer an open problem
from [Artz and Rowell 2009] and present many new Fibonacci and Lucas product
Zeckendorf representations.

2. The Zeckendorf representation of 2 fm fn

A Zeckendorf representation for 2 fm fn was given in [Filipponi and Hart 1998].
We provide a combinatorial proof for this identity, extending the combinatorial
methods from [Artz and Rowell 2009].

Theorem 2.1. For integers k and n such that n > 2k+ 1 > 0,

2 f2k+1 fn = fn+2k+1+
k∑

i=1
fn+2k+3−4i + fn−2k−2.

Proof. The tilings of an (n+2k+1)-board having a fault at n make up a fn f2k+1-
element set. We will partition this set into a union of four sequences of subsets Ri ,
Si , Ti , and Ui , for 0≤ i≤k, according to Figure 1. Specifically, given a (n+2k+1)-
board tiling having a fault at n, let i be the number of dominos between the fault
and a square closest to the fault: then i ≤ k (there is at least one square in the
(2k+1)-board to the right of the fault). Next assign this tiling to the set

Ri if there are i dominos adjacent to the fault on each side, followed by a square
on each side;

Si if there are i dominos adjacent to the fault on each side, followed by yet
another domino on the left and a square on the right;

· · ·· · ·Ri : ︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i cells

↓
Fault at n

· · ·· · ·Si : ︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i cells

↓

· · ·· · ·Ti : ︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i−1 cells

↓

· · ·· · ·Ui : ︸ ︷︷ ︸
n−2i−3 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
2k−2i−1 cells

↓

Figure 1. Configurations charaterizing membership in the sets Ri ,
Si , Ti and Ui .
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Ti if there are i dominos adjacent to the fault on each side, followed by two
squares on the left and a domino on the right;

Ui if there are i dominos adjacent to the fault on each side, followed by a square
and a domino on the left and a domino on the right.

(Note that Tk and Uk are empty.) Thus, the sets Ri , Si , Ti , Ui for 0≤ i ≤ k account
exactly once for each tiling having a fault at n.

Further, we take a second copy of each of these sets, denoting them by R∗i , S∗i ,
T ∗i , and U∗i , and we define

Ai = Ri ∪ R∗i ∪ Si ∪ Ti ∪ T ∗i ∪ Ui , Bi = S∗i ∪ U∗i .

It follows that the sets Ai and Bi , for 0 ≤ i ≤ k, account exactly twice for each
tiling having a fault at n. Therefore

k∑
i=0

|Ai ∪ Bi | = 2 fn f2k+1,

by the first sentence of the proof. To complete the proof, we will show the following
equalities:

|A0| = fn+2k+1;

|Ai ∪ Bi−1| = fn+2k+3−4i for 1≤ i ≤ k;

|Bk | = fn−2k−2.

We prove each equality by exhibiting a bijection from the set of tilings of a board
of the appropriate size to the set in the left-hand side of the equality. For instance,
to show that |A0| = fn+2k+1, we start from the set of all tilings of the (n+2k+1)-
board; this set, as we know, has fn+2k+1 elements. So consider any tiling of the
(n+ 2k+ 1)-board.

• If the tiling has a fault at n and a square next to the fault, on either or both
sides, do nothing. This gives an element of R0 ∪ S0 ∪ T0 ∪U0.

• If the tiling has a fault at n and a domino on both sides of the fault, replace the
domino to the left of the fault with two squares, obtaining an element of T ∗0 .

• If the tiling does not have a fault at n, split the domino covering cells n and
n+ 1 into two squares, obtaining an element of R∗0 .

Since A0 = R0 ∪ R∗0 ∪ S0 ∪ T0 ∪ T ∗0 ∪ U0 and all elements of the component sets
are accounted for, we have shown that |A0| = fn+2k+1.

Next we show that |Ai∪Bi−1|= fn+2k+3−4i for 1≤ i ≤ k. Consider any tiling of
an (n+2k+3−4i)-board, and remove the last tile. Suppose first that the removed
tile was a domino, which leaves an (n+2k+1−4i)-board.
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• If the tiling has a fault at n−2i and a square next to the fault, on either or both
sides, insert 2i dominos at the fault. This gives an element of Ri∪Si∪Ti∪Ui .

• If the tiling has a fault at n−2i and a domino on both sides of the fault, replace
the domino to the left of the fault with two squares and insert 2i dominos at
the fault, obtaining an element of T ∗i .

• If the tiling does not have a fault at n−2i , replace the domino covering the fault
with two squares and insert 2i dominos between the two squares, obtaining
an element of R∗i .

This accounts for each element of Ai once. Now suppose instead that the tile we
removed was a square, which leaves an (n+2k+2−4i)-board.

• If the tiling has a fault at n−2i , insert 2i−1 dominos followed by a square at
the fault, obtaining an element of S∗i−1.

• If the tiling does not have a fault at n−2i , insert a square followed by 2i−1
dominos just before the domino that covers cell n−2i . This gives an element
of U∗i−1.

This accounts for each element of Bi−1 once. Thus Ai∪Bi−1 is in bijection with
the set of tilings of the (n+2k+3−4i)-board.

Lastly, we must show that |Bk | = fn−2k−2. Given any tiling of an (n−2k−2)-
board, append 2k+1 dominos followed by a square at the right edge, to obtain an
element of Bk = S∗k (recall that U∗k is empty). This concludes the proof. �

We only present, but do not prove, the case 2 f2k fn . Its proof is similar to the
case presented above and is left to the interested reader.

Theorem 2.2. For integers k and n such that n > 2k+ 1 > 0,

2 f2k fn = fn+2k +
k∑

i=1
fn+2k+2−4i + fn−2k .

3. Zeckendorf representations of Lm Ln

Also given in [Filipponi and Hart 1998] is a Zeckendorf representation of Lm Ln .
We again extend the notion of squares closest to a given fault to prove our theorem
combinatorially.

Lemma 3.1. Let m and n be positive integers such that n > m > 1. Then

fn fm−2− fn−1 fm−1 = (−1)m fn−m .

Proof. Let A{n+m−2,n} be the set of all tilings of an (n+m− 2)-board with a fault
at n.

For 0≤ i ≤ b(m−2)/2c, let A{n+m−2,n}
2i be the set of all tilings of an (n+m−2)-

board with a fault at n, i dominos on both sides of the fault and a square at cell
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A{n+m−2,n}
2i

· · ·· · ·︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−2 cells

↓

Fault at n

A{n+m−2,n}
2i+1

· · ·· · ·︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−3 cells

↓

B{n+m−2,n−1}
2i

· · ·· · ·︸ ︷︷ ︸
n−2i−1 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−2 cells

↓

Fault at n−1

B{n+m−2,n−1}
2i+1

· · ·· · ·︸ ︷︷ ︸
n−2i−2 cells

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
i dominos

︸ ︷︷ ︸
m−2i−3 cells

↓

Figure 2. Configurations characterizing membership in various sets.

n−2i . For 0 ≤ i ≤ b(m−3)/2c, let A{n+m−2,n}
2i+1 be the set of all tilings of an

(n+m−2)-board with a fault at n, i dominos on either side of the fault, a domino
at cell n−2i−1 and a square at cell n+2i+1. See Figure 2. For m odd we have

A{n+m−2,n}
=

m−2⋃
i=0

A{n+m−2,n}
i .

If m is even, we need one more set to complete our construction of A{n+m−2,n}.
Let A{n+m−2,n}

m−1 be the set of all tilings of an (n+m−2)-board with a fault at n,
m/2−1 dominos on the right side of the fault and m/2 dominos on the left side of
the fault. Then

A{n+m−2,n}
=

m−1⋃
i=0

A{n+m−2,n}
i .

Let B{n+m−2,n−1} be the set of all tilings of an (n+m−2)-board with a fault at
n−1.

For 0≤ i≤b(m−2)/2c, let B{n+m−2,n−1}
2i be the set of all tilings of an (n+m−2)-

board with a fault at n−1, i dominos on either side of the fault and a square at
cell n+2i . For 0 ≤ i ≤ b(m−3)/2c, let B{n+m−2,n−1}

2i+1 be the set of all tilings of
an (n+m−2)-board with a fault at n−1, i dominos on either side of the fault, a
square at cell n−2i−1 and a domino at cell n+2i . See again Figure 2. For m even
we have

B{n+m−2,n−1}
=

m−2⋃
i=0

B{n+m−2,n−1}
i .
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If m is odd, we need one more set to complete our construction of B{n+m−2,n−1}.
Let B{n+m−2,n−1}

m−1 be the set of all tilings of an (n +m − 2)-board with a fault at
n− 1 and (m− 1)/2 dominos on either side of the fault. Then

B{n+m−2,n−1}
=

m−2⋃
i=0

B{n+m−2,n−1}
i .

Note that
∣∣A{n+m−2,n}

i

∣∣= ∣∣B{n+m−2,n−1}
i

∣∣ for 0≤ i ≤m−2, since the cardinality
of each of these sets is just fn−i−1 fm−i−2. Thus

∣∣A{n+m−2,n}
∣∣− ∣∣B{n+m−2,n−1}∣∣= {∣∣A{n+m−2,n}

m−1

∣∣ if m is even,

−
∣∣B{n+m−2}

m−1

∣∣ if m is odd.

Noting that ∣∣A{n+m−2,n}
∣∣= fn fm−2,

∣∣B{n+m−2,n−1}∣∣= fn−1 fm−1,∣∣A{n+m−1,n}
m−1

∣∣= ∣∣B{n+m−2}
m−1

∣∣= fn−m,

we see that

fn fm−2− fn−1 fm−1 =
∣∣A{n+m−2,n}

∣∣− ∣∣B{n+m−2,n−1}∣∣
=

{∣∣A{n+m−2,n}
m−1

∣∣ if m is even,

−
∣∣B{n+m−2}

m−1

∣∣ if m is odd,

= (−1)m fn−m . �

We present four corollaries helpful in proving the Zeckendorf representation of
Lm Ln . In each of them, an application of Lemma 1.2 is used.

Corollary 3.2. For integers k and n such that n > 2k > 1,

fn f2k−2− ( fn+2k − fn f2k)= fn−2k .

Proof. Let m→ 2k in Lemma 3.1 and note that

fn−1 f2k−1 = fn+2k − fn f2k . �

Corollary 3.3. For integers k and n such that n− 2 > 2k > 1,

fn−2 f2k−2− ( fn+2k−2− fn−2 f2k)= fn−2k−2.

Proof. Let m→ 2k and n→ n− 2 in Lemma 3.1 and note that

fn−3 f2k−1 = fn+2k−2− fn−2 f2k . �

Corollary 3.4. For integers k and n such that n− 1 > 2k+ 2 > 1,

( fn+2k+1− fn f2k+1)− fn−2 f2k+1 = fn−2k−3.
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Proof. Let m→ 2k+ 2 and n→ n− 1 in Lemma 3.1 and note that

fn−1 f2k = fn+2k+1− fn f2k+1. �

Corollary 3.5. For integers k and n such that n− 1 > 2k > 1,

( fn+2k−1− fn f2k−1)− fn−2 f2k−1 = fn−2k−1.

Proof. Let m→ 2k and n→ n− 1 in Lemma 3.1 and note that

fn−1 f2k−2 = fn+2k−1− fn f2k−1. �

Theorem 3.6. For integers k and n such that n− 2 > 2k > 1,

L2k Ln = fn+2k + fn+2k−2+ fn−2k + fn−2k−2.

Proof. By Lemma 1.3 we know that

L2k Ln = fn f2k + fn f2k−2+ fn−2 f2k + fn−2 f2k−2.

Rearranging terms we see that our theorem can be rewritten as

fn f2k−2− ( fn+2k− fn f2k)+ fn−2 f2k−2− ( fn+2k−2− fn−2 f2k)= fn−2k+ fn−2k−2.

Applying Corollaries 3.2 and 3.3 concludes our proof. �

Before moving on to the case Ln L2k+1, we need another lemma:

Lemma 3.7. For integers k and n such that n+ 2 > 2k− 1 > 0,

fn−2k−4+ fn−2k−1+ fn+2k+1+
2k−1∑
j=1

fn−2k+2 j

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3.

Proof. We will first turn our eye to the summation on the left-hand side of our
identity. Applying Lemma 1.1 we can collapse this sum to two terms:

2k−1∑
j=1

fn−2k+2 j = ( f0+ f2+ · · ·+ fn+2k−2)− ( f0+ f2+ · · ·+ fn−2k)

= fn+2k−1− fn−2k+1.

It is left to show that

fn−2k−4+ fn−2k−1+ fn+2k+1+ fn+2k−1− fn−2k+1

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3,

or, equivalently,

fn−2k−4+ fn−2k−3+ fn−2k−1 = fn−2k+1− fn−2k−1. (3-1)
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We do this by showing that both sides of our identity count the total number of
ways of tiling an (n−2k)-board.

On the left-hand side of (3-1) we have all the tilings of an (n−2k−4)-board,
an (n−2k−3)-board and an (n−2k−1)-board. To each of the tilings of length
n−2k−4 add two dominos at the end of the board. To those of length n−2k−3
add a square followed by a domino at the end of the board. To the tilings of length
n−2k−1 add a square at the end of the board. This constructs all tilings of length
n−2k.

On the right-hand side of (3-1) we have all the tilings of an (n−2k+1)-board
and an (n−2k−1)-board. If we append a domino to all of our tilings of length
n−2k−1, we see that our right-hand side can be interpreted as all tilings of length
n−2k+1 that do not end in a domino. Thus, we are counting all tilings of length
n−2k+1 that end in a square. Removing the square in each of the tilings leaves
us with all tilings of length n−2k. �

Theorem 3.8. For integers k and n such that n− 3 > 2k > 1,

L2k+1Ln = fn−2k−4+ fn−2k−1+ fn+2k+1+
2k−1∑
j=1

fn−2k+2 j .

Proof. Applying Lemmas 1.3 and 3.7, we can rewrite this equality as

fn f2k+1+ fn−2 f2k+1+ fn f2k−1+ fn−2 f2k−1

= fn+2k+1+ fn+2k−1− fn−2k−1− fn−2k−3.

Rearranging terms, we see that this is equivalent to

fn−2k−3+ fn−2k−1

= ( fn+2k+1− fn f2k+1)− fn−2 f2k+1+ ( fn+2k−1− fn f2k−1)− fn−2 f2k−1.

Applying Corollaries 3.4 and 3.5 concludes our proof. �

4. Answering an open problem and new Zeckendorf representations

In [Artz and Rowell 2009], the following theorem was given and an open problem
was posed to find a combinatorial proof. The following proof gives an answer to
the open question.

Theorem 4.1. For integers m and n such that n > m > 0,

( fm+1+ fm−1) fn = fn+m+1− (−1)m fn−m−1.

Proof. Let m→ 2k+ 1 in Lemma 3.1. Then

fn f2k−1− fn−1 f2k =− fn−2k−1.
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Applying Lemma 1.2, we see that this is equivalent to

fn f2k−1− ( fn+2k+1− fn f2k+1)=− fn−2k−1.

Rearranging terms we see that this proves the case m odd of our theorem. Similarly,
we use Corollary 3.2 to prove the case m even. �

Filipponi and Hart introduced Zeckendorf representations of mixed triple prod-
ucts including both Fibonacci and Lucas numbers, namely of the form f 2

m Ln and
L2

m fn . We extend their work and present the Zeckendorf representations of a mixed
products including three variables. In each of the following identities we assume
that our variables take on appropriate integer values.

The remainder of this section was motivated almost entirely by the even case of
Theorem 4.1. For sufficiently large values of n, we can ensure that our Zeckendorf
representations do not overlap.

Theorem 4.2. For n > 2 j > m and n > 2 j +m,

fm L2 j fn =


fn+2 j−m+ fn−2 j−m +

m/2∑
i=1

fn+2 j+m−4i−1+
m/2∑
i=1

fn−2 j+m−4i−1

for m even,
(m+1)/2∑

i=1
fn+2 j−m−3+4i +

(m+1)/2∑
i=1

fn−2 j−m−3+4i for m odd.

Proof. We begin with the first case, say m = 2k for some positive integer k. Ap-
plying Theorem 4.1 with m→ 2 j , followed by Theorem 1.6 with n→ n+2 j and
n→ n− 2 j , we get

f2k L2 j fn = f2k( fn+2 j + fn−2 j )

= fn+2 j−2k + fn−2 j−2k +
k−1∑
i=1

fn+2 j+2k−4i−1+
k−1∑
i=1

fn−2 j+2k−4i−1.

Next let m = 2k + 1 instead. Apply Theorem 4.1 with m → 2 j , followed by
Theorem 1.5 with n→ n+ 2 j and n→ n− 2 j to see that

f2k+1L2 j fn = f2k+1 fn+2 j + f2k+1 fn−2 j

=

k+1∑
i=1

fn+2 j−2k−4+4i +
k+1∑
i=1

fn−2 j−2k−4+4i . �

Noting that Lm = fm−2 + fm , it is easy to extend our previous theorem to the
following:

Theorem 4.3. For n > 2 j > m and n > 2 j +m

Lm L2 j fn =


fn−2 j−m + fn−2 j+m + fn+2 j−m + fn+2 j+m for m even,

m−1∑
i=1

fn+2 j−m−1+2i +
m∑

i=1
fn−2 j−m−1+2i for m odd.
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Proof. Let m=2k for some positive integer k. Applying Theorem 4.1 with m→2 j ,
followed by Theorem 4.1 twice more with m→ n+ 2 j and m→ n− 2 j , we see
that

L2k L2 j fn = L2k( fn+2 j + fn−2 j )= fn−2 j−2k + fn−2 j+2k + fn+2 j−2k + fn+2 j+2k .

If instead m = 2k+1, rewriting L2k+1 as f2k+1+ f2k−1 and applying Theorem 4.2
twice yields our result. �

We next consider the Zeckendorf representation of a Lucas triple product.

Lemma 4.4. For k > 1,

2
k∑

i=1
fn+2i−2 = fn−2+ fn+2k +

k−2∑
i=1

fn+2i .

Proof. Noting 2 fm = fm−2 + fm+1 [Benjamin and Quinn 2003, Identity 16,
page 13], we see that

2
k∑

i=1
fn+2i−2 =

k∑
i=1

2 fn+2i−2 =
k∑

i=1
fn+2i−4+ fn+2i−1 =

k∑
i=1

fn−4+2i +
k∑

i=1
fn+2i−1

= fn−2+
k−1∑
i=1

fn+2i−2+
k−1∑
i=1

fn+2i−1+ fn+2k−1.

Finally, noting that fm = fm−1+ fm−2, we see that

2
k∑

i=1
fn+2i−2 = fn−2+

k−1∑
i=1

fn+2i−2+
k−1∑
i=1

fn+2i−1+ fn+2k−1

= fn−2+
k−1∑
i=1

fn+2i+ fn+2k−1 = fn−2+
k−2∑
i=1

fn+2i+ fn+2k−2+ fn+2k−1

= fn−2+
k−2∑
i=1

fn+2i+ fn+2k . �

Theorem 4.5. For n > 2 j > m and n > 2 j +m+ 2

Lm L2 j Ln =


fn−2 j−m + fn−2 j+m + fn+2 j−m + fn+2 j+m + fn−2 j−m−2

+ fn−2 j+m−2+ fn+2 j−m−2+ fn+2 j+m−2 for m even,

fn+2 j−m−3+ fn+2 j−m +
∑m

i=1 fn+2 j−m+2i+1

+ fn−2 j−m−3+ fn−2 j−m +
∑m

i=1 fn−2 j−m+2i+1 for m odd.

Proof. Let m = 2k for some positive integer k. Rewriting Ln as fn + fn+2 and
applying Theorem 4.3 twice yields the result for m even.
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Let m = 2k+1. Rewriting Ln as fn+ fn−2 and applying Theorem 4.3 twice we
see that

L2k+1L2 j Ln = fn+2 j−2k−2+ fn+2 j+2k

+2
2k∑

i=1
fn+2 j−2k−2+2i + fn−2 j−2k−2+ fn−2 j+2k + 2

2k∑
i=1

fn−2 j−2k−2+2i .

Applying Lemma 4.4 to each of our series with n→ n+ 2 j − 2k, k→ 2k and
n→ n− 2 j − 2k, k→ 2k, respectively, yields,

L2k+1L2 j Ln = 2 fn+2 j−2k−2+ fn+2 j+2k + fn+2 j+2k+2+
2k−1∑
i=1

fn+2 j−2k+2i

+2 fn−2 j−2k−2+ fn−2 j+2k + fn−2 j+2k+2+
2k−1∑
i=1

fn−2 j−2k+2i .

Finally, we will apply Theorem 1.6 with 2k→ 2 and with n→ n+2 j −2k−2
and n→ n− 2 j − 2k− 2, respectively. �

We present our last Zeckendorf representation of a triple product,

Theorem 4.6. For n > m > 2 j and n > m+ 2 j ,

L2 j fm fn=



fn−m+2 j−1+ fn+m−2 j +
j∑

i=1
fn−m−2 j−3+4i +

j∑
i=1

fn+m−2 j−1+4i

+

m/2− j∑
i=1

fn−m+2 j+4i for m odd,

fn−m−2 j + fn+m−2 j +
j∑

i=1
fn−m−2 j−1+4i +

j∑
i=1

fn+m−2 j−1+4i

+

m/2− j∑
i=1

fn−m+2 j−2+4i for m even.

Proof. Let m = 2k for some positive integer k. Applying Theorem 1.6 we see that

L2 j f2k fn = L2 j
(

fn−2k +
k∑

i=1
fn−2k−1+4i

)
.

Now distribute L2 j and apply Theorem 4.1 to each term. Rearranging terms we
see that

L2 j f2k fn = fn−2k−2 j + fn−2k+2 j +
k∑

i=1
( fn−2k−2 j−1+4i + fn−2k+2 j−1+4i )

= fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i + 2

k− j∑
i=1

fn−2k+2 j−1+4i

+

j∑
i=1

fn+2k−2 j−1+4i .

We can now apply Theorem 1.6, with 2k→ 2. Recalling that fn = fn−1+ fn−2,
we obtain
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L2 j f2k fn = fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i +

j∑
i=1

fn+2k−2 j−1+4i

+

k− j∑
i=1

( fn−2k+2 j+4i + fn−2k+2 j−3+4i )

= fn−2k−2 j + fn−2k+2 j +
j∑

i=1
fn−2k−2 j−1+4i +

j∑
i=1

fn+2k−2 j−1+4i

+ fn−2k+2 j+1+ fn+2k−2 j +
k− j−1∑

i=1
( fn−2k+2 j+4i + fn−2k+2 j+1+4i )

= fn−2k−2 j + fn+2k−2 j +
j∑

i=1
fn−2k−2 j+4i−1+

j∑
i=1

fn+2k−2 j+4i−1

+

k− j∑
i=1

fn−2k+2 j+4i−2.

We turn to the case m odd, m = 2k+ 1. Applying Theorem 1.5 we can see that

L2 j f2k+1 fn = L2 j

( k+1∑
i=1

fn−2k−4+4i

)
.

Now distribute L2 j and apply Theorem 4.1 to each term. Rewriting terms reveals

L2 j f2k+1 fn =
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i + 2
k− j+1∑

i=1
fn−2k+2 j−4+4i .

We now apply Theorem 1.6 with 2k→ 2, recalling the recursion relation of the
Fibonacci sequence, which shows

L2 j f2k+1 fn =
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i

+

k− j+1∑
i=1

fn−2k+2 j−3+4i + fn−2k+2 j−6+4i

= fn−2k+2 j−2+ fn+2k−2 j+1+
j∑

i=1
fn−2k−2 j−4+4i +

j∑
i=1

fn+2k−2 j+4i

+

k− j∑
i=1

fn−2k+2 j−1+4i . �

5. Conclusions and future work

Having proved the Zeckendorf representation of 2 fn fm , we can see that we can
prove individual cases of k fn fm using similar methods. Further, Lemma 3.1 seems
to hold the key to many interesting Zeckendorf representations involving Lucas
numbers. We find it especially intriguing that it led to mixed products of three
variables involving even Lucas numbers. We did, however, have little luck finding
closed form Zeckendorf representation of f p Lm fn where m is odd.
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The Zeckendorf representations in Section 4 are proved using many combina-
torial mappings of our boards and bracelets to produce their Zeckendorf represen-
tations. We believe much insight into the problem could be found by proving each
with a single mapping.
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