
inv lve
a journal of mathematics

mathematical sciences publishers

A generalization of even and odd functions
Micki Balaich and Matthew Ondrus

2011 vol. 4, no. 1



msp
INVOLVE 4:1(2011)

A generalization of even and odd functions
Micki Balaich and Matthew Ondrus

(Communicated by Vadim Ponomarenko)

We generalize the concepts of even and odd functions in the setting of complex-
valued functions of a complex variable. If n > 1 is a fixed integer and r is
an integer with 0 ≤ r < n, we define what it means for a function to have
type r mod n. When n = 2, this reduces to the notions of even (r = 0) and
odd (r = 1) functions respectively. We show that every function can be de-
composed in a unique way as the sum of functions of types-0 through n − 1.
When the given function is differentiable, this decomposition is compatible with
the differentiation operator in a natural way. We also show that under certain
conditions, the type r component of a given function may be regarded as a real-
valued function of a real variable. Although this decomposition satisfies several
analytic properties, the decomposition itself is largely algebraic, and we show
that it can be explained in terms of representation theory.

1. Introduction

1.1. Background. The notions of even and odd functions are well-known to most
students of high school and college algebra. A function f : R → R is even if
f (−x) = f (x) for all x ∈ R and is odd if f (−x) = − f (x) for all x ∈ R. These
concepts are important in many areas of analysis, and there are numerous useful
examples of even or odd functions. For example, the function f (x) = cos x is
even, as is any polynomial in x whose nonzero coefficients all correspond to even
powers of x . Although there are numerous functions that are neither even nor odd,
every function f :R→R decomposes in a unique way as f = fe+ fo, where fe is
even and fo is odd. For instance, the equation ex

= cosh x+ sinh x can be thought
of as the decomposition of the exponential function ex into its even and odd parts.

To motivate the following work, we revisit the definitions of even and odd func-
tions and express the defining equations slightly differently. Let f : R→ R be a
function, and write ε =−1 ∈ R. Then f is even if

f (εx)= ε0 f (x) for all x ∈ R, (1)
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and f is odd if

f (εx)= ε1 f (x) for all x ∈ R. (2)

In other words, a function is even (or odd) if it satisfies a certain functional equation
involving a square root of unity. Note that this definition also makes sense if we
replace the field R with the field C of complex numbers.

1.2. Summary of results. In the following, we let f : C→ C be a function and
fix an integer n > 1. If r ∈ Z with 0 ≤ r < n, we say that the function f is of
type r mod n if f satisfies a certain functional equation (depending upon r ) for
every n-th root of unity. In the special case that n = 2, this definition reduces to
the usual notions of even and odd functions. In Theorem 5, we show (for arbitrary
n) that every function f : C→ C decomposes as f = f0 + · · · + fn−1, where fr

is of type r mod n. Moreover, we show in Theorem 6 that this decomposition is
unique. The set of all functions f : C→ C may be regarded as a vector space,
and the set of all functions of type r mod n may be regarded as a subspace. Thus
we also explain how the decomposition f = f0+· · ·+ fn−1 may be thought of in
terms of projections from a vector space onto various subspaces.

We show in Section 3 (Corollary 15) that if a given complex function f :C→C

is real (i.e., f (R) ⊆ R), then under certain assumptions, the functions fr (in the
decomposition f = f0+· · ·+ fn−1) are also real. This explains, for example, why
the functions cosh :C→C and sinh :C→C produce real outputs when the inputs
are restricted to real numbers. In the classical setting of even and odd functions,
it is well-known that the derivative of an even (resp. odd) function is odd (resp.
even), and in Section 4 we prove several analogous results that apply in our setting.
In the case of the exponential function ez , these analytic results lead to solutions to
a familiar real differential equation, and we address this connection between our
framework and differential equations in Example 20.

In Section 5, we show that some of these results may be explained by working
in the algebraic setting of representation theory. We replace the set of n-th roots
of unity with a finite group G, and we replace the field of complex numbers with a
C[G]-module, where C[G] denotes the complex group of G. Under certain condi-
tions, a function f : V →W decomposes as a sum of functions that satisfy various
functional equations analogous to those of Section 2. These conditions are easily
satisfied in the setting of a function f : C→ C.

2. Definitions and basic results

Fix an integer n > 1. A complex number ε is an n-th root of unity if εn
= 1. We

now generalize the definitions in (1) and (2) in the setting where f : C→ C is a
complex-valued function.
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Definition 1. Suppose f :C→C is a function. Fix an integer n> 1 and an integer
r with 0≤ r < n. We say that f is of type r mod n if

f (εz)= εr f (z) (3)

for every z ∈ C and every n-th root of unity ε ∈ C.

If there is no danger of ambiguity regarding n, we may shorten the notation
and say that a function f : C → C has type r . If, for example n = 3, then a
function f : C→ C may have type 0, type 1, or type 2. The third roots of unity
are ε = 1, e2π i/3, or e4π i/3. Thus a type-0 function satisfies the equations

f (1z)= 1 f (z),

f (e2π i/3z)= f (z),

f (e4π i/3z)= f (z),

a type-1 function satisfies

f (1z)= 1 f (z),

f (e2π i/3z)= e2π i/3 f (z),

f (e4π i/3z)= e4π i/3 f (z),

and a type-2 function satisfies

f (1z)= 1 f (z),

f (e2π i/3z)= e4π i/3 f (z),

f (e4π i/3z)= e2π i/3 f (z).

If ε ∈ C is an n-th root of unity and εk
6= 1 for all 1≤ k < n, we say that ε is a

primitive n-th root of unity. For example, in case n = 3 above, the primitive third
roots of unity are e2π i/3 and e4π i/3, whereas 1 is not a primitive third root of unity.
The next lemma shows that we do not need to check that a given function satisfies
(3) for every n-th root of unity. Rather, it is enough to know that (3) holds for at
least one primitive n-th root ε.

Lemma 2. Suppose f : C→ C is a function. Fix an integer n > 1 and an integer
0 ≤ r < n. Let ε ∈ C be a primitive n-th root of unity. If f has the property that
f (εz)= εr f (z) for all z ∈C, then f (ωz)= ωr f (z) for every z ∈C and every n-th
root of unity ω ∈ C.

Proof. Note that ω= εk for some integer 0≤ k<n. It follows that f (ωz)= f (εkz),
and we see that f (εkz) = εr f (εk−1z) = εrεr f (εk−2z) = · · · = (εr )k−1 f (ε1z) =
(εr )k f (z). Hence f (ωz)= f (εkz)= (εr )k f (z)= (εk)r f (z)= ωr f (z). �
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The following construction gives rise to a function of type r mod n defined
in terms of some given function f : C→ C. We shall see in Theorem 5 that this
construction leads to a way to decompose f as a sum of functions of types 0, 1, . . . ,
and n− 1.

Definition 3. Suppose f :C→C is a function. Given an integer n> 1, a primitive
n-th root of unity ε ∈ C, and r ∈ Z with 0≤ r < n, define f(r,ε) : C→ C by

f(r,ε)(z)=
1
n

n−1∑
k=0

ε−kr f (εkz). (4)

Theorem 4. Suppose f : C→ C is a function. Given an integer n > 1, a primitive
n-th root of unity ε ∈C, and r ∈Z with 0≤ r < n, define f(r,ε)(z) as in Definition 3.
Then f(r,ε) is of type r mod n.

Proof. By Lemma 2, it suffices to show that f(r,ε)(εz)= εr f(r,ε)(z). Note that

f(r,ε)(εz)=
1
n

n−1∑
k=0

ε−kr f (εk+1z)=
1
n

n∑
l=1

ε−r(l−1) f (εl z), where l = k+ 1.

Also note that ε−r(n−1) f (εnz)= ε−r(0−1) f (ε0z), so

f(r,ε)(εz)=
1
n

n−1∑
l=0

ε−r(l−1) f (εl z)=
εr

n

n−1∑
l=0

ε−rl f (εl z)= εr f(r,ε)(z). �

Theorem 5. Suppose f : C→ C is a function. Fix an integer n > 1, and let ε ∈ C

be a primitive n-th root of unity. Then f =
∑n−1

r=0 f(r,ε), where f(r,ε) is given by
Definition 3.

Proof. Note that

n−1∑
r=0

f(r,ε)(z)=
n−1∑
r=0

1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

( n−1∑
r=0

ε−kr
)

f (εkz).

Since
n−1∑
r=0

ε−kr
=

n−1∑
r=0

(ε−k)r =


1−(ε−k)n

1−ε−k = 0 if 0< k < n,

n if k = 0,

it follows that

n−1∑
r=0

f(r,ε)(z)=
1
n

n−1∑
k=0

( n−1∑
r=0

ε−kr
)

f (εkz)=
n
n

f (ε0z)= f (z). �
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Although Theorem 5 asserts that every function can be written as a sum of
functions of types 0 through n−1, it does not preclude the possibility that this can
be done in several ways. Theorem 6 addresses this issue.

Theorem 6. Suppose f : C→ C is a function, and fix an integer n > 1. If f =
f0 + · · · + fn−1 and f = g0 + · · · + gn−1 where fr and gr have type r mod n for
0≤ r < n, then fr = gr for all r .

Proof. Suppose that f = f0 + · · · + fn−1 and f = g0 + · · · + gn−1 where fr and
gr have type r . Then h0+ · · ·+ hn−1 = 0 where hr = fr − gr has type r for all r .
Thus it is sufficient to prove that if h0+· · ·+ hn−1 = 0, where hr has type r , then
hr = 0 for all r .

Suppose the result is false. There exists a strictly increasing sequence r1, . . . , rk ,
with ri ∈ {0, 1, . . . , n− 1} for all i , along with functions qri (i = 1, . . . , k) so that
qri is a nonzero function of type ri and

qr1 + · · ·+ qrk = 0. (5)

Furthermore, we may suppose we have chosen such a counterexample with k min-
imal.

Let ε be a primitive n-th root of unity. Evaluating both sides of (5) at εz implies
that 0= (qr1 + · · ·+ qrk )(εz)= εr1qr1(z)+ · · ·+ ε

rk qrk (z), while multiplying both
sides of (5) by εr1 yields εr1qr1 + ε

r1qr2 +· · ·+ ε
r1qrk = 0. After subtracting these

two equations, we see that

(εr2 − εr1)qr2 + · · ·+ (ε
rk − εr1)qrk = 0.

By assumption qri 6= 0 and εri − εr1 6= 0 since ε is a primitive n-th root of unity
and ri 6= r1. Hence r2 · · · rk is a strictly increasing sequence with r2, . . . , rk ∈

{0, 1, . . . , n − 1} such that (εri − εr1)qri (2 ≤ i ≤ n − 1) is a nonzero function of
type ri with (εr2 − εr1)qr2 + · · · + (ε

rk − εr1)qrk = 0, contradicting the fact that k
was minimal. It follows that qri = 0 for all i . �

Corollary 7. Suppose f : C→ C is a function. Fix an integer n > 1, and let r ∈ Z

with 0≤ r < n. Let ε, ω ∈ C be primitive n-th roots of unity. Then f(r,ε) = f(r,ω).

Proof. By Theorem 4 and Lemma 2 it follows that f(r,ε)(εz) = εr f(r,ε)(z) and
f(r,ω)(εz)=εr f(r,ω)(z) for all z∈C. From Theorem 5 we know that f =

∑n−1
r=0 f(r,ε)

and f =
∑n−1

r=0 f(r,ω). Theorem 6 implies that f(r,ε) = f(r,ω) for all r . �

Remark 8. We have shown that f(r,ε)= f(r,ω) whenever ε, ω∈C are primitive n-th
roots of unity. Thus it is unambiguous to define the notation fr by the equation

fr = f(r,ε), (6)

where ε is any primitive n-th root of unity and f(r,ε) is given by Definition 3.
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An obvious corollary of Theorem 6 is that there is a unique way to write the zero
function as a sum of functions of various types. This can essentially be regarded
as the statement that functions of differing types (mod n) are linearly independent,
and thus it makes sense to phrase these results in terms of linear algebra.

Definition 9. Let F be the vector space of all functions f :C→C. Fix an integer
n > 1, and let r ∈ Z with 0≤ r < n. Define Fr ⊆ F by

Fr = { f ∈ F | f has type r mod n}.

It is straightforward to show that if f, g ∈ Fr and c ∈C, then c f + g ∈ Fr . Thus
the subset Fr is in fact a vector subspace of F . Note that Theorem 5 and Theorem 6
may be summarized by noting that F decomposes as

F = F0⊕ · · ·⊕ Fn−1.

Definition 10. Let f ∈ F . Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n.
Define πr ( f ) to be the unique type-r summand that corresponds to writing f as a
sum of functions of types 0 through n− 1.

In light of the decomposition F= F0⊕· · ·⊕Fn−1, the map πr is well-defined and
may be regarded as the projection from F onto the subspace Fr . From Theorem 5
and Theorem 6, it follows that πr ( f )= fr , where fr is defined as in (6). Although
this equation could be used as a definition for πr : F → Fr , Definition 10 has the
advantage of that the next results follow almost immediately from this definition.

Lemma 11. Let f ∈ F. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Then
( fr )r = fr .

Proof. This is equivalent to the assertion that πr ◦πr = πr . Since πr ( f ) is of type
r , Definition 10 implies that πr (πr ( f ))= πr ( f ). �

Lemma 12. Let f ∈ F. Fix an integer n > 1, and let r, s ∈ Z with 0 ≤ r, s < n.
Then ( fr )s = 0 if r 6= s.

Proof. If fr ∈ Fr is decomposed according to the direct sum F = F0⊕· · ·⊕ Fn−1,
then the r -th component of fr is fr , and every other component is 0, so it follows
that ( fr )s = 0 when r 6= s. �

3. Relationship to real-valued functions

Several important complex-valued functions f : C → C have the property that
f (z) = f (z) for all z ∈ C. For example, the functions ez , sin z, cos z, sinh z, and
cosh z have this property, as do all polynomial functions with real coefficients. In
this section, we show that this property carries over to the type-r component of f .
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Lemma 13. Suppose f : C→ C is a function with the property that f (z) = f (z)
for all z ∈ C. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Define πr as in
Definition 10. Then πr ( f )(z)= πr ( f )(z) for all z ∈ C.

Proof. Let ε be a primitive n-th root of unity. Since z1+ z2 = z1+ z2 and z1 · z2 =

z1 · z2 for all z1, z2 ∈ C, it follows that

πr ( f )(z)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ε−kr f (εkz).

Observe that ε = ε−1 because |ε| = 1, and thus

πr ( f )(z)=
1
n

n−1∑
k=0

ε−kr f (εkz)=
1
n

n−1∑
k=0

ω−kr f (ωkz),

where ω = ε. Since ω = ε−1, ω is also a primitive n-th root of unity, whence
πr ( f )(z)= f(r,ω)(z)= πr ( f )(z) for all z ∈ C by Remark 8. �

Recall that a complex function f :C→C is said to be real if f (x)∈R whenever
x ∈ R. The next lemma provides a criterion to show that a function is real, and a
proof can be found in [Churchill and Brown 2008, page 87].

Lemma 14. Suppose f : C→ C is a function. If f has the property that f (z) =
f (z) for all z ∈ C, then f is real.

The following result is now obvious in light of Lemma 14 and Lemma 13.

Corollary 15. Suppose f :C→C is a function with the property that f (z)= f (z)
for all z ∈ C. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. If z ∈ R, then
fr (z) ∈ R.

Since cosh z and sinh z may be regarded as π0(ez) and π1(ez) (with n = 2),
we recover the obvious facts that cosh x, sinh x ∈ R if x ∈ R. More interestingly
(n = 3), we see for example that if ε = e2π i/3

= −
1
2 +

√
3

2 i and r ∈ {0, 1, 2}, then
1
3

(
ex
+ ε−r eεx

+ ε−2r eε
2x
)
∈ R for all x ∈ R.

It is not immediately obvious whether the condition that f : C→ C is real is
sufficient to guarantee that fr is real whenever 0≤ r < n. Define f : C→ C by

f (z)=
{

0 if z ∈ R,

i if z ∈ C \R.

Then, if n = 3, it is straightforward to compute that

f0(1)=
2i
3

and f1(1)= f2(1)=
i
3
(
e2π i/3

+ e4π i/3)
=−

i
3
,



98 MICKI BALAICH AND MATTHEW ONDRUS

which implies that fr (1) 6∈ R for r = 0, 1, 2. In particular, this shows that f must
satisfy a stronger condition (than the condition that f is real) in order to guarantee
that fr is real for 0≤ r < n.

4. Relationship to the derivative

Recall that F denotes the space of all functions f : C→ C.

Definition 16. Define the vector space F by

F= { f ∈ F | f is holomorphic}.

Definition 17. Let f ∈ F . Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n.
Define the subspace Fr by

Fr = F∩ Fr .

If f : C→ C is a holomorphic function, the following theorem establishes a
relationship between the projection maps πr and the differentiation operator.

Theorem 18. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. Define πr and
πr−1 as in Definition 10, and let d

dz : F→ F denote the differentiation operator.
Then, for f ∈ F, we have(

d
dz
◦πr

)
( f )=

(
πr−1 ◦

d
dz

)
( f ),

where we read the integer r − 1 modulo n.

Proof. Let f ∈F and fix a primitive n-th root of unity ε ∈C. Note that by definition(
πr−1 ◦

d
dz

)
( f )(z)= πr−1( f ′)(z)=

n−1∑
k=0

ε−k(r−1) f ′(εkz).

From the chain rule, the derivative of the function z 7→ f (εkz) is the function
z 7→ εk f ′(εkz), so we have(

d
dz
◦πr

)
( f )(z)=

n−1∑
k=0

εkε−kr f ′(εkz)=
n−1∑
k=0

ε−k(r−1) f ′(εkz). �

The following corollary generalizes the fact that the derivative of an odd (resp.
even) function is even (resp. odd). Although it can be demonstrated directly from
the definition [Ahlfors 1979, page 24] of the complex derivative, we prove the
result using Theorem 18.

Corollary 19. Let f ∈ F. Fix an integer n > 1, and let r ∈ Z with 0 ≤ r < n. If
f ∈ Fr , then f ′ ∈ Fr−1, where we read the integer r − 1 modulo n.

Proof. By Theorem 18, d
dz
( f )= d

dz
(πr ( f ))= πr−1

( d
dz
( f )

)
∈ Fr−1. �
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Example 20. Fix an integer n > 1, and let f (z) = ez . We saw in Corollary 15
that for 0≤ k < n, fk(x) ∈ R whenever x ∈ R. Moreover Theorem 18 implies that
d fr/dz = πr−1(d f/dz)= fr−1. Thus if we let fk |R denote the restriction of fk to
the real numbers, it follows that

d
dx
( fr |R)= fr−1|R,

where d/dx denotes the real differentiation operator and the subscripts r and r−1
are read modulo n. Thus the function fr |R is a solution to the (real) differential
equation dn y/dxn

= y. If, for example, n=3, it is straightforward to check that the
functions f0|R, f1|R, and f2|R form a basis for the solution space of dn y/dxn

= y.

5. Relationship to representation theory

The previous setting can be generalized considerably. For a fixed integer n > 1,
the set G of all n-th roots of unity in C forms a multiplicative group. This group
acts on the space C as follows. For g ∈ G ⊆ C and z ∈ C, the action is given by
g.z= gz. (Here, we use the dot notation for group actions, as in [Fulton and Harris
1991].) Thus the domain and codomain of a function f : C→ C are G-modules.
Because of this, it is natural to conjecture that the above results can explained
module-theoretically. Indeed, many of the previous concepts may be regarded as
special cases of module-theoretic results. For example, Definition 21 is a module-
theoretic analogue of Definition 3, and Corollary 28 yields Theorem 5 as a special
case.

If G is a finite group, we define the group algebra C[G] as in [Isaacs 1976]. We
define the notions of a module, a simple module, and a module homomorphism as
in [Isaacs 1993] or any other standard text. Note that the function f : V → W in
Definition 21 need not be linear.

Definition 21. Let G be a finite group, and V and W be C[G]-modules. Suppose
f : V → W is a function and φ : G → G is a homomorphism. Then define
fφ : V →W by

fφ(v)=
1
|G|

∑
h∈G

φ(h−1). f (h.v).

Note that if G is the group of n-th roots of unity in C and φ :G→G is given by
φ(g)= gr , then the function fφ is exactly the function f(r,ε) given in Definition 3.
The following theorem states that not only does fφ generalize f(r,ε), but it behaves
in a manner that generalizes Theorem 4.

Theorem 22. Let G be a finite group and V and W be C[G]-modules. Suppose
f : V → W is a function and φ : G → G is a homomorphism. Then fφ(g.v) =
φ(g). fφ(v).
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Proof. From the definition of fφ , we have, with u = hg,

fφ(g.v)=
1
|G|

∑
h∈G

φ(h−1). f (hg.v)=
1
|G|

∑
u∈G

φ(gu−1). f (u.v)

= φ(g)
1
|G|

∑
u∈G

φ(u−1). f (u.v)= φ(g). fφ(v). �

In the case where G is the n-th roots of unity in C and φ(g) = gr then the
properties of the homomorphism fφ are identical to those of the function f(r,ε). The
following Theorem shows that the property of f(r,ε) shown in Lemma 11 not only
holds under these conditions, but also in the more abstract setting of Theorem 22.

Theorem 23. Let G be a finite group, and V and W be C[G]-modules. Suppose
f : V →W is a function and φ : G→ G is a homomorphism. Then ( fφ)φ = fφ .

Proof. By definition fφ(v)= 1
|G|

∑
h∈G φ(h

−1). f (h.v). It follows that

(( fφ)φ)(v)=
1
|G|

∑
h∈G

φ(h−1). fφ(h.v)=
1
|G|

∑
h∈G

φ(h−1)φ(h). fφ(v)

=
1
|G|

∑
h∈G

φ(h−1h). fφ(v)=
1
|G|

(n fφ(v))= fφ(v). �

When G is cyclic of order n, every homomorphism from G to G is determined by
the image of some generator of G. For 0≤ r < n, define φr :G→G by φr (x)= xr

for all x ∈ G. Then the set of homomorphisms G → G is {φr | 0 ≤ r < n}. As
Corollary 24 shows, this new setting allows us to generalize the property of f(r,ε)
from Theorem 4 in slightly more specific terms than those of Theorem 22.

Corollary 24. Let G be a finite cyclic group and V and W be C[G]-modules.
Suppose f : V →W is a function, and let φr :G→G be the homomorphism given
by φr (x)= xr . Then fφr (x .v)= xr . fφr (v) for all v ∈ V and x ∈ G.

If G is cyclic and V and W are C[G]-modules with W simple, then it is possible
to generalize Theorem 5. To demonstrate this, we rely on the following well-known
fact, whose proof can be found in [Isaacs 1976].

Lemma 25 (Schur’s Lemma). Let G be a finite group, and suppose V and W are
simple C[G]-modules and φ : V →W is a module homomorphism.

(1) Either φ is an isomorphism or φ = 0.

(2) If V =W then φ :W →W is a scalar multiple of the identity function.

If x ∈G is central in G, then the function fx :W→W defined by fx(w)= x .w is
a C[G]-module homomorphism. Thus Schur’s Lemma implies that every central
element of G acts by a scalar on any simple module W . With G cyclic, every
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element in G is central. In particular, the generator g ∈ G is central, so there must
be some scalar ξ by which g acts on the elements of simple modules. Furthermore,
G is finite so |G| = n for some integer n. The next lemma shows that this integer
allows us to be somewhat precise about the value of ξ ∈ C.

Lemma 26. Let G be a finite cyclic group with generator g and |G| = n. If W is a
simple C[G]-module, then g acts on W as multiplication by an n-th root of unity.

Proof. The group G is abelian, so by Schur’s Lemma, there exists ξ ∈ C so that
g.w= ξw for all w ∈W . This implies that an arbitrary element gk

∈G acts by the
scalar ξ k . Since |G| = n, gn is the identity element of G, and it follows that for
w ∈W , w = gn.w = ξ nw, which forces ξ n

= 1. �

In light of Theorem 23 and Corollary 24, it is reasonable to conjecture that there
is some module-theoretic analogue of Theorem 5. The following theorem estab-
lishes a formula for the sum of the functions fφ0 , fφ1 , . . . , fφn−1 . As a consequence
of working in this more general setting, the resulting formula is more complicated
than the formula in Theorem 5.

Theorem 27. Let G be a finite cyclic group with generator g and |G| = n. Let V ,
W be C[G]-modules with W simple, and let f : V →W . If g acts on all w ∈W by
the scalar ξ having multiplicative order d, then for all v ∈ V ,

n−1∑
r=0

fφr (v)=
∑

0≤k<n
d|k

f (gk .v).

Proof. For v ∈ V ,
n−1∑
r=0

fφr (v)=
1
n

n−1∑
r=0

n−1∑
k=0

(g−k)r . f (gk .v)=
1
n

n−1∑
k=0

( n−1∑
r=0

(ξ−k)r
)

f (gk .v).

Observe that
n−1∑
r=0

(ξ−k)r =


1− (ξ−k)n

1− ξ−k = 0 if d - k

n if d | k.
Hence

1
n

n−1∑
k=0

( n−1∑
r=0

(ξ−k)r
)

f (gk .v)=
1
n

∑
0≤k<n

d|k

n f (gk .v)=
∑

0≤k<n
d|k

f (gk .v),

and the desired result follows. �

Lemma 26 does not make it clear which n-th root of unity ξ is. If ξ happens
to be primitive, then |ξ | = |G| = n. Applying this reasoning to Theorem 27 leads
directly to the following module-theoretic generalization of Theorem 5.
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Corollary 28. Let G be a finite cyclic group with generator g and |G| = n. Let V
and W be C[G]-modules with W simple, and f : V → W . Let ξ ∈ C be the n-th
root of unity with the property that g.w= ξw for all w ∈W . If ξ is a primitive n-th
root of unity, then f =

∑n−1
r=0 fφr .

Proof. Theorem 27 implies that
∑n−1

r=0 fφr (v)=
∑

k∈1 f (gk .v), where

1= {0≤ k < n | n divides k}.

But 1= {0}, so it follows that
∑n−1

r=0 fφr (v)= f (v). �

This framework obviously applies in the setting of a function f :C→C, and thus
many of the results of Section 2 may be regarded as consequences of representation
theory. With the current perspective, it is, for example, possible to decompose
functions of the form f : V → C, where V is any module for the group G of
complex n-th roots of unity. For instance, if V is the set of all m×m matrices with
complex entries, then G acts on V by entry-wise multiplication. Alternatively, if
V is taken to be the group algebra C[G], then G acts on V via the regular action,
and this setting applies to functions f : C[G] → C.
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