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The visual boundary of Z2

Kyle Kitzmiller and Matt Rathbun

(Communicated by Kenneth S. Berenhaut)

We introduce ideas from geometric group theory related to boundaries of groups.
We consider the visual boundary of a free abelian group, and show that it is an
uncountable set with the trivial topology.

1. Introduction

The study of a metric space can often be facilitated by considering it in the large
scale, or by studying asymptotic phenomena. For instance, adding a boundary to
compactify (or, more generally, “bordify”) a metric space is a key tool in under-
standing the space and its isometry group. A classical example is the hyperbolic
space Hn , with its boundary sphere at infinity. Isometries of Hn extend to home-
omorphisms of the boundary, and can be classified by their fixed points on the
boundary. More generally, any Gromov hyperbolic space (that is, a space with
large-scale negative curvature) has such a naturally defined boundary at infinity
[Bridson and Haefliger 1999].

In trying to understand the geometry of groups, it is often useful to regard the
group as a metric space by choosing a generating set, and forming the associated
Cayley graph, which will be defined below. The metric induced by declaring all
edges in the Cayley graph to have length one is called the word metric on the
group. It would seem quite natural to define a boundary for groups directly from
the word metric, and this works well if the group is Gromov hyperbolic. In general,
however, there are obstructions to the usefulness of this boundary, as we will see
below. This note explores properties of the visual boundary for groups, introducing
the needed definitions along the way. The main result is that the visual boundary of
Z2 (denoted ∂∞(Z2)) with the standard generating set possesses the trivial topology
on an uncountable set. Indeed, there are many groups which have so called “quasi-
flats”, or quasi-isometric embeddings of Z2. We will see that the boundary of any
such group will inherit the unpleasant properties of ∂∞(Z2).

MSC2000: 20F05, 20F69, 51F99.
Keywords: boundary, visual boundary, Cayley graph, Z2, geodesic ray, quasi-isometry.
The authors were supported by VIGRE NSF grant no. 0636297.
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104 KYLE KITZMILLER AND MATT RATHBUN

The exposition is intended to be readable for a student who has had a first course
in topology and metric spaces, and who is familiar with the definition and the most
basic examples of groups. (We also mention the axiom of choice.) On the other
hand, we hope that the paper will be a nontrivial read for working mathematicians
in other areas.

2. Background

Metric notions. We review here some useful definitions from metric geometry.

Definition 2.1.

• A geodesic segment, ray, or line in a metric space X is an isometric embedding
of [0, a], [0,∞), or R into X . Thus, for instance, a geodesic line is a map
f : R→ X such that dX ( f (t1), f (t2)) = |t1− t2| for all t1, t2 ∈ R. We say a
geodesic ray is from x0 or based at x0 if f (0)= x0.

• A metric space is called a geodesic space if any two points in the space can
be joined by a geodesic segment.

• Suppose (X, d) is a metric space, and Y ⊂ X is connected. There are two
natural ways to metrize Y . The subspace metric is dY : Y → R≥0 defined
by dY (y1, y2) = d(y1, y2). Alternatively, the path metric is dpath : Y → R≥0

defined by

dpath(y1, y2)= inf
{
length(γ ) | γ is a path in Y connecting y1 to y2

}
.

• A geodesic space is called (geodesically) complete if every geodesic segment
can be extended infinitely in both directions.

• A metric space is called proper if closed balls are compact. (This is needed
for certain kinds of limiting arguments.)

Example 2.2. Consider the (half-)cone

X =
{
(x, y, z) | x2

+ y2
=

1
25 z2, z ≥ 0

}
,

0

a b

a portion of which is shown in the figure. We claim that X
is not geodesically complete, when considered with the path
metric. Indeed, take a geodesic segment from the point a =
(−1, 0, 5) to the origin (0, 0, 0); this coincides with a straight-
line segment in space. Trying to extend this geodesic to b =
(1, 0, 5) presents a problem. The length of the two segments
would be 2

√
26, whereas the distance between the two points

a and b is at most π , because we can go from one point to the other along the circle
{z = 5} ∩ X , which has radius 1. Certainly, if we try to extend the geodesic to any
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other point on X , we will face the same difficulty: there is a shorter path “around”
the cone, rather than going through the cone point.

Example 2.3. Let X be an infinite-dimensional Hilbert space. Then X is not
proper, because the closed unit ball is not compact. To see this, take an orthonormal
basis, {vα} for X . Then any countably infinite sequence of the {vα} is a sequence
with no convergent subsequence, since the distance between any two elements is

‖vα − vβ‖ =
√
〈vα, vα〉+ 〈vβ, vβ〉− 〈vα, vβ〉− 〈vβ, vα〉 =

√
‖vα‖+‖vβ‖ =

√
2.

Cayley graphs. The construction of a Cayley graph is a central tool in geomet-
ric group theory, allowing us to associate a metric space to a group with a given
presentation.

Definition 2.4. Let G = 〈S | R〉 be a group with generating set S and relations
R. We define a graph Cay(G, S) whose vertices correspond to elements of G, and
with edges between g, h ∈G if there exists s ∈ S∪S−1 so that g= h ·s. We give the
resulting graph the graph metric, whereby each edge has length 1, and the distance
between vertices is the length of the shortest path between them.

Remark 2.5. For any two elements g, h∈G, the distance from g to h in Cay(G, S)
is just the length of the shortest word w in S ∪ S−1 such that g = h ·w.

Example 2.6. Cay(Z2, {(1, 0), (0, 1)}) is just the integer grid. Consider a path
from the origin to any other point (m, n) of Z2. This path
consists of a union of horizontal and vertical segments
between the integer coordinate points of the graph, the
vertices (see figure). There are some crucial differences
from familiar metric spaces like R2 with the Euclidean
metric: there is more than one path of minimum length
between the origin and (m, n) unless m = 0 or n = 0, and
there is no unique prolongation of geodesic segments to
rays.

The distance from (m, n) to (k, l) is |m − k| + |n− l| (the `1 distance). Notice
that (m, n) = (k, l)± |m − k|(1, 0)± |n− l|(0, 1), so the distance is the length of
the smallest word s composed of letters from {±(0, 1),±(1, 0)} such that (m, n)=
(k, l)+ s.

Alternatively, one could consider embedding the integer grid into R2, and take
the metric on Z2 to be the path metric induced by this inclusion.

Remark 2.7. This graph is not determined by a group, but clearly depends on the
choice of a generating set S. To accommodate this, in the next section we introduce
the notion of quasi-isometry.
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Quasi-isometries. Often, we want to say that two spaces share some of the same
large-scale geometric features, even when they are not isometric. To this end, we
introduce the concept of quasi-isometry. This is like isometry, but allows for some
bounded error in the form of a multiplicative and an additive factor. We will find
that many notions about metric spaces can be “quasified”.

Definition 2.8.

• We say a map between two metric spaces, f : (X, dX )→ (Y, dY ) is a quasi-
isometric embedding for some k ≥ 1, c ≥ 0, if for every x1, x2 ∈ X ,

1
k

dX (x1, x2)− c ≤ dY ( f (x1), f (x2))≤ kdX (x1, x2)+ c.

• We say that a quasi-isometric embedding, f : (X, dX )→ (Y, dY ), is a quasi-
surjection if there exists a D > 0 such that for every y ∈ Y , there is an x ∈ X
such that dY (y, f (x)) < D.

If f : (X, dX ) → (Y, dY ) is a quasi-isometric embedding which is also
a quasi-surjection, then we say that f is a quasi-isometry and we say that
(X, dX ) and (Y, dY ) are quasi-isometric.

In particular, a quasi-isometry admits a quasi-inverse. When we compose
a quasi-isometry with a quasi-inverse, we almost get the identity. But, as with
most things “quasi”, we might be off by a multiplicative and additive constant.

• If f : (X, dX ) → (Y, dY ) is a quasi-isometry, a quasi-inverse is a quasi-
isometric embedding g : (Y, dY )→ (X, dX ) so that for some k ≥ 1, c ≥ 0, for
all x1, x2 ∈ X ,

1
k

dX (x1, x2)− c ≤ dX (g ◦ f (x1), g ◦ f (x2))≤ kdX (x1, x2)+ c,

and for all y1, y2 ∈ Y ,

1
k

dY (y1, y2)− c ≤ dY ( f ◦ g(y1), f ◦ g(y2))≤ kdY (y1, y2)+ c.

Example 2.9. R is (1, 1)-quasi-isometric to Z. Consider f : R→ Z, defined by
f (x)= bxc, the floor function. Then for all x, y ∈ R,

|x − y| − 1≤
∣∣bxc− byc∣∣≤ |x − y| + 1.

This map is clearly surjective.
Further, the inclusion g : Z ↪→ R is a quasi-inverse, since f ◦ g(n) = n for any

n ∈ Z and g ◦ f (x)= bxc for any x ∈ R. So, if m, n ∈ Z,

|m− n| = | f ◦ g(m)− f ◦ g(n)| = |m− n|,
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and if x, y ∈ R,

|x − y| − 1≤ |g ◦ f (x)− g ◦ f (y)| ≤ |x − y| + 1.

Example 2.10. R2 is (2, 2)-quasi-isometric to Z2. We will go through the calcu-
lation, but the idea is simple: rounding points in the plane down to points in the
integer grid never distorts distances by too much, even when you change from `2

to `1 distance. Consider f : R2
→ Z2, defined by f (x, y)= (bxc, byc). Then, for

any (a, b), (x, y) ∈ R2,

dZ2( f (a, b), f (x, y))=
∣∣bxc− bac∣∣+ ∣∣byc− bbc∣∣
≤ (|x − a| + 1)+ (|y− b| + 1) (as above)

≤ 2 max{|x − a|, |y− b|} + 2

≤ 2
√
(max{|x − a|, |y− b|})2+ 2

≤ 2
√
(x − a)2+ (y− b)2+ 2

= 2dR2((a, b), (x, y))+ 2,

and

dZ2( f (a, b), f (x, y))=
∣∣bxc− bac∣∣+ ∣∣byc− bbc∣∣
≥ (|x − a| − 1)+ (|y− b| − 1) (also as above)

≥ dR2((a, b), (x, y))− 2 (by the triangle inequality)

≥
1
2 dR2((a, b), (x, y))− 2.

It is easy to see that the inclusion g : Z2 ↪→ R2 is a quasi-inverse; the composition
g ◦ f : R2

→ R2 moves points no more than
√

2.

Remark 2.11. Above, we used quasi-isometry constants k = 2, c = 2. It is a nice
exercise to show that k =

√
2, c = 2 are actually the best constants possible. But

often we will not care what the constants actually are — only that they exist.

Definition 2.12. A quasi-geodesic is a quasi-isometric embedding of the real line
into a space. That is, a map f : R→ X such that for some k ≥ 1, c ≥ 0, for all
t1, t2 ∈ R,

1
k
|t1− t2| − c ≤ dX ( f (t1), f (t2))≤ k|t1− t2| + c.

Quasi-geodesics are useful, for instance, in discrete spaces: they can sit still for
a bounded period of time, and can make jumps of bounded size, but in the large
scale they proceed with distance roughly equal to time elapsed.
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Example 2.13. Denote by rθ the real ray in R2 from the origin that makes an
angle of θ with the positive x-axis. Then we can consider the image of rθ under
the quasi-isometry f :R2

→Z2 from Example 2.10. The result is a (disconnected)
quasi-geodesic in Cay(Z2, {(1, 0), (0, 1)}).

In this case, if we connect successive lattice points of f ◦ rθ with geodesic
segments, the result is a geodesic ray in Cay(Z2, {(1, 0), (0, 1)}), as in the figure.
Call this ray Qθ .

Next, as promised, we confirm that the word metric is independent of the choice
of generating set, up to quasi-isometry.

Proposition 2.14. If G is a finitely generated group with two (finite) generating
sets S and S′, then Cay(G, S) is quasi-isometric to Cay(G, S′).

Proof. The identity map will be shown to be a quasi-isometry. Say |S| = k, |S′| = l,
let dS be the distance function in Cay(G, S), and dS′ in Cay(G, S′). Then, since S
and S′ are finite, let m = max{dS′(s, e) | s ∈ S}, and n = max{dS(s ′, e) | s ′ ∈ S′},
where e ∈ G is the identity element.

Then, every element g ∈ G can be written as a word in S′. And each of those
generators can be written as words of S, each of length at most n. So

dS(g, e)≤ n · dS′(g, e).

To get the second inequality, the argument is reversed: dS′(g, e)≤m ·dS(g, e). So
letting k =max{m, n} yields the quasi-isometry inequality.

The argument is completed by noting that for any g, h ∈ G,

d(g, h)= d(h−1g, e). �

Now we can speak unambiguously about the large-scale geometry of groups —
those properties of groups that are invariant under quasi-isometry.

The visual boundary.

Notation 2.15. Let X be a geodesic space. For x0 ∈ X , we define

Gx0(X)= {unit speed geodesic rays from x0}.

We will suppress X from the notation and simply write Gx0 .
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We want to think of light traveling along geodesics in the space X . So we think
of the visual boundary as the set of all points one can “see” at infinity, standing at
the point x0.

We give Gx0 the topology of uniform convergence on compact sets. Recall:

Definition 2.16. Let (X, d) be a metric space and Y a topological space. Given
a fixed element f ∈ XY

= {functions g : Y → X}, a compact set K of Y and a
number ε > 0, we let

BK ( f, ε) =
{
g ∈ XY

∣∣ d( f (y), g(y)) < ε for all y ∈ K
}
.

The sets BK ( f, ε) form a basis for the topology of uniform convergence on com-
pact sets on XY .

So Gx0 ⊂ XR inherits the subspace topology. Roughly, if the images of two rays
are “close” on large compact sets, then the rays are “close”. And a sequence of
rays converges to a limiting ray if the rays of the sequence agree with the limit on
larger and larger compact sets.

Sometimes, however, if we “look” in different directions, we see the same point
at infinity. To make this precise:

Definition 2.17. We say that two geodesic rays, g and f , are asymptotic if there
exists an M ∈ R such that d( f (t), g(t)) ≤ M for all t . This is an equivalence
relation on rays. We will write f ∼ g, and denote the equivalence class of a ray
f ∈ Gx0 by [ f ], so [ f ] = {g | f ∼ g}.

Definition 2.18. The visual boundary of a geodesic space X at a point x0, denoted
∂∞(X, x0), is defined to be Gx0/ ∼, with the quotient topology. Let πx0 : Gx0 →

∂∞(X, x0) be the natural projection map.

Example 2.19. The visual boundary of R2 at (0, 0) is homeomorphic to the unit
circle, S1.

Again, the idea is simple: every geodesic ray from the origin corresponds to
exactly one point on the unit circle, and exactly one point at infinity.

Proof. Define a function H : S1
→ ∂∞(R

2, (0, 0)) by H(θ)=π(rθ ), where rθ is the
straight line ray from the origin through the point on the unit circle
corresponding to θ (see figure).

To show that this map is a bijection, note that given any
two distinct points on the circle, θ and φ, the geodesic rays
rθ and rφ diverge. That is, given any M , there exists some
T such that d(rθ (t), rφ(t)) > M for all t > T . Further, H is
clearly surjective, as the only geodesic rays in R2 are straight
line rays.
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To show that the map is continuous, we will examine open balls about arbitrary
points. Used implicitly in the remainder of the proof is the fact that H and π are
bijections.

Assume V is open in ∂∞(R2, (0, 0)). Then H−1(V ) = {r(1) | r ∈ π−1(V )}.
Now, consider an arbitrary point, r∗(1) ∈ H−1(V )⊂ S1. We know what the basis
of open sets in G looks like: it consists of the BK ( f, ε). So there exists an ε∗ and
a compact set K = {1} such that the ball B{1}(r∗, ε∗) is in π−1(V ), because π(r∗)
is in V and π−1(V ) is open. Then,

H−1(π(B{1}(r∗, ε∗)))= H−1(π({r | d(r(t), r∗(t)) < ε∗, t ∈ {1}}
))

= H−1(π({r | d(r(1), r∗(1)) < ε∗}))
= {r(1) | d(r(1), r∗(1)) < ε∗} = B(r∗, ε∗)⊂ S1.

Now, assume W is open in S1. We want to show that H(W ) is open. Consider
any ray r∗ such that π(r∗) ∈ H(W ). Then we know there exists an ε∗ such that
B(r∗(1), ε∗)= {r(1) | d(r(1), r∗(1)) < ε∗} ⊂W . Then,

H(B(r∗(1), ε∗))=
{
π(r) | d(r(1), r∗(1)) < ε∗

}
=
{
π(r) | d(r(t), r∗(t)) < ε∗, t ∈ {1}

}
= π(B{1}(r∗, ε∗)).

Since, in this case, π−1(π(B{1}(r∗, ε∗))) = B{1}(r∗, ε∗) is open, so is its image.
Thus, given any point π(r∗) in H(W ), there is an open set around this point
contained in H(W ). We conclude that H(W ) is open, and ultimately that H is
a homeomorphism between ∂∞(R2, (0, 0)) and S1. �

We would like a way to talk about the visual boundary of a metric space, without
reference to a specified basepoint. Unfortunately, there are many cases when the
visual boundary changes if we use a different basepoint.

Example 2.20 [Papadopoulos 2005]. Consider the set

R = {(x, y, z) | x = 1, y = 0, z ≥ 0} ∪ {(x, y, z) | y = 0, z = 5x − 5, 0≤ x ≤ 1}.

Rotate it around the z-axis to obtain a pencil-shaped surface X ,
considered with the path metric. If we take our basepoint to be
(0, 0,−5), then R is a geodesic ray from the basepoint, as is
any rotation of R about the z-axis. So G(0,0,−5) is a circle’s
worth of rays. If we take our basepoint to be (1, 0, 0), on the
other hand, the only geodesic ray from the basepoint is the ray
{(x, y, z) | x = 1, y = 0, z ≥ 0}. So G(1,0,0) has a single ray.

Notice, however, that all the rays in G(0,0,−5) are asymptotic,
since the distance between any two is bounded by π (in the path
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metric). So, when we take the quotient, we get

∂∞(X, (0, 0,−5))∼= ∂∞(X, (1, 0, 0))∼= {point}.

In this example, G depended on choice of basepoint, but the topological space
∂∞(X) did not. In some spaces, however, even the visual boundary will change
with the basepoint.

Example 2.21. Consider X = R2
\ {(1, 0), (−1, 0)}. Then if we choose the base-

point (0, 0), there is a geodesic ray in every direction except along the positive
and negative x-axes. So ∂∞(X, (0, 0))∼= (0, π)∪ (π, 2π). However, if we choose
the basepoint (3, 0), there is a geodesic ray in every direction except towards the
negative x-axis. So ∂∞(X, (2, 0)) ∼= (−π, π) (see figure). This shows that the
visual boundary of a twice-punctured plane depends on the choice of basepoint.

Fortunately, all is not lost.

Proposition 2.22. Given two points x1 and x2 in a geodesic space X , let L : X→ X
be an isometry carrying x1 to x2. Then ∂∞(X, x1) is homeomorphic to ∂∞(X, x2).

Proof. Isometries preserve geodesicity, so Gx1
∼=GL(x1)=Gx2 . Further, the distance

between geodesic rays is preserved, so (Gx1/∼)
∼= (Gx2/∼). �

Remark 2.23. When the isometry group of a space acts transitively on the space,
as in the case of R2 or Z2, we can suppress the basepoint. So we will denote
∂∞(X, x0) as simply ∂∞(X), πx0 as π , and Gx0 as G, when convenient.

Example 2.24. In light of Remark 2.23, ∂∞(R2)∼= S1.

3. The case of Z2

Geodesic rays. We will henceforth abuse notation, and identify Z2 with its Cayley
graph with respect to the standard generating set, Cay(Z2, {(1, 0), (0, 1)}), the in-
teger grid (Example 2.6). We will also implicitly assume the basepoint to be (0, 0).
Geodesic paths consist of horizontal and vertical segments with no “backtracking”.
As noted above, geodesics are not unique. For example, there are twenty geodesic
paths between (0, 0) and (3, 3), all of length 6 (see figure in Example 2.6).
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It is clear, then, that for any ray f , the equivalence class [ f ] is “large”: there
are many geodesics g such that d( f, g) < M for all t .

Notation 3.1. An infinite ray in Z2, consisting of vertical and horizontal segments,
can be expressed as an infinite string of the digits corresponding to each segment.
Let 0, 1, 2, 3 and 4 represent east, north, west, south, and east respectively.
Then any infinite ray in Z2 can be written as an infinite string over the alpha-
bet {0, 1, 2, 3, 4}. (The redundant use of 0 and 4 for the eastward direction is to
simplify later notation.)

If a ray is in the first quadrant, it can be written as a string over {0, 1}; in the
second, {1, 2}; in the third, {2, 3}; and in the fourth, {3, 4}. To eliminate the only
ambiguity, we adopt the convention that the east-pointing ray will be represented
as the string (0̄)= (0, 0, 0, . . . ) of all zeros. Given a geodesic ray f ∈ Z2, we will
denote this expansion by f = ( f1, f2, f3, . . . ). Then if m( f )=minn{ fn}, we have
fn ∈ {m,m+ 1} for all n.

The topology on ∂∞(Z2).

Definition 3.2. We will say a ray g in Z2 has slope θ if g ∼ Qθ , where Qθ is the
image of the ray rθ in R2 under the quasi-isometry in Example 2.10.

Note that not every ray has a slope. However, a ray cannot have more than one
slope, because ∼ is transitive.

This sets us up to show that the visual boundary of Z2 is uncountable.

Proposition 3.3. |∂∞(Z2)| = c, the cardinality of the continuum.

In order to prove this, we will describe an injection from S1 into ∂∞(Z2), and an
injection from ∂∞(Z

2) into [0, 4), making use of the quinary expansions described
in the previous section.

Proof. The proof will proceed in two parts, exhibiting the two injections.
First, define the map I : S1

→ ∂∞(Z
2) to be given by I (θ)= π(Qθ ), where Qθ

is the quasi-isometric embedding of rθ , the ray that passes through the point θ on
the unit circle in R2. Then given any distinct θ, φ ∈ S1, we have already seen that
π(Qθ ) 6= π(Qφ). Thus I is an injection, and c≤ |∂∞(Z

2)|.
For the second injection, recall that any geodesic ray can travel in at most two

directions. Hence, each ray corresponds to an infinite binary expansion. Let these
binary strings be mapped to the interval [0, 4) in the following way:

Let B : {0, 1}N→[0, 1] be the standard map from a binary expansion to the real
number it represents. So

B((ε1, ε2, ε3, . . . ))=
∞∑

n=1

εn

2n , where εn ∈ {0, 1} for all n.
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Now, for a quinary expansion,

( f1, f2, f3, . . . ) ∈ {0, 1, 2, 3, 4}N,

let m( f )=minn{ fn} as before. Then define a map N : G(Z2)→ [0, 4) by

N (( f1, f2, f3, . . . ))= m+ B(( f1−m, f2−m, f3−m, . . . )).

So for instance, N (0̄)= 0 and

N ((2, 3, 2, 3, 2, 3, . . . ))= 2+ B((0, 1, 0, 1, 0, 1, . . . ))= 2+ 1
3 =

7
3 .

It is easy to see (by uniqueness of binary expansions for the fractional part) that
this map is injective from G(Z2)→ [0, 4). Thus |G(Z2)| ≤ c, so |∂∞(Z2)| ≤ c.

It follows that |∂∞(Z2)| = c. �

Proposition 3.4. ∂∞(Z2) possesses the trivial topology.

In other words, the only open sets in the visual boundary are the entire set and
the empty set.

Proof. By the quotient topology on G/∼, a set U ⊂ ∂∞(Z2) is open exactly when
its preimage π−1(U ) is open in G. Assume that U is some nonempty open set in
∂∞(Z

2). Then, W = π−1(U ) is also open and nonempty. We wish to show that U
is the entire set. It suffices to show that given any g ∈ G, π(g) ∈U .

As W is open and nonempty, there is some geodesic ray f in W . Consider any
ray g such that m(g)=m( f ). (This means that g and f are in the same quadrant.)
We will show that given any compact set K ⊂ [0,∞) and ε > 0, g has some
representative gs ∈ [g] such that gs ∈ BK ( f, ε)⊂W . It will follow that π(g) ∈U .

Let the compact set K = [a, b] and ε > 0 be given, and let s = dbe ∈ Z. Then
define the representative gs of g as follows:

gs(t)=
{

f (t) for t ≤ s,
f (s)+ g(t)− g(s) for t > s,

where the sum is group addition on Z2.
To clarify, consider the infinite binary expansion of gs . It is identical to that of f

for the first s steps, so d(gs(t), f (t))=0 for t≤ s; afterwards it is identical to that of
g, so gs∼ g. This gives a sequence of rays asymptotic to g, in a neighborhood of f :
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Clearly, gs ∈ BK ( f, ε), so π(gs) ∈ π(BK ( f, ε)). Then since BK ( f, ε) ⊂ W ,
π(gs) ∈ U . Finally, since gs ∼ g, π(gs) = π(g). We conclude that π(g) ∈ U and
g ∈W .

Recall that f and g are in the same quadrant because m( f ) = m(g) = m. In
particular, we see that the axis geodesic h = (m+ 1) ∈ BK ( f, ε), where we take
addition modulo 4.

We now take advantage of the fact that W is open. As h ∈ W , there must
exist some ε′ such that BK (h, ε′) ⊂ W . Then let j = (m+ 2) and let js be the
representative function as above, so that js ∈ BK (h, ε′). Therefore π( j) ∈ U .
Consequently, all axis directions are in U . By the same argument, then, we include
in the set U the images of all other nonaxis geodesic rays g for which m(g) 6=m( f ).
We can then conclude that given any geodesic ray g ∈ Z2, π(g) ∈U .

By assuming only that U was open and nonempty, we showed that U contains
all elements of ∂∞(Z2). We conclude that ∂∞(Z2) has the trivial topology. �

4. Further comments

Informally speaking, if we “zoom out” from Z2 by rescaling distances to be smaller
and smaller, we limit to R2 with the `1-norm. (Formally, this construction is called
the asymptotic cone, and Cone(Z2) = (R2, `1).) We expect the same method of
proof from above to show that the visual boundary of (R2, `1) is an uncountable
set with the trivial topology. And in fact, this is true.

Proposition 4.1. ∂∞((R2, `1)) has the cardinality c, and the trivial topology.

Proof. Geodesic rays are no longer restricted to vertical and horizontal segments,
but they have a similar property. Let us first discuss geodesic rays that enter the
interior of the first quadrant. Let f (t) = ( f1(t), f2(t)) be a geodesic ray from
the origin, passing through the point f (t0) = (x, y), with x, y > 0. Then for all
t > t0, f1(t) ≥ x , and f2(t) ≥ y. In other words, once a geodesic begins to move
in a north-westerly direction, it can never again move toward the south or east (see
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figure). A similar property, of course, also holds in the other quadrants.

There are more geodesic rays in this space than in Z2. But after we take the
quotient, we get the same boundary. We will appeal to the Axiom of Choice.
Certainly, |∂∞((R2, `1))| is at least c, since each geodesic ray in Z2 includes as
a geodesic ray into (R2, `1). Now, for each equivalence class of asymptotic rays
[ f ] ∈ ∂∞((R2, `1)), choose a representative geodesic ray, f . Then, as before,
consider the image of this ray under the quasi-isometry from R2 onto Z2, and
connect vertices by horizontal and vertical segments to get Q f , a geodesic ray
in Z2. Identifying Q f and Qg with their images in R2 by inclusion, we see that
f ∼ Q f and g∼ Qg, so the map from ∂∞((R

2, `1)) to ∂∞(Z2) is an injection. This
establishes that |∂∞((R2, `1))| = c.

Next, we use an identical construction to the one above to show that the topology
is trivial.

Let f, g be any arbitrary geodesic rays in the closure of quadrant I . We will
show that given any compact K ⊂ [0,∞) and ε > 0, g has a representative gb ∈ [g]
such that gb ∈ BK ( f, ε).

Let the compact set be K = [a, b] and ε > 0 be given. Then define the repre-
sentative gb of g as follows:

gb(t)=
{

f (t) for t ≤ b,
f (b)+ g(t)− g(b) for t > b.

where now the sum is component addition on R2.
Just as before, this argument establishes that any open set containing a single

ray in quadrant I contains all rays in quadrant I , and can be extended to show that
any nonempty open set contains every ray. �

What’s wrong with this state of affairs? This boundary completely fails to be
Hausdorff: we can’t separate any two directions at infinity. Convergence to a par-
ticular point in the boundary is meaningless.

To see some of the consequences of this finding, consider that a large class
of groups have an undistorted free abelian subgroup; that is, a quasi-isometric



116 KYLE KITZMILLER AND MATT RATHBUN

embedding of Z2 ∼= 〈a, b〉, called a quasi-flat. These arise whenever two elements
commute and there is no “shortcut” to words in those elements coming from a
relator. Besides the obvious extension of the same argument to Zn , quasi-flats
can also be found in right-angled Artin groups, as well as mapping class groups
of surfaces. Papasoglu [1998] shows that every semi-hyperbolic group which is
not hyperbolic contains such a quasi-flat. This includes fundamental groups of
compact manifolds of nonpositive curvature. So this note shows, in particular, that
any metric space containing a quasi-flat will have a bad boundary.
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An observation on generating functions
with an application to a sum of secant powers

Jeffrey Mudrock

(Communicated by Nigel Boston)

Suppose that P(x), Q(x) ∈ Z[x] are two relatively prime polynomials, and that
P(x)/Q(x)=

∑
∞

n=0 an xn has the property that an ∈ Z for all n. We show that if
Q(1/α)= 0, then α is an algebraic integer. Then, we show that this result can be
used to provide a solution to Problem 11213(b) of the American Mathematical
Monthly (2006).

1. Introduction and statement of results

This paper has two goals. One is to prove this general observation:

Theorem 1. Suppose P(x), Q(x) ∈ Z[x] are relatively prime polynomials with
integer coefficients and their quotient is the generating function of an integer series:

P(x)
Q(x)

=

∞∑
n=0

anxn, with an ∈ Z for all n.

Then the inverse of any root of Q is an algebraic integer.

The second goal is to apply this result to solve a problem from the American
Mathematical Monthly:

Problem 11213 [AMM 2006]. Proposed by Stanley Rabinowitz, Chelmsford, MA.
For positive integers n and m with n odd and greater than 1, let

S(n,m)=
(n−1)/2∑

k=1

sec2m
(

kπ
n+ 1

)
.

(a) Show that if n is one less than a power of 2, then S(n,m) is a positive integer.

(b*) Show that if n does not have the form of Part (a), then there exists a positive
integer m such that S(n,m) is not an integer.

MSC2000: primary 11R04; secondary 11R18.
Keywords: algebraic number theory, generating functions, secant function.
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The * indicates that no solution was known to the Monthly editors. (A solution
to (a) was provided in [AMM 2008].) We solve part (b) of Problem 11213 by
proving the contrapositive:

Theorem 2. Let n > 1 be an odd integer. If , for every positive integer m, the sum

S(n,m)=
(n−1)/2∑

k=1

sec2m kπ
n+ 1

has an integer value, then n+ 1 is a power of 2.

A similar result to Theorem 1 (but less general) had appeared before in the
Monthly, as a problem proposed and solved by Michael Larsen:

Problem E 2993 [AMM 1983; 1986]. Let α1, α2, . . . , αn a complex numbers such
that

∑n
1 α

m
i is an integer for every positive m; then the polynomial

∏n
1(x−αi ) has

integer coefficients.

Here is an outline of the paper. After recalling the necessary concepts from
algebraic number theory in Section 2, we prove in Section 3 two intermediate
results: S(n,m) is always rational, and the generating function of the sequence
{S(n,m)}m>0 (for fixed odd n > 0) has integer coefficients. In Section 4 we prove
Theorem 1, from which Theorem 2 follows easily given the intermediate results.

2. Background

We review some basic algebraic number theory, which is carefully laid out in
[Stewart and Tall 2002], for example. (This citation will be abbreviated as [ST].)

An algebraic number is any zero of a polynomial with integer coefficients. An
algebraic integer is any zero of a monic polynomial with integer coefficients. The
set of algebraic numbers is a field, and the set of algebraic integers forms a ring
[ST, Theorems 2.1 and 2.9].

For example, if p is prime, ζp = e2π i/p is an algebraic integer since it is a zero
of the polynomial x p

− 1.
The minimal polynomial of an algebraic number α is the monic polynomial p(x)

with rational coefficients and the smallest possible degree such that p(α) = 0.
All polynomials of which α is a root are divisible by p. For example, r(x) =
x p−1
+ x p−2

+ · · ·+ x + 1= (x p
− 1)/(x − 1) is the minimal polynomial of ζp.

Definition. If K is a field contained in L , we say that L is a field extension of K ,
and we denote this by L : K .

If K is a field and α is an algebraic number let K (α) denote the smallest field
containing all the elements of K and α. One way to think about field extensions is
that if L :K is a field extension, then L has a natural structure as a vector space over
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K . The dimension of this vector space, which is called the degree, is represented
with [L : K ]. If [L : K ] is a number the field extension is called finite. If H , K ,
and L are fields such that K is a subset of L and H is a subset of K , then

[L : H ] = [L : K ][K : H ] (1)

[ST, Theorem 1.10].
In algebraic number theory field extensions of the form Q(α) are of interest.

If α is an algebraic number, then [Q(α) : Q] equals the degree of the minimal
polynomial of α [ST, Theorem 1.1]. A field K is called an algebraic number field
if [K :Q] is finite. If K =Q(α) and α is an algebraic number, then the ring of al-
gebraic integers in K is finitely generated as an abelian group [ST, Theorem 2.16].

Definition. If K = Q(α) is an algebraic number field of degree n, then there are
n distinct monomorphisms σ1, . . . , σn from K to C. The conjugates of an element
β ∈ K are the numbers σi (β) for all i between 1 and n.

The conjugates of an algebraic number α are the zeros of the minimal polyno-
mial of α. For example, if α = ζn = e2π i/n , where n > 0 is an integer, then α has
φ(n) conjugates in Q(α), where φ is the Möbius function. The conjugates of ζn

are all the elements in the set

{e2π ik/n
: (k, n)= 1}.

This information can be found in [Milne 2009, page 93].

Definition. Let K =Q(α) be an algebraic number field, and consider β ∈ K . The
trace of β in K , denoted by TrKβ, is the sum of all the conjugates of β. The norm
of β in K , denoted by NK (β), is the product of all of the conjugates of β.

Thus TrK ζp=−1 and NK (ζp)= (−1)p−1 for p prime, where K =Q(ζp). If one
notes that

ζn + ζ
−1
n

2
= cos

2π
n

and applies (1) one can see that the conjugates of α = cos 2π
n

in Q(α) are all the
elements in the set {

cos 2πk
n
: (k, n)= 1, 0< k < n/2

}
. (2)

A formal proof of this can be found in [Milne 2009, pages 95–96]. Also, as a
consequence of Theorem 2.6(a), Lemma 2.13, and Lemma 1.7 of [ST], if α is an
algebraic number its trace is rational; and as a consequence of Lemma 2.14 of the
same reference, if α is an algebraic integer its norm is an integer.
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3. Intermediate results

Lemma 3. If n > 1 is odd and m ≥ 1, the sum S(n,m) of Theorem 2 is a rational
number.

Proof. We make use of the trigonometric identity sec2 x = 2
cos(2x)+1

to write
sec2m x = f (cos 2x), where

f (x) :=
( 2

x+1

)m
.

Then, dropping m from the notation and introducing N = n+ 1 for convenience,
we can rewrite our sum as∑

0<k<N/2

s(k), where s(k) := f
(

cos 2πk
N

)
. (3)

We assume at first that N/2 is an odd prime. All the s(k) then lie in the extension
K =Q(cos 2π/N ), as follows from the characterization (2) (with n in that formula
equal to N here). More precisely, if k is odd, cos 2πk/N is a conjugate of cos 2π/N
in K . If k is even, cos 2πk/N equals−cos 2πk ′/N , for k ′= N/2−k odd; therefore
it is a conjugate of −cos 2π/N . Either way, cos 2πk/N lies in K , and therefore
so does s(k), since f is a rational function.

The operation of taking conjugates commutes with applying f (monomorphisms
preserve sums, products and inverses, and fix the numbers 1 and 2). Putting this
together with the previous paragraph, we conclude that half of the s(k) (those where
k is odd) make up the conjugates in K of s(1), while the other half make up the
conjugates of s(2) (taking k = 2 as a representative of the even k’s). It follows that

N/2−1∑
k=1

s(k)= TrK s(1)+TrK s(2)= TrK f
(

cos
2πk
N

)
+TrK f

(
cos

2× 2πk
N

)
.

Thus S(n,m) is the sum of two traces of algebraic numbers, and so rational.
Now let N/2 be arbitrary. Our strategy is the same: we partition the values of

k according to their gcd with N . Let d1, . . . , dl be all the divisors of N apart from
N and N/2, and define

Di :={k :gcd(k,N )=di , 0<k<N/2}={di j :gcd( j,N/di )=1, 0< j<N/(2di )}.

The Di are disjoint, and together they account for all the k in the sum (3). Moreover,∑
k∈Di

s(k)=
∑

j :gcd( j,N/di )=1
0< j<N/(2di )

f
(

cos
2π j
N/di

)
= TrQ(cos 2π

N/di
) f
(

cos
2π

N/di

)
,

where the last equality follows from the same reasoning used earlier for k odd (with
N replaced by N/di ). We have expressed S(n,m) as a sum of traces of algebraic
numbers, which means it is rational. �
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This result allows us to prove that the generating function for the sequence
{S(n,m)}m>0 (for fixed odd n > 0) is a rational function.

Lemma 4. If n > 1 is odd, m ≥ 1, and

Fn(x)=
∞∑

m=0

S(n,m)xm,

then there exist P(x), Q(x) ∈ Z[x] such that Fn(x)= P(x)/Q(x).

Proof. Using the formula for the sum of a geometric series, we write

Fn(x)=
∞∑

m=0

( (n−1)/2∑
k=1

sec2m kπ
n+ 1

)
xm
=

(n−1)/2∑
k=1

1

1− x sec2 kπ
n+1

,

so that

Q(x)=
(n−1)/2∏

k=1

(
1− x sec2 kπ

n+ 1

)
.

We will show that Q(x) is a polynomial with rational coefficients. Set

bk := sec2 kπ
n+ 1

,

where 1≤ k≤ (n−1)/2. Let si be the sum of the products of each i-element subset
of the set {b1, b2, . . . , b(n−1)/2} (in other words, si is the i-th elementary symmetric
polynomial applied to the bi ). The coefficient of x i in Q(x) is (−1)i si . Also, let

pr :=

n∑
k=1

br
k .

The Newton–Girard formulas tell us that

pi − s1 pi−1+ s2 pi−2+ · · ·+ (−1)i−1si−1 p1+ (−1)i isi = 0,

for all 1 ≤ i ≤ (n − 1)/2. It is clear that pi is rational for all i by Lemma 4. An
easy induction argument implies that si is rational for all i . Since the coefficients of
Q(x) can be expressed in terms of the si , we see that Q(x) has rational coefficients.
Thus P(x)= Fn(x)Q(x) has rational coefficients. The desired result follows. �

Lemma 5. Suppose that a and b are algebraic numbers, and

F(x)=
a

1− bx
=

∞∑
n=0

anxn.

If an is an algebraic integer for all n, then b is an algebraic integer.
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Proof. The assumption implies that an = abn . We know that abn is an algebraic
integer for all n, and so lies in the ring of algebraic integers of the field K =Q(b).
This ring is finitely generated as an abelian group. Suppose that it is generated by
{v1, v2, . . . , vl}. Then bn must be in the finitely generated abelian group generated
by {v1/a, . . . , vl/a} for all n. Lemma 2.8 of [ST] states that a complex number
θ is an algebraic integer if and only if the additive group generated by all powers
1, θ, θ2, . . . is finitely generated. Thus, b is an algebraic integer. �

Now, we wish to expand upon the ideas presented in Lemma 5.

Definition. A sequence {an} of algebraic numbers has a bounded denominator if
there exists a positive integer m such that man is an algebraic integer for all n.

Lemma 6. Let

F(x)=
∞∑

n=0

anxn,

where {an} is a sequence with bounded denominator. Suppose p(x) is a polynomial
whose coefficients are algebraic numbers and let

F(x)p(x)=
∞∑

n=0

bnxn.

Then, the sequence {bn} has bounded denominator.

Proof. This follows from the fact that the algebraic numbers form a subfield of
the complex numbers and the fact that given an algebraic number a there exists a
positive integer n such that na is an algebraic integer. �

Lemma 7. Let ζ4p = e2π i/4p, where p is an odd prime. Then

NQ(ζ4p)(ζ4p + ζ
−1
4p )= p2.

Proof. First note that
ζ4p + ζ

−1
4p = 2 cos π

2p
,

and recall the characterization of the conjugates of cos 2π/n given in (2). We have

NQ(ζ4p)(ζ4p + ζ
−1
4p ) =

∏
(k,4p)=1
1≤k≤4p

(
e

2π ik
4p + e

−2π ik
4p

)
= ζ

−φ(4p)2p
4p

∏
(k,4p)=1
1≤k≤4p

(
e

4π ik
4p + 1

)
.

Now, we know that

NQ(ζ2p)(ζ2p + 1)=
∏

(k,2p)=1
1≤k≤2p

(e
2π ik
2p + 1).
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This implies

ζ
−φ(4p)2p
4p

∏
(k,4p)=1
1≤k≤4p

(
e

4π ik
4p + 1

)
= NQ(ζ2p)(ζ2p + 1)2(e−2π i ).

Now, the minimal polynomial of ζ2p is the same as that of −ζp. Furthermore,

r(x)= x p−1
+ x p−2

+ · · ·+ x + 1=
p−1∏
k=1

(x − ζ k
p).

So, NQ(ζp)(1− ζp)= r(1)= p since the minimal polynomial of ζp is r(x). Thus,

NQ(ζ2p)(ζ2p + 1)2(e−2π i )= NQ(ζp)(1− ζp)
2
= p2,

as desired. �

Lemma 8. If , for all k satisfying 1 ≤ k ≤ (n − 1)/2, the value of sec2 kπ
n+1

is an
algebraic integer, then n+ 1 is a power of two.

Proof. Assume that n+ 1 is not a power of two. Let p be an odd prime factor of
2(n + 1). Since n is odd, 2(n + 1) is a multiple of 4 and so 4p divides 2(n + 1).
Let k = 2(n+ 1)/(4p), so 2(n+ 1)/k = 4p. Then

sec2 kπ
n+ 1

=

(
2

ζ k
2(n+1)+ ζ

−k
2(n+1)

)2

=

(
2

ζ4p + ζ
−1
4p

)2

.

Now, from the previous lemma, NQ(ζ4p)(ζ4p + ζ
−1
4p )= p2. This implies

NQ(ζ4p)

(
2

ζ4p + ζ
−1
4p

)2

=
22φ(4p)

p4 .

Then, since p is an odd prime we know that 22φ(4p)/p4 is not an integer. This
means that with the chosen k, sec2 kπ/(n + 1) is not an algebraic integer. This
proves the desired result. �

4. Proof of the theorems

Proof of Theorem 2. This is a more general version of Lemma 5. Let α1, α2, . . . , αn

be all the numbers whose reciprocals are zeros of Q(x). Then F(x) has a partial
fraction expansion whose terms are of the form

Ai,l

(1−αi x)l
,
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plus a polynomial part. Write

Q(x)=
n∏

i=1

(1−αi x)ki .

Let j be the largest positive integer such that in the partial fraction decomposition
of F(x) the term Ai, j/(1−αi x) j is nonzero. Clearly j > 0, since P(x) and Q(x)
are relatively prime. Now, let

Qi (x)=
Q(x)

(1−αi x)ki− j+1 .

The highest power of (1−αi x) that divides Qi (x) is clearly j − 1.
We have

F(x)Qi (x)=
∞∑

n=0

bnxn.

Then, by Lemma 6, {bn} has a bounded denominator. Now, we will consider the
effect of multiplying F(x) and Qi (x) by considering what happens to each term
in the partial fraction expansion of F(x). With the exception of the term

Ai, j

(1−αi x) j ,

Qi (x) times a term in the partial fraction expansion of F(x) is a polynomial of
finite degree. Now, one can see that

Qi (x)
Ai, j

(1−αi x) j =
Qi (x)

(1−αi x) j−1

Ai, j

(1−αi x)
.

It is clear that Qi (x)/(1−αi x) j−1 is a polynomial. Thus,

F(x)Qi (x)= q(x)+
Di

1−αi x
,

where q(x) is a polynomial and Di is some algebraic number. So, we can say that
for sufficiently large n, bn = Diα

n
i where Di and bn are algebraic numbers. Then,

by Lemma 5, αi is an algebraic integer. �

Proof of Theorem 1. Suppose S(n,m) is an integer for all m > 0. By Lemma 4,

Fn(x)=
∞∑

m=0

( (n−1)/2∑
k=1

sec2m kπ
n+ 1

)
xm
=

(n−1)/2∑
k=1

(
1

1− x sec( kπ
n+1)

)
is a rational function. Hence, Fn(x) = P(x)/Q(x) where P(x), Q(x) ∈ Q[x].
Theorem 1 now implies that sec2(kπ/(n+1)) is an algebraic integer for all k with
1≤ k ≤ (n−1)/2. According to Lemma 8, this means n+1 is a power of two. �
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Clique-relaxed graph coloring
Charles Lundon, Jennifer Firkins Nordstrom, Cassandra Naymie,

Erin Pitney, William Sehorn and Charlie Suer

(Communicated by Vadim Ponomarenko)

We define a generalization of the chromatic number of a graph G called the k-
clique-relaxed chromatic number, denoted χ (k)(G). We prove bounds on χ (k)(G)
for all graphs G, including corollaries for outerplanar and planar graphs. We
also define the k-clique-relaxed game chromatic number, χ (k)g (G), of a graph G.
We prove χ (2)g (G) ≤ 4 for all outerplanar graphs G, and give an example of an
outerplanar graph H with χ (2)g (H)≥ 3. Finally, we prove that if H is a member
of a particular subclass of outerplanar graphs, then χ (2)g (H)≤ 3.

1. Introduction

The chromatic number of a graph G, denoted χ(G), is the least number of colors
required to color the vertices of G such that adjacent vertices receive different
colors. The study of this characteristic of graphs is interesting in itself, and several
extensions have also been explored. For example, the k-relaxed chromatic number
of a graph G, denoted χ k(G), is the least number of colors necessary to color
the vertices of G such that each vertex is adjacent to at most k vertices of the
same color. Note that χ0(G) = χ(G). This parameter has been studied in many
papers, including [Cowen et al. 1986; 1997; Eaton and Hull 1999]. In this paper
we introduce a relaxation to vertex coloring which forbids monochromatic (k+1)-
cliques, where a k-clique is a set of k pairwise-adjacent vertices.

Another area of research branching from graph coloring is competitive graph
coloring. Two players, Alice and Bob, take turns (with Alice going first) coloring
uncolored vertices of a graph G with legal colors from a set X of m colors, where
the definition of a legal color for a vertex varies depending on the version of the
game. In the standard game [Bodlaender 1992], a color α ∈ X is legal for an
uncolored vertex u if u has no neighbors already colored α. Alice wins this game
if all vertices of G are eventually colored. Bob wins when there is an uncolored

MSC2000: 05C15.
Keywords: competitive coloring, outerplanar graph, clique, relaxed coloring.
Partially supported by NSF grant DMS 0649068.
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vertex for which no legal color exists. The least m such that Alice has a winning
strategy for this game is called the game chromatic number of G, and is denoted
χg(G). In the k-relaxed version of the game [Chou et al. 2003; Dunn and Kierstead
2004a; 2004b; 2004c; He et al. 2004], a color is legal for a vertex if it does not result
in any vertex with more than k neighbors of the same color. Said differently, a color
α ∈ X is legal for an uncolored vertex u if once u is colored α, for every β ∈ X , the
subgraph H induced by all vertices colored β satisfies 1(H)≤ k, where 1(H) is
the maximum degree of H . Alice wins if all the vertices of G are eventually col-
ored. Bob wins if there is at least one uncolored vertex in G with no legal color. The
least m such that Alice has a winning strategy for this game is called the k-relaxed
game chromatic number of G, denoted χk

g(G). We will show how competitive
coloring can be integrated with the definition of a clique-relaxed coloring.

2. Clique-relaxed coloring

A coloring of a graph G is a proper k-clique-relaxed coloring if G has no monochro-
matic (k+1)-cliques. For any graph G, the k-clique-relaxed chromatic number of
G, denoted χ (k)(G), is defined as the least number of colors that can be used to
color the vertices of a graph G such that if H is a subgraph induced by one of the
color classes, then ω(H) ≤ k, where ω(H) is the size of the largest clique in H .
Notice that χ (1)(G) = χ(G) for all graphs G, and more generally that for every
positive integer k, we have that χ (k)(G)≤ χ k−1(G). The following theorem gives
an upper bound for the k-clique-relaxed chromatic number of a graph G in terms
of the standard chromatic number of G.

Theorem 1. Let G be a graph. Then χ (k)(G)≤
⌈
χ(G)

k

⌉
for any positive integer k.

Proof. Let G be a graph with χ(G) = m. Then G has a proper m-coloring. Let k
be a positive integer. We know that there are unique nonnegative integers q and r ,
r < k, such that m = qk+r . We can thus divide the m colors into q groups of size
k and one of size r if r 6= 0. This gives dm/ke = n groups. Let A1, A2, . . . , An be
these groups of colors. Now, using the proper m-coloring, we color a vertex v with
a color βi if c(v) ∈ Ai , where c(v) denotes the color of v. The colors used in this
new coloring are β1, β2, . . . , βn . Thus n colors are used. Notice that the vertices
of any (k+1)-clique in the proper m-coloring must have been colored using k+1
different colors, and any set of k+1 colors from the proper m-coloring must be in
at least two groups Ai and A j where i 6= j . So in the new coloring, the vertices of
any (k+1)-clique must include at least two colors. Therefore, the new coloring is
a proper k-clique-relaxed coloring with n colors. So χ (k)(G)≤ n = dχ(G)/ke. �

Using known characteristics of outerplanar and planar graphs it is easy to ap-
ply the result in Theorem 1 to these classes of graphs. By the 2-degeneracy of
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outerplanar graphs, χ(G) ≤ 3 for all outerplanar graphs G, and by the four-color
theorem [Appel and Haken 1976], χ(H) ≤ 4 for all planar graphs H . We then
have the following corollary.

Corollary 2. If G is an outerplanar graph, then

χ (2)(G)≤ 2 and χ (k)(G)= 1 for k ≥ 3.

Similarly, if H is a planar graph, then

χ (2)(H)≤ 2, χ (3)(H)≤ 2, and χ (k)(H)= 1 for k ≥ 4.

Observe that K3 is an outerplanar graph with χ (2)(K3)= 2, since if every vertex
in K3 is colored α, there is a 3-clique in the subgraph induced by the color α.
Similarly, K4 is a planar graph with χ (2)(K4)= 2 and χ (3)(K4)= 2, Since if every
vertex in K4 is colored α, there is a 4-clique and four 3-cliques in the subgraph
induced by the color α.

We note that our discussion of clique-relaxed coloring can be reframed within
the context of hypergraph colorings. For a given graph G we define the hypergraph
H= (V, E), where V =V (G) and E is the set of hyperedges induced by the (k+1)-
cliques in G. In this way, k-clique-relaxed coloring in G is equivalent to standard
hypergraph coloring in H . However, for the simplicity of our arguments, we will
remain within the context of graphs rather than hypergraphs.

3. Clique-relaxed coloring game

A natural extension of this relaxed coloring number is its application to competitive
graph coloring. The k-clique-relaxed n-coloring game on a graph G is between
two players, Alice and Bob, who take turns coloring uncolored vertices of G with
colors from a set X of n colors. A color α ∈ X is legal for an uncolored vertex u
if coloring u with α does not result in a monochromatic (k + 1)-clique. At each
step the players must color an uncolored vertex with a legal color. As before with
the k-relaxed coloring game, we can restate this in terms of the subgraphs induced
by the color classes. A color α is legal for u if once u is colored α, for every
β ∈ X , the subgraph H induced by the vertices of color β satisfies ω(H) ≤ k.
Alice always colors first, and she wins the game when all the vertices are colored.
Hence, Bob wins when there is at least one uncolored vertex in G with no legal
color. The k-clique-relaxed game chromatic number of G, denoted χ (k)g (G), is the
least n such that Alice has a winning strategy in the k-clique-relaxed n-coloring
game on G.

Notice that χ (1)g (G)=χg(G) for all graphs. Also, since outerplanar graphs have
maximum clique size at most three, χ (k)g (G)= 1 for all outerplanar graphs G and
k ≥ 3. Therefore, we will be concerned only with the 2-clique-relaxed game on



130 LUNDON, NORDSTOM, NAYMIE, PITNEY, SEHORN AND SUER

v

u

v2

v1

v3

u1

u3

v4

u2

Figure 1. Alice will create trunks at the vertices v and u.

outerplanar graphs. Before proving an upper bound for the 2-clique-relaxed game
chromatic number of outerplanar graphs, we will reprove Lemma 1 of [Guan and
Zhu 1999] which is key to Alice’s strategy.

The separator strategy on a tree T is defined as follows. Let c(v) denote the
color of a vertex v. At any point in the coloring game on T if a vertex v is colored
and has degree d , Alice will imagine vertex v is replaced by d vertices, all colored
c(v), where each of these d vertices is incident with exactly one edge that was
incident with v. We call these partially-colored subgraphs trunks. For example,
consider the partially-colored tree on the left side of Figure 1. The vertices v and
u are colored, so Alice creates trunks at these vertices as shown on the right side
of the figure.

Lemma 3. Using the separator strategy, Alice can ensure that after each of her
turns each trunk has at most two colored vertices.

Proof. Let T be a tree. It is clear that the property holds after Alice’s first turn.
Suppose this holds after Alice’s k-th turn, and Bob colors a vertex u on a trunk.
So at the end of Bob’s turn there is at most one trunk with more than two colored
vertices. If such a trunk exists, it is the trunk with vertex u, and this trunk has
three colored vertices. If u lies on the path between the other two colored vertices,
then according to Alice’s view of the game, this trunk will be broken into two
trunks, each with two colored vertices. Then, if possible, Alice will color on a
trunk with only one colored vertex. If there are no such trunks, she can color a
vertex on the distinct path between two colored vertices within a trunk with two
colored vertices, separating the trunk at the vertex she just colored. If u does not
lie on this path, Alice can color the unique vertex at which the paths between the
three colored vertices intersect. Call this vertex v. As she is using the separator
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strategy, she then separates the unique trunk containing v of T at v into d trunks
where d = deg(v). Now each of these d trunks has at most two colored vertices.

Suppose, instead, that Bob colors in a trunk with only one colored vertex. Then
Alice plays as above in the case when Bob colored on the path between two colored
vertices. Thus, in either case, the property holds after Alice’s (k+ 1)-th turn. �

Theorem 4. Let G be an outerplanar graph. Then χ (2)g (G)≤ 4.

Proof. Let G = (V, E) be an outerplanar graph. Alice will use a strategy for the
2-clique-relaxed 4-coloring game on G adapted from [Guan and Zhu 1999]. Alice
begins by creating auxiliary graphs G ′ and T which she will use to determine which
vertex she colors in the game on G.

To create G ′ = (V ′, E ′), Alice adds edges to G so that G ′ is maximally outer-
planar. Notice that V = V ′, and E ⊆ E ′. Guan and Zhu [1999] showed that for
every maximally outerplanar graph, there is a linear ordering L = v1v2 . . . vn of
the vertices of G ′ such that

• v1 and v2 are adjacent,

• v1v2 is on the outer face of G ′, and

• for all i ≥ 3, vi is adjacent to exactly two vertices va(i) and vb(i) such that
a(i) < i and b(i) < i .

We call va(i) and vb(i) the major parent and minor parent of vi , respectively, where
a(i) < b(i).

To create T = (VT , ET ), Alice deletes all edges of the form vivb(i). In other
words, for each vertex u she deletes the edge between u and its minor parent.
According to Lemma 1 of [Guan and Zhu 1999], each vertex is the minor parent
of at most two vertices. Since each vertex also has at most one minor parent,
every vertex in T is incident to at most three deleted edges from G ′. Notice that
VT = V ′ = V and ET ⊆ E ′.

We can see in T that v1 and v2 are still adjacent, and now for all i ≥ 3, vi is
adjacent to exactly one vertex with a lower index, namely its major parent va(i). So
T is a tree. Alice will use the separator strategy on T to choose which vertex she
will color. Let v be the vertex she chooses. She will look at the partially colored
graph G and choose a legal color for v. We show that in the 2-clique-relaxed
4-coloring game, v will always have a legal color.

We proved in Lemma 3 that by using the separator strategy, Alice can ensure
that after her turn each trunk has at most two colored vertices. After Bob’s turn
there may be one trunk with three colored vertices, so v is adjacent to at most
three colored vertices in T . Since, as noted earlier, each vertex is incident to at
most three deleted edges from G ′, the vertex v may be adjacent to three additional
colored vertices in G ′. Since ET ⊆ E ′, v is adjacent to at most six colored vertices
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u3
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v

Figure 2. The vertex v is uncolorable in the 2-clique-relaxed 4-
coloring game.

in G ′. Also, because E ⊆ E ′, we know that v is adjacent to at most six colored
vertices in G. If v is uncolorable, then it must form a 3-clique with each of the
four color classes (see Figure 2). Thus, it must be adjacent to at least eight colored
vertices in G. Since v is only adjacent to six colored vertices, there is a legal color
for v and Alice can win the 2-clique-relaxed 4-coloring-game on G. �

We do not yet know if the above bound is sharp. The theorem that follows gives
an example of a graph G such that χ (2)g (G)≥ 3. In order to prove this we show that
Bob has a winning strategy in the 2-clique-relaxed 2-coloring game on G. This
means that Alice would need three or more colors to have a winning strategy on
G. We begin our proof with two lemmas which involve subgraphs of G.

Lemma 5. Let H be the partially colored graph in Figure 3, where c(v1)= c(v2),
c(v3) 6= c(v1), the vertices x , y, z, and w are uncolored, the color c(v1) is legal for
both x and z, and the color c(v2) is legal for both y and w. If H is a subgraph of
an outerplanar graph G at any point in the 2-clique-relaxed 2-coloring game on
G, then Bob has a winning strategy.

Proof. Assume v1 and v2 are colored α and v3 is colored β. If it is Bob’s turn
he can color either y or w with β. Vertex z can then be colored neither α nor β,
so Bob wins. Suppose instead that it is Alice’s turn. If she does not color z, then
either y or w is still uncolored after her turn (if not both). Suppose without loss of

v3

wz

v2

v1

x
y

Figure 3. Bob can win the 2-clique-relaxed 2-coloring game.
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v1 y

v2

x

Figure 4. Bob can win the 2-clique-relaxed 2-coloring game.

generality that y is uncolored. Then Bob can color y with β leaving z uncolorable.
If Alice does color z, she must color it β. Bob can then color x with α. Now y can
be colored neither α nor β, so Bob has a winning strategy. �

Lemma 6. Let H be the partially colored graph in Figure 4, where c(v1)= c(v2)=

α and all other vertices in the subgraph are uncolored. Suppose Alice and Bob
are playing the 2-clique-relaxed 2-coloring game on an outerplanar graph G with
colors α and β. If H is a subgraph of G and β is legal for both xand y, then Bob
has a winning strategy.

Proof. Assume v1 and v2 are colored α. If it is Bob’s turn he can color either x or
y with β, and by Lemma 5 Bob can win. If instead it is Alice’s turn, she can only
play on one side of the line of symmetry. If she colors a vertex on the side with x ,
Bob can color y with β; if she colors a vertex on the side with y, Bob can color x
with β. Either way, by Lemma 5, Bob can win. �

Theorem 7. There exists an outerplanar graph G such that χ (2)g (G)≥ 3.

Proof. Consider the graph in Figure 5. If Alice colors v with α, then Bob can color
u1, u2, or u3 with α, and, by Lemma 6, Bob can win. If Alice does not color v,

u1

u2 u3

v

Figure 5. Bob has a winning strategy on this graph.
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then Bob can color v on his first turn with α. On Bob’s second turn at least one
of the three identical trunks adjacent to v has no colored vertices since Alice has
only played twice. Suppose without loss of generality that the part containing u1

has no colored vertices. Bob can color u1 with α, and by Lemma 6 he can win. �

4. Family representation for outerplanar graphs

In this section, we present a representation for outerplanar graphs such that each
component of the graph is rooted, and its vertices are organized into generations.
Recall that a graph is outerplanar if and only if it has no K2,3 or K4 minor. Let
G be an outerplanar graph with m components, and let G1,G2, . . . ,Gm be the
components of G.

• For each Gi choose any vertex ri to be the root.

• Partition V (Gi ) into V i
0 , V i

1 , . . . , V i
k such that

V i
j = {x ∈ V (G) | d(x, ri )= j},

where d(x, ri ) is the distance between x and ri . Define V j =
⋃m

i=1 V i
j . Each

V j is the j -th generation of G.

Since the vertex set of any outerplanar graph can be partitioned according to
the distance of a vertex from a fixed root and the edge set remains unchanged, all
outerplanar graphs have a family representation.

Let v ∈ V j for some j ≥ 1. Then u is a parent of v if u ∈ V j−1 ∩ N (v), where
N (v) is the set of neighbors of v. Likewise, u is a child of v if u ∈ V j+1 ∩ N (v).
We call a vertex u a descendant of v if there is a shortest (nonempty) path from u
to the root that includes v. We note that if the following properties of the family
representation are true for each component of G, then they are true for G; thus, we
may assume that G is connected.

Proposition 8. All vertices in G have at most two parents.

Proof. Assume that a vertex x ∈ V j has three parents in V j−1. Note, j 6= 1 since V0

has only one vertex. Call the three parents a, b, and c. Let M = {Vi | i < j − 1}.
Clearly, G[M], the graph induced by M , is connected. The vertices a, b, and c
each have at least one parent in M . Let X ={a, b, c} and let Y ={x,G[M]}. These
bipartite sets and the edges that connect them form a minor of K2,3, contradicting
the fact that G is outerplanar. Thus, each vertex has at most two parents. �

Proposition 9. For each v ∈ V j , |N (v)∩ V j | ≤ 2.

Proof. Assume that a vertex x ∈ V j has three neighbors in V j . Call the three
neighbors a, b, and c. Let M = {Vi | i < j}. As in the previous proof, we see that
with X = {a, b, c} and Y = {x,G[M]}, we have a K2,3 minor, contradicting the
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fact that G is outerplanar. So, each vertex in the j-th generation has at most two
neighbors in the j-th generation. �

5. The coloring game on certain outerplanar graphs

It is known [Guan and Zhu 1999] that for the class G of outerplanar graphs, that

6≤max
G∈G

χg(G)≤ 7.

In this section we consider a specific subclass of outerplanar graphs for which we
can improve this upper bound. We consider outerplanar graphs for which there
exists a family representation such that each vertex u has at most one parent p(u).
This means that for each vertex v ∈ V (Gi ) there is a unique shortest path from v

to root ri . We call this class F. See Figure 6.
Alice will use an activation strategy to win the usual 6-coloring game and the

2-clique-relaxed 3-coloring game on graphs in F. At any point in the game, we
define U to be the set of uncolored vertices, and C to be the set of colored vertices.
Alice maintains a set of active vertices, A. Any colored vertex is automatically
active, and once a vertex is active it remains active. Therefore C ⊆ A.

Activation strategy: On Alice’s first turn, she colors a vertex in V0. Suppose Bob
colors vertex v ∈ V (Gi ).

(1) Search stage:
• If v is not a root and p(v) is uncolored, Alice begins activating vertices

along the shortest path from v to root ri . As she does this, there are four
possible cases for each vertex x she reaches.

– If x is active and uncolored, she lets u = x and moves to the coloring
stage.

– If x is inactive and is the root ri , she activates x , chooses u = x , and
moves to the coloring stage.

r

Figure 6. An example of a graph in F.
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– If x is inactive and p(x) is colored, she activates x , chooses u = x ,
and moves to the coloring stage.

– If x is inactive and p(x) is uncolored, she activates x and continues
up the path.

• If v is a root or p(v) is colored, Alice chooses an arbitrary uncolored
vertex u ∈ V j , where j is the least index such that V j has an uncolored
vertex, and moves to the coloring stage.

(2) Coloring stage:
• On each turn, Alice chooses a legal color for u.

We now prove an important lemma which will help bound the parameters of
interest.

Lemma 10. If Alice uses the activation strategy, at any point in the game any
uncolored vertex u has at most two active children.

Proof. Consider the case where u has no active children. The strategy ensures that
Alice will not color a descendant of any inactive vertex. Thus, if Alice activates a
child of u, it must be the direct result of Bob coloring a descendant of u. When
Alice activates a child of u, she activates u as well. Now consider Alice activating
a second child of u. Again, this must be a result of Bob coloring a descendant of
u by the argument above. After Alice activates the second child of u, she will take
action at u. Since u is active, Alice colors u. Therefore, an uncolored vertex u has
at most two active children. �

Theorem 11. For all graphs G in F, χg(G)≤ 6.

Proof. Consider an uncolored vertex u. Note that u has at most one parent p(u),
and by Proposition 9, u has at most two adjacent siblings, say u∗ and u′. See
Figure 7. It is easy to see that if Alice uses the activation strategy, it may be the
case that p(u), u∗, and u′ are all colored with u remaining uncolored. Since u
has at most two active children, it has at most two colored children. Therefore, u
has at most five colored neighbors. This means that Alice needs at most six colors
available to win the original game on graphs in F. �

Now we prove a similar result for the 2-clique-relaxed game. Recall that in
Theorem 4 and Theorem 7 we showed that

3≤max
G∈G

χ(2)g (G)≤ 4

for the class of outerplanar graphs G. With the following result, we provide an
improved upper bound for the class F.

Corollary 12. For all graphs G in F, χ(2)g (G)≤ 3.
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.  .  ..  .  .

p(u)

u∗
u

u′

Figure 7. An uncolored vertex u and its
neighbors.

u

Figure 8. The vertex u is
uncolorable in the 2-clique-
relaxed 3-coloring game.

Proof. Suppose Alice and Bob are playing the 2-clique-relaxed coloring game on
a graph in F with three colors. For Bob to win the game, he requires an uncolored
vertex u, with neighbors as in Figure 8. This would require that six of the neighbors
of u be colored while u remains uncolored. By the proof for Theorem 11, u has
at most five colored neighbors. Hence, three colors are sufficient for Alice to win
the 2-clique relaxed game on any graph in F. �

6. Future work

At present, we do not know whether the bounds in Theorem 11 and Corollary 12
are tight. In the case of the latter, it is clear that the graph in Theorem 7 is not in
F. Showing this bound is tight would require providing an example of a graph in
F such that Bob has a winning strategy with 2 colors. However, it may be the case
that Alice has a winning strategy with 2 colors. We are certain that the strategy
we have provided will not suffice; however, it is possible that a modification could
yield an upper bound of 2.

We now have an upper bound, χ (2)g (G) ≤ 4, for outerplanar graphs G and an
example of an outerplanar graph such that χ (2)g (G) ≥ 3. The next question is
whether there exists an outerplanar graph G such that χ (2)g (G) = 4. If there is,
then such an example must lie outside of the subclass F of outerplanar graphs. In
particular, Proposition 8 guarantees that such an example would require a vertex
with two parents.

Another area for further investigation is the clique-relaxed game chromatic num-
ber of planar graphs. All planar graphs have maximum clique size at most four.
For this reason, with a k-clique relaxation, where k ≥ 4, planar graphs can always
be completely colored with one color. The games of interest are then the 2- and
3-clique-relaxed games on planar graphs.

More broadly, as we noted earlier in Section 2, much of this work can be re-
framed in terms of hypergraph coloring. We have presented competitive coloring
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results for a specific class of hypergraphs. This could lead to more questions in the
area of competitive hypergraph coloring.
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Cost-conscious voters in referendum elections
Kyle Golenbiewski, Jonathan K. Hodge and Lisa Moats

(Communicated by Kenneth S. Berenhaut)

In referendum elections, voters are frequently required to register simultane-
ous yes/no votes on multiple proposals. The separability problem occurs when
a voter’s preferred outcome on a proposal or set of proposals depends on the
known or predicted outcomes of other proposals in the election. Here we inves-
tigate cost-consciousness as a potential cause of nonseparability. We develop a
mathematical model of cost-consciousness, and we show that this model induces
nonseparable preferences in all but the most extreme cases. We show that when
outcome costs are distinct, cost-conscious electorates always exhibit both a weak
Condorcet winner and a weak Condorcet loser. Finally, we show that preferences
consistent with our model of cost-consciousness are rare in randomly generated
electorates. We then discuss the implications of our work and suggest directions
for further research.

1. Introduction

In referendum elections, voters are often required to register simultaneous yes/no
votes on multiple proposals. Recent research demonstrates that the outcomes of
such elections can be unsatisfactory or even paradoxical. For example, Lacy and
Niou show that the winning outcome can be the last choice of every voter; they
argue that this and other troublesome behavior occurs because “referendum elec-
tions as currently practiced force people to separate their votes on issues that may
be linked in their minds” [Lacy and Niou 2000, page 6].

The phenomenon to which Lacy and Niou allude is known as the separability
problem [Brams et al. 1997]. What they and others have observed is that voter
preferences often contain interdependencies that cannot be expressed through the
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standard simultaneous method of voting in a referendum. In other words, a voter’s
preferences on a proposal or a set of proposals may depend on the outcome of
another proposal or a set of remaining proposals. Preferences that exhibit this kind
of interdependence are said to be nonseparable.

Separability has been studied in a variety of contexts, with much of the most
recent research focusing on the structure and effects of separable and nonseparable
preferences. Here we take a different approach by investigating one of the underly-
ing causes of nonseparability — namely, cost-consciousness within the electorate.

To illustrate, consider an election with multiple bond proposals, all compet-
ing for funds from the same tax base. In such an election, a voter who is cost-
conscious — that is, who desires to limit the total expenditure of public funds —
may vote no on a proposal that she supports in principle if she suspects that other
proposals are more likely to pass. In doing so, the voter is acting based on predic-
tions about the potential outcomes of these other proposals. If her predictions are
wrong, then her voting strategy may also be wrong, or at least less than optimal.
In other words, the voter’s cost-consciousness complicates the decisions she must
make about how to vote on each of the individual proposals. As we will see, these
complications can have disastrous effects on the desirability of election outcomes.

Our goal in this paper is to formalize and investigate the consequences of cost-
consciousness in referendum elections. Section 2 introduces a model of cost-
conscious voter preferences, which we use to show how cost-consciousness in-
duces nonseparability in voter preferences in Section 3. Section 4 demonstrates
the existence of Condorcet winning and losing outcomes in certain cost-conscious
electorates. Section 5 generalizes the original model by allowing voters to approve
of outcomes that exceed their ideal maximum cost, provided that certain condi-
tions are met. Section 6 explores the relative prevalence of cost-conscious voter
preferences in randomly generated electorates. Finally, Section 7 summarizes our
results and their implications.

2. Model for cost-conscious voters

For the purposes of our investigations, we assume the context of a referendum
election on a set Q of n ≥ 2 questions or proposals. Each potential outcome is
represented by an ordered n-tuple of zeros and ones, with 1 typically representing
passage of a proposal and 0 representing failure. We let X be the set of all 2n

possible election outcomes. For each q ∈Q, we let C (q) denote the cost of passing
question q , where C(q)∈R+. The total cost incurred by an election outcome x ∈ X
is then given by

C(x)=
n∑

q=1

xqC(q),
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where xq = 1 if question q passes in outcome x , and xq = 0 if question q fails to
pass in outcome x . For any subset S of Q, we let C(S) denote the cost of passing
all proposals in S; that is,

C(S)=
∑
q∈S

C(q).

In general, we assume that each voter’s preferences can be represented by a total
order on X . This assumption simplifies our analysis and is consistent with prior
research on the separability problem in referendum elections. We define a cost-
conscious voter v to be one who, in principle, supports all of the proposals in Q,
but in practice, wishes to limit total spending to some fixed amount Mv.

Definition 2.1. Let v be a voter whose preferences are represented by a total order
� on X . Then v is said to be cost-conscious if there exists some Mv > 0 (called
the cost ceiling for v) such that for each x , y ∈ X , the following axioms hold:

Axiom 1. If C(x),C(y)≤ Mv and C(y) > C(x), then y � x .

Axiom 2. If C(x) < C(y) and C(y) > Mv, then x � y.

Inherent in Definition 2.1 is the assumption that each voter derives a benefit from
each passed proposal that is directly proportional to its cost. In fact, we assume
that, for outcomes whose total cost is less than or equal to Mv, the total benefit
outweighs the total cost, giving a nonnegative net utility. Furthermore, the utility
of each outcome is an increasing function of its cost, provided that the cost does
not exceed Mv. Outcomes whose costs exceed Mv have negative net utility, with
the net utility decreasing as the cost increases further beyond Mv.

The sudden switch from positive to negative net utility creates a discontinuity
in the utility function of each voter at Mv. This discontinuity is reasonable, since
Mv marks a cost threshold beyond which outcomes can be thought of as being
substantially less attractive, impractical, or even completely unacceptable. For
instance, a consumer who has access to $40,000 of credit may attempt to purchase
a new car that has as many options as possible, provided that the total cost remains
at or below $40,000. Once the $40,000 threshold is exceeded, the consumer may
have to go to great lengths in order to purchase the vehicle, if it is even possible for
her to do so. In terms of negotiation theory, the $40,000 threshold can be viewed
as a resistance point — that is, a point beyond which the negotiator would rather
do nothing than incur further cost. We postulate that voters can have resistance
points for a variety of reasons, both practical and psychological. For instance, a
voter may simply be disinclined to approve any package of bond proposals whose
total cost exceeds $1 million.

In our initial investigations, we assume that cost ceilings are absolute. That is,
they cannot be exceeded without penalty for any reason. In Section 5, we relax this
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condition somewhat by allowing voters to exceed their cost ceilings when certain
conditions are met.

To illustrate Definition 2.1, suppose

|Q| = 3, C(1)= 200,
C(2)= 400, C(3)= 500.

Furthermore, suppose Mv=800 for some voter v. We note that of the eight possible
outcomes, only two have a total cost exceeding Mv— namely,

C(1)+C(2)+C(3)= 1100 and C(2)+C(3)= 900.

Thus, Axioms 1 and 2 induce the following ordering on the set of all possible
outcomes: 101 � 110 � 001 � 010 � 100 � 000 � 011 � 111. This ordering
can also be represented by a preference matrix Pv, as shown below. (For a more
detailed treatment of preference matrices, see [Bradley et al. 2005].)

Pv =



1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 1 1


Now, suppose v becomes more cost-conscious, decreasing Mv to 600. In this

case, the outcome 101, which has a cost of 700, is no longer the voter’s most
preferred outcome. In fact, it becomes the voter’s third to last choice. The new
induced order is 110 � 001 � 010 � 100 � 000 � 101 � 011 � 111, which
corresponds to the preference matrix

P ′v =



1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
1 0 1
0 1 1
1 1 1


.

Note that both Pv and P ′v are uniquely determined by Axioms 1 and 2, once
v’s cost ceiling and the proposal costs are specified. In particular, the axioms
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require each outcome whose cost exceeds Mv to be ranked lower than each out-
come whose cost does not exceed Mv. Axiom 1 requires the outcomes whose
costs do not exceed Mv to be ranked in descending order with respect to cost,
whereas Axiom 2 requires the outcomes whose costs do exceed Mv to be ranked
in ascending order with respect to cost. As long as no two outcomes have the same
cost, these requirements are enough to induce a unique ordering on X .

Theorem 2.2. Let v be a cost-conscious voter with cost ceiling Mv, and suppose
C(x) 6= C(y) for all distinct x, y ∈ X. Then there is exactly one total order on X
that is consistent with Axioms 1 and 2.

Note that Axioms 1 and 2 impose no restrictions on the ordering of outcomes
whose costs are equal. As such, the requirement that no two outcomes have the
same cost is essential to Theorem 2.2. To illustrate, consider the case in which
|Q| = 3, C(1)= 200, C(2)= 300, and C(3)= 500. Since C(001)=C(110), both
001� 110 or 110� 001 are permissible by Axioms 1 and 2, regardless of the value
of Mv. Thus the conclusion of Theorem 2.2 fails to hold in this case.

3. Cost-consciousness and separability

In Section 1, we suggested that cost-consciousness is a cause of interdependence, or
nonseparability, within voter preferences. In order to explore this assertion more,
we must first define more what it means for a voter’s preferences to be separable.
Although a more formal treatment of separability can be found in a variety of
sources (see, e.g., [Bradley et al. 2005]), the following informal definition will be
sufficient for our purposes.

Definition 3.1. Let S be a proper, nonempty subset of Q, and let v be any voter.
Then S is said to be separable with respect to v if v’s preferences over the out-
comes of questions within S do not depend on the known or predicted outcomes
of questions outside of S.

To illustrate this definition, consider again the preference matrix Pv (Section 2):

Pv =



1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 1 1


.

Because 101 � 001, we see that when the outcome on questions 2 and 3 is 01,
v prefers 1 to 0 (passage to failure) on question 1. However, if the outcome on
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questions 2 and 3 is 11, then v prefers 0 to 1 (failure to passage) on question 1
(since 011 � 111). In other words, voter v’s preference on question 1 depends
on the outcomes of questions 2 and 3. Because of this, we say that the set {1} is
nonseparable with respect to v. Note that, from a cost-consciousness standpoint,
the nonseparability of {1}with respect to v stems from the fact that v wants question
1 to pass if and only if the cost of the other passed proposals in the election is less
than or equal to 600.

In contrast, note that regardless of whether question 1 passes or not, voter v
always ranks the outcomes of questions 2 and 3 in the same order:

01� 10� 00� 11.

This is because, for each of these outcomes, the additional passage or failure of
question 1 has no bearing on whether the overall cost exceeds v’s cost ceiling of
800. Thus for outcomes on {2, 3} that cost less than 800 (01, 10, and 00), the
more costly outcomes are preferred (by Axiom 1), regardless of whether question
1 passes or not. All of these outcomes are preferred to 11, which always yields
a total cost of more than 800 — either with or without the passage of question 1.
Because v’s ordering of the outcomes on {2, 3} does not depend on the outcome
of question 1, we say that the set {2, 3} is separable with respect to v.

The observations from the previous example generalize easily to the following
theorem, whose proof is straightforward and thus omitted.

Theorem 3.2. Let S be a nonempty, proper subset of Q.

(i) If C(Q) > Mv, then S is separable only if C(S) > Mv.

(ii) If C(Q)≤ Mv, then S is always separable.

Theorem 3.2 guarantees that the preferences of cost-conscious voters will exhibit
some degree of nonseparability, except in two extreme cases. The first is when
each proposal, by itself, is more expensive than the voter’s cost ceiling. In this
case, the voter always prefers failure to passage. The second is when the total
cost of all proposals is less than or equal to the voter’s cost ceiling. In this case,
cost-consciousness is a moot point, and the voter always prefers passage to failure.
In every other case, the preferences of cost-conscious voters will exhibit at least
some nontrivial interdependencies. The fact that these interdependencies can cause
serious problems is illustrated by the following example.

Example 3.3. Consider again an election with |Q| = 3, C(1)= 200, C(2)= 400,
and C(3) = 500. Suppose that the electorate is comprised of three voters, v1, v2,
and v3, for whom Mv1 = 1000, Mv2 = 800, and Mv3 = 600. Then Axioms 1 and 2
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uniquely determine the voters’ preferences, as follows:

Pv1 =



0 1 1
1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
1 1 1


, Pv2 =



1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 1 1


, Pv3 =



1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
1 0 1
0 1 1
1 1 1


.

With these preferences, each question passes with two “yes” votes and one “no”
vote. However, that this outcome (111) is the least preferred choice of every voter.
This kind of paradoxical behavior was first observed by Lacy and Niou [2000],
but here we have shown it to result from a set of realistic voter preferences — in
particular, those consistent with a reasonable model of cost-consciousness.

4. Condorcet winners and losers

In Example 3.3, we saw how a collection of cost-conscious voters could inadver-
tently elect the worst possible outcome for each voter. It is interesting to note
that, in that example, the outcome 101 is a Condorcet winner. The fact that such
an outcome exists is not coincidental. In fact, the next theorem establishes that
when outcome costs are distinct (as in Theorem 2.2), the assumption of cost-
consciousness guarantees the existence of at least a weak Condorcet winner, which
we define as follows:

Definition 4.1. Let V be a nonempty collection of voters, and for each v ∈ V , let
�v denote a total order on X . An outcome w ∈ X is said to be a weak Condorcet
winner (with respect to V ) provided that for each y ∈ X with y 6= w,

|{v ∈ V : w �v y}| ≥ |{v ∈ V : y �v w}|.

Theorem 4.2. Suppose C(x) 6= C(y) for all distinct x, y ∈ X , and let V be any
nonempty collection of cost-conscious voters. Then X contains a weak Condorcet
winner with respect to V .

Proof. Let |Q| = n. Then X contains 2n distinct outcomes, which we denote by
x1, x2, . . . , x2n . Without loss of generality, assume that

C(x2n ) > C(x2n−1) > · · ·> C(x2) > C(x1).

Then x1=00 · · · 0 and x2n =11 · · · 1. We claim that there are 2n possible preference
matrices consistent with Axioms 1 and 2, each determined by the size of Mv in
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11 · · · 1
x2n−1

x2n−2

x2n−3
...

x4

x3

x2

00 · · · 0





x2n−1

x2n−2

x2n−3

x2n−4
...

x3

x2

00 · · · 0
11 · · · 1





x2n−2

x2n−3

x2n−4

x2n−5
...

x2

00 · · · 0
x2n−1

11 · · · 1


. . .



x2n−i+1

x2n−i

x2n−i−1
...

00 · · · 0
x2n−i+2

x2n−i+3
...

11 · · · 1


. . .



00 · · · 0
x2

x3

x4
...

x2n−3

x2n−2

x2n−1

11 · · · 1


P1 P2 P3 Pi P2n

Table 1. All possible preference matrices for cost-conscious vot-
ers, assuming distinct outcome costs.

comparison to the cost of the outcomes in X (see Table 1). In particular, if v is a
voter with preference matrix Pv and cost-ceiling Mv, then

Pv = P1 if Mv ≥ C(x2n ),

Pv = P2 if C(x2n ) > Mv ≥ C(x2n−1),

and in general,

Pv = Pi if C(x2n−i+2) > Mv ≥ C(x2n−i+1).

Let |V |=m, and let m j denote the number of voters in V with preference matrix
Pj . Now suppose that, for some i ,

1
m

i−1∑
j=1

m j < 0.5 and 1
m

i∑
j=1

m j ≥ 0.5.

Then, for each k = (i + 1), (i + 2), . . . , 2n , the outcome x2n−i+1 is ranked higher
than the outcome x2n−k+1 by at least 50% of voters in V . Also, for each k =
1, 2, . . . , (i − 2), (i − 1), the outcome x2n−i+1 is ranked lower than the outcome
x2n−k+1 by less than 50% of the voters in V . Since there must be a smallest i
for which (1/m)

∑i
j=1 m j ≥ 0.5, the corresponding outcome x2n−i+1 is a weak

Condorcet winner with respect to V . �

To illustrate that Theorem 4.2 can fail when two outcomes in X have the same
cost, consider the following example:

Example 4.3. Suppose that in an election with three proposals and three voters,
C(1) = C(2) = C(3) = 400, and Mv = 500 for each v. In this case, each voter’s
preference matrix could be one of 36 distinct options. Suppose that the voters’
preference matrices are as follows:
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Pv1 =



0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 0 1
1 1 0
1 1 1


, Pv2 =



0 1 0
1 0 0
0 0 1
0 0 0
1 1 0
0 1 1
1 0 1
1 1 1


, Pv3 =



1 0 0
0 0 1
0 1 0
0 0 0
1 0 1
1 1 0
0 1 1
1 1 1


.

Since the outcomes 001, 010, and 100 comprise the top three choices for each
voter, any Condorcet winner for this electorate must be one of these three outcomes.
However, since the societal preference among these outcomes is cyclic (100 defeats
001, which defeats 010, which defeats 100), there can be no Condorcet winner.

Just as a weak Condorcet winner is guaranteed to exist when outcome costs are
distinct, a weak Condorcet loser (defined analogously to Definition 4.1) can also
be found in these circumstances.

Theorem 4.4. Suppose C(x) 6= C(y) for all distinct x, y ∈ X , and let V be any
nonempty collection of cost-conscious voters. Then X contains a weak Condorcet
loser with respect to V . Furthermore, this weak Condorcet loser is always either
00 · · · 0 or 11 · · · 1.

Proof. By the same argument as in the proof of Theorem 4.2, each voter’s pref-
erences can be represented by one of the 2n matrices in Table 1. The preference
matrix P1 is the only preference matrix that has the outcome 00 · · · 0 ranked as the
least preferred outcome. Every other preference matrix has the outcome 11 · · · 1
ranked as the least preferred outcome. Consider three cases:

Case 1: Less than 50% of voters in V have preference matrix P1. In this case,
more than 50% of voters have preference matrices P2 through P2n . Since 11 · · · 1
is the least preferred outcome in P2 through P2n , 11 · · · 1 is ranked as the lowest
outcome by more than 50% of the voters in V . Thus 11 · · · 1 is a Condorcet loser.

Case 2: Exactly 50% of the voters in V have preference matrix P1. Then exactly
50% of the voters in V have preference matrices P2 through P2n . Since 00 · · · 0
is the least preferred outcome in P1 and 11 · · · 1 is the least preferred outcome in
P2 through P2n , 00 · · · 0 is ranked lower than every other outcome by 50% of the
voters and 11 · · · 1 is ranked lower than every other outcome by 50% of voters.
Thus, both 00 · · · 0 and 11 · · · 1 are weak Condorcet losers.

Case 3: More than 50% of the voters in V have preference matrix P1. Then,
since 00 · · · 0 is the least preferred outcome in P1, 00 · · · 0 is ranked as the lowest
outcome by more than 50% of voters in V . Thus, 00 · · · 0 is a Condorcet loser.

In each case, either 00 · · · 0 or 11 · · · 1 is a weak Condorcet loser, as desired. �
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It is worth noting that the proof of Theorem 4.4 depends only on the placement
of the outcomes 00 · · · 0 and 11 · · · 1 within the matrices P1, P2, . . . , P2n , and not
on the relative rankings of other outcomes. Since 00 · · · 0 and 11 · · · 1 will always
be the unique least expensive and most expensive outcomes, respectively, the proof
would still be valid even without the assumption of distinct outcome costs. Thus,
the conclusion of Theorem 4.4 holds even when some of these costs are equal.

5. Weak cost-consciousness

Up to this point, we have assumed that cost-conscious voters are universally resis-
tant to exceeding their cost ceilings. That is, outcomes whose costs exceed Mv are
necessarily less preferred than those whose costs do not exceed Mv.

There may, however, be circumstances in which a voter can gain a significant
additional benefit by exceeding his or her cost ceiling by a small amount. In this
section, we modify our original model of cost-consciousness to allow for such
deviations. Our modifications assume that voters are willing to exceed their cost
ceiling only when (i) the excess is bounded within a specified tolerance; and (ii)
all other options for increasing the voter’s total benefit also cause the voter’s cost
ceiling to be exceeded.

To formulate these conditions more precisely, we must first introduce some new
terminology. First, for any outcome x ∈ X , we define the support set of x , denoted
S(x) to be the set of all questions passed in x . That is,

S(x)= {q ∈ Q : xq = 1}.

For all x , y ∈ X , if S(x)⊂ S(y), we say that y augments x . If |S(x)| = 1, then x is
said to be a singleton. An outcome x is said to be cost-maximal if C(x)≤ Mv and
there does not exist an outcome y ∈ X such that y augments x and C(y)≤ Mv.

Definition 5.1. Let v be a voter whose preferences are represented by a total order
� on X . Then v is said to be weakly cost-conscious if there exists some Mv > 0
(called the cost ceiling for v) and some nonnegative τ ≤ Mv (called the tolerance
for v) such that for each x , y ∈ X , the following axioms hold:

Axiom 1. If C(x),C(y)≤ Mv and C(y) > C(x), then y � x .

Axiom 2 ′. If C(x) < C(y) and C(y) > Mv + τ , then x � y.

Axiom 3. If x is cost-maximal, y augments x , and Mv < C(y) ≤ Mv + τ , then
y � x .

Note that when τ = 0, Definition 5.1 is equivalent to Definition 2.1. The next
example illustrates the effect of allowing τ to be nonzero.

Example 5.2. Consider an election with three proposals in which C(1) = 200,
C(2) = 400, and C(3) = 501. Suppose also that for some voter v, Mv = 700 and
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τ = 0. Then Theorem 2.2 (which applies since τ = 0 and all outcome costs are
unique) guarantees a unique preference matrix consistent with Axioms 1 and 2. In
this case, the matrix is

Pv =



1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
1 0 1
0 1 1
1 1 1


.

Note that the outcome 101, with a cost of 701, is the voter’s third least preferred
outcome. Note, however, that 101 augments three other outcomes: 000, 100, and
001. Of these three outcomes, only the latter is cost-maximal. Thus, if τ = 1, then
Axiom 3 requires 101 � 001. This leaves two possibilities for v’s now weakly
cost-conscious preferences:

Pv =



1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 1 1


or Pv =



1 1 0
1 0 1
0 0 1
0 1 0
1 0 0
0 0 0
0 1 1
1 1 1


.

Note that the first matrix can be obtained by simply increasing Mv to 701, keep-
ing τ fixed at 0. However, the second matrix cannot be obtained in this way and is
in fact inconsistent with our original definition of cost-consciousness. This contrast
demonstrates that the flexibility afforded by allowing τ to be nonzero cannot be
accomplished by simply increasing Mv.

6. Prevalence of cost-conscious voters

As we showed in Section 3, cost-consciousness can be a significant cause of non-
separability in voter preferences over multiple issues. Hodge and TerHaar [2008]
have also shown that the vast majority of randomly selected preference matri-
ces correspond to completely nonseparable preferences — that is, preferences for
which every nonempty, proper subset of Q is nonseparable. In light of these
observations, it is natural to consider how prevalent cost-conscious preferences
are among all possible preference orders. In this section, we will show that the
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proportion of total orders on X that are consistent with the axioms of weak cost-
consciousness approaches 0 asymptotically. In particular, we will prove the fol-
lowing theorem:

Theorem 6.1. Let �n denote the set of all total orders on X that are consistent
with Axioms 1, 2 ′, and 3. Then

lim
n→∞

|�n|

2n!
= 0.

To prove Theorem 6.1 we establish several lemmas, each of which assumes that
� represents the preferences of a weakly cost-conscious voter. Lemmas 6.2 and
6.3 follow immediately from Axioms 1 and 2 ′, respectively.

Lemma 6.2. If 00 · · · 0� x for some x ∈ X , then C(x) > Mv.

Lemma 6.3. If x � 00 · · · 0 for some x ∈ X , then C(x)≤ Mv + τ .

Lemma 6.4. Let x, y ∈ X with S(x)∩ S(y) = ∅. If x � 11 · · · 1 � 00 · · · 0, then
11 · · · 1� y � 00 · · · 0.

Proof. By assumption, there is an outcome x ∈ X such that x � 11 · · · 1. Con-
sequently, Axiom 1 implies that C(11 · · · 1) > Mv. Since 11 · · · 1 � 00 · · · 0,
Lemma 6.3 implies that C(11 · · · 1)≤ Mv + τ . Since τ ≤ Mv, it follows that

Mv < C(11 · · · 1)≤ Mv + τ ≤ 2Mv.

Since S(x)∩ S(y) = ∅, we know that C(x)+C(y) ≤ C(11 · · · 1) ≤ 2Mv. Thus,
either C(x)≤ Mv or C(y)≤ Mv.

Suppose C(x) ≤ Mv. Then either x is cost-maximal or there exists a cost-
maximal outcome that augments x . To account for either of these cases, let x ′

denote a cost-maximal element that is either equal to x or augments x . Note that
since C(11 · · · 1) > Mv, x ′ 6= 11 · · · 1. Thus, 11 · · · 1 augments x ′, which implies
by Axiom 3 that 11 · · · 1 � x ′. But since C(x) ≤ C(x ′) ≤ Mv, Axiom 1 implies
that x ′ � x . So 11 · · · 1� x ′ � x , a contradiction.

Since it cannot be the case that C(x)≤Mv, it must be that C(y)≤Mv. But then
an argument similar to that in the preceding paragraph establishes that 11 · · · 1� y.
Since C(y)≤ Mv, we know also that y � 00 · · · 0 (by Axiom 1. Thus,

11 · · · 1� y � 00 · · · 0,

as desired. �

Lemma 6.5. If 00 · · · 0� 11 · · · 1, then C(11 · · · 1) > Mv + τ .

Proof. Assume, to the contrary, that 00 · · · 0 � 11 · · · 1 and C(11 · · · 1) ≤ Mv + τ .
By Lemma 6.2, Mv < C(11 · · · 1). Thus, Mv < C(11 · · · 1) ≤ Mv + τ . Since
τ ≤ Mv, there exists a cost-maximal x ∈ X such that 0 < C(x) ≤ Mv. Since
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11 · · · 1 augments x , it follows by Axioms 1 and 3 that 11 · · · 1 � x � 00 · · · 0, a
contradiction to the assumption that 00 · · · 0� 11 · · · 1. �

Lemma 6.6. If 00 · · · 0� 11 · · · 1, then x � 11 · · · 1 for all x ∈ X.

Proof. By Lemma 6.5, C(11 · · · 1)>Mv+τ . But for all x ∈ X , C(x)<C(11 · · · 1).
Therefore, x � 11 · · · 1 by Axiom 2 ′. �

Lemma 6.7. If 11 · · · 1� 00 · · · 0, then there exists x ∈ X such that

11 · · · 1� x � 00 · · · 0.

Proof. If 11 · · · 1 � 00 · · · 0, then C(11 · · · 1) ≤ Mv + τ by Lemma 6.3. Now
consider two cases:

Case 1: If C(11 · · · 1)≤ Mv, then there exists x ∈ X such that

C(00 · · · 0) < C(x) < C(11 · · · 1)≤ Mv.

So, by Axiom 1, 11 · · · 1� x � 00 · · · 0.
Case 2: If Mv < C(11 · · · 1) ≤ Mv + τ , then τ ≤ Mv implies that there exists

a cost-maximal x ∈ X such that 0 < C(x) ≤ Mv. Since 11 · · · 1 augments x , it
follows by Axioms 1 and 3 that 11 · · · 1� x � 00 · · · 0. �

Lemma 6.7 can be stated more concisely by simply noting that 11 · · · 1 cannot
cover 00 · · · 0. In general x is said to cover z (with respect to �) if x � z and there
does not exist y such that x � y � z.

We are now able to prove Theorem 6.1.

Proof of Theorem 6.1. Let A and B to be the collections of total orders on X
defined as follows:

A = {�: 00 · · · 0� 11 · · · 1 and 11 · · · 1� x for some x ∈ X}.

B = {�: 11 · · · 1 covers 00 · · · 0 with respect to �}.

Furthermore, let C be the collection of total orders � on X that satisfy all of the
following conditions:

1. 11 · · · 1� 00 · · · 0.

2. 11 · · · 1 covers some nonsingleton element z of X , where z 6= 00 · · · 0.

3. For some singletons x , y ∈ X , either

x � y � 11 · · · 1 or x � 11 · · · 1� 00 · · · 0� y.

Note that A * �n , B * �n , and C * �n by Lemmas 6.6, 6.7, and 6.4, respec-
tively. Note also that A, B, and C are pairwise disjoint. Thus,

|�n| ≤ 2n
! − |A∪ B ∪C | = 2n

! − |A| − |B| − |C |.
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It can be easily shown that

|A| =
(

2n
− 1
2

)
(2n
− 2)! and |B| = (2n

− 1)(2n
− 2)!.

Thus,

|A| + |B| =
(2n
− 1)!

2!(2n − 3)!
(2n
− 2)! + (2n

− 1)(2n
− 2)!

=
(2n
− 2)
2

(2n
− 1)! + (2n

− 1)!

= 2n−1(2n
− 1)!.

To count the elements of C , we note that every order � from C can be con-
structed via a sequence of five choices.

First, we choose z, the nonsingleton element of X that is covered by 11 · · · 1.
There are 2n

− n− 2 possible choices (excluding 11 · · · 1, 00 · · · 0, and the n sin-
gleton outcomes).

Next, we divide the singleton elements of X into three groups according to their
ranking relative with respect to 11 · · · 1 and 00 · · · 0. In particular, let X ′ denote
the set of singleton elements of X , and let

i = |{x ∈ X ′ : x � 11 · · · 1}|,

j = |{x ∈ X ′ : 11 · · · 1� z � x � 00 · · · 0}|,

k = |{x ∈ X ′ : 00 · · · 0� x}|.

Note that i + j + k = n. Furthermore, the definition of C requires that i 6= 0, and
if i = 1, k 6= 0. Any values of i , j , and k that satisfy these conditions will yield a
grouping consistent with the definition of C . Thus, there are(

n+ 2
2

)
− (n+ 1)− 1=

(n+ 2)(n− 1)
2

such groupings.
Next, we choose an ordering for the n singletons. There are n! such choices.
Our first three steps produce a unique ordering of the singleton elements of X

along with the elements 11 · · · 1, z, and 00 · · · 0. Now we must choose which of the
2n positions in the ranking induced by� will be occupied by these n+3 outcomes.
Since 11 · · · 1 must cover z, we have

(2n
−1

n+2

)
choices.

Once the positions and ordering of the singletons, 11 · · · 1, z, and 00 · · · 0 are
determined, we must choose an ordering for the remaining 2n

− n− 3 elements of
X . There are (2n

− n− 3)! such choices.
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Putting all of this together, we obtain:

|C | = n!(2n
− n− 2)

(n+ 2)(n− 1)
2

(
2n
− 1

n+ 2

)
(2n
− n− 3)!

= n!(2n
− n− 2)

(n+ 2)(n− 1)
2

(2n
− 1)!

(n+ 2)!(2n − n− 3)!
(2n
− n− 3)!

=
n!(2n

− n− 2)(n+ 2)(n− 1)(2n
− 1)!

2(n+ 2)!

=
(n− 1)(2n

− n− 2)(2n
− 1)!

2(n+ 1)
.

From this it follows that

lim
n→∞

|�n|

2n!
≤ lim

n→∞

2n
! − |A| − |B| − |C |

2n!

= lim
n→∞

(
1−

2n−1(2n
− 1)!

2n!
−
(n− 1)(2n

− n− 2)(2n
− 1)!

2(n+ 1)(2n)!

)
= lim

n→∞

(
1−

1
2
−
(n− 1)(2n

− n− 2)
2n+1(n+ 1)

)
=

1
2
− lim

n→∞

(n− 1)(2n
− n− 2)

2n+1(n+ 1)
=

1
2
−

1
2
= 0.

But since
|�n|

2n!
≥ 0 for all n, it follows that lim

n→∞

|�n|

2n!
= 0. �

At first glance, the conclusion of Theorem 6.1 may seem rather surprising. In-
deed, one might expect cost-conscious voters to be more prevalent than the theorem
suggests. There are a number of reasonable explanations for this apparent discrep-
ancy, all of which warrant further investigation.

First, it may be the case that random samples of preference orders do not ac-
curately represent the preferences of electorates in actual elections. Perhaps some
orders are unrealistic and should be eliminated from the start. If this is the case,
then among all realistic preference orders, however that notion is defined, cost-
conscious preferences may be more prevalent. Since random preferences have
been used in past research to simulate referendum elections [Hodge and Schwal-
lier 2006], a more careful look at their ability to model actual electorates seems
appropriate.

Second, it could be the case that as the number of questions increases, other
factors in addition to cost-consciousness have more of an opportunity to play a role
in the formation of voter preferences. In other words, while purely cost-conscious
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preferences may become increasingly rare, the presence of some form of cost-
consciousness may still be found, perhaps in abundance.

Finally, our model may not account for all forms of cost-consciousness. In par-
ticular, there may be ways of generalizing our model that would allow for a broader
range of preferences to be classified as cost-conscious. One direction for further
research would be formulate a model based on penalty functions that decrease a
voter’s net utility in some predictable way when the voter’s cost ceiling is exceeded.

7. Summary and conclusions

Cost-consciousness is one cause of nonseparability within voter preferences in
multiple-question referendum elections. In fact, cost-consciousness induces pref-
erence nonseparability in all but the most trivial of cases. This nonseparability can
lead to undesirable election outcomes under the typical method of simultaneous
voting.

We have shown that in electorates consisting entirely of cost-conscious voters,
a weak Condorcet winner is guaranteed to exist whenever outcome costs are dis-
tinct. Furthermore, a weak Condorcet loser is guaranteed to exist whether outcome
costs are distinct or not, and this weak Condorcet loser is always either 11 · · · 1 or
00 · · · 0.

Even with a relaxed model of cost-consciousness that allows cost ceilings to
be exceeded when certain conditions are met, we showed that preference orders
consistent with the axioms of cost-consciousness comprise an arbitrarily small
proportion of all possible preferences as the number of questions increases without
bound. We discussed several possible explanations for this result, all of which
suggest directions for further research.

This research is one of the first attempts to formally model a practical cause
of nonseparability in voter preferences over multiple issues. There are certainly
other underlying causes of nonseparability, and further investigation of these other
causes could eventually lead to the development of a scheme for classifying voter
preferences according to the types of interdependence they exhibit.

Our work here has focused on modeling the preferences of cost-conscious vot-
ers, but we have not investigated or proposed methods for choosing better election
outcomes when electorates are cost-conscious. This direction seems like a nat-
ural next step, and one that could potentially have practical implications for the
implementation of direct democracy via referendum elections.
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On the size of the resonant set for the products of
2× 2 matrices
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(Communicated by Chi-Kwong Li)

For θ ∈ [0, 2π) and λ > 1, consider the matrix h =
(
λ

0
0
0

)
and the rotation matrix

Rθ . Let Wn(θ) denote some product of m instances of Rθ and n of h, with the
condition m ≤ εn (0< ε < 1). We analyze the measure of the set of θ for which
‖Wn(θ)‖ ≥ λ

δn (0 < δ < 1). This can be regarded as a model problem for the
Bochi–Fayad conjecture.

1. Introduction

Avila and Roblin [2009] considered the following problem. Take the two matrices

H =
(
λ 0
0 λ−1

)
(1)

and

Rθ =
(

cos θ −sin θ
sin θ cos θ

)
, θ ∈ [0, 2π).

Fix λ > 1 and let m, n ∈ N. Consider words of the form

Wn(θ)= H i1 R j1
θ . . . H ik R jk

θ ,

where k is arbitrary and i1, . . . , ik, j1, . . . , jk ∈ N∪ {0} are such that

i1+ · · ·+ ik = n, j1+ · · ·+ jk = m.

Assume that m is much smaller than n and take a “generic” angle θ . It is not
unreasonable to conjecture that ‖Wn‖ grows geometrically with n regardless of the
combinatorics of the word. Avila and Roblin proved the following theorem, where
the norm is given by ‖W‖ = |a| + |b| + |c| + |d| if W =

(a
c

b
d

)
.

MSC2010: primary 37H15; secondary 37H05, 37C85.
Keywords: Bochi–Fayad conjecture, resonant set, measure, rotation matrix, Fayad, Krikorian,

exponential growth.
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Theorem 1. Assume that 0< δ < 1 is fixed. Then there is an n-independent set �
such that |�| = 2π and for any θ ∈� there is ε > 0 so that

min
Wn
‖Wn(θ)‖> λ

δn

provided m < εn(ln n ln ln n)−1.

Here the minimum is over all words Wn for n fixed and m as given. This theorem
improved earlier results by Fayad and Krikorian [2008]. The special case of the
Bochi–Fayad conjecture [Avila and Roblin 2009; Fayad and Krikorian 2008] deals
with the similar situation when m < εn and ε is small. One might expect that
|�|→ 2π as ε→ 0 in this case. Proving it seems to be quite hard. We investigate
a simpler case. In (1), consider the matrix H when λ is large. Then λ−1

→ 0 as
λ→∞ and one might wonder what happens if λ−1 is dropped. Thus we consider
h =

(
λ
0

0
0

)
/∈ SL(2,R) instead of H . It turns out that a very precise analysis can

be performed for this simpler model problem, as we shall see in the next section.
Section 3 provides some numerical evidence and comparison of the model case
with the real problem.

2. The model problem

In the previous setting, take h =
(
λ 0
0 0

)
instead of H and fix ε ∈ (0, 1). Given n,

set
fn(θ)=min

Wn
‖Wn(θ)‖,

where the norm is again given by the sum of absolute values of matrix entries and
the minimum is taken over all Wn with m≤ εn. Note that we can take the minimum
because for a given n there are only finitely many possibilities for Wn .

Finally, we fix 0<δ< 1 and define the resonant set R thus: θ ∈R if there exists
some n such that fn(θ) < λ

δn . We claim that |R| < Cλ−(1−δ)/ε , where C is some
constant that can be explicitly computed and |R| denotes the Lebesgue measure of
the set R.

We now make the convention that there are no zero exponents in the expression
of Wn(θ). Then, for words having precisely k blocks of rotation matrices, there are
four possibilities, differing in which matrix (h or Rθ ) begins the word and which
matrix ends it:

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ , (2)

Wn(θ)= R j1
θ hi1 · · · R jk

θ hik , (3)

Wn(θ)= R j1
θ hi1 · · · R jk−1

θ hik−1 R jk
θ , (4)

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ hik+1 . (5)
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For the word in (2), the product has this explicit form:

Wn(θ)= hi1 R j1
θ · · · h

ik R jk
θ

=

(
λi1 0
0 0

)(
cos j1θ −sin j1θ
sin j1θ cos j1θ

)
· · ·

(
λik 0
0 0

)(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)
=

(
λi1 cos j1θ −λi1 sin j1θ

0 0

)
· · ·

(
λik cos jkθ −λik sin jkθ

0 0

)
=

(
λn cos j1θ · · · cos jkθ λn cos j1θ · · · cos jk−1θ sin jkθ

0 0

)
. (6)

Likewise, for (3), we obtain

Wn(θ)= R j1
θ hi1 · · · R jk

θ hik

=

(
cos j1θ −sin j1θ
sin j1θ cos j1θ

)(
λi1 0
0 0

)
· · ·

(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)(
λik 0
0 0

)
=

(
λi1 cos j1θ 0
λi1 sin j1θ 0

)
· · ·

(
λik cos jkθ 0
λik sin jkθ 0

)
=

(
λn cos j1θ · · · cos jkθ 0

λn sin j1θ cos j2θ · · · cos jkθ 0

)
. (7)

Using the result in (7), we get for the word (4)

Wn(θ)

= (R j1
θ hi1 · · · R jk−1

θ hik−1)R jk
θ

=

(
λi1+···+ik−1 cos j1θ cos j2θ · · · cos jk−1θ 0
λi1+···+ik−1 sin j1θ cos j2θ · · · cos jk−1θ 0

)(
cos jkθ −sin jkθ
sin jkθ cos jkθ

)
=

(
λn cos j1θ cos j2θ · · · cos jkθ −λn cos j1θ cos j2θ · · · cos jk−1θ sin jkθ
λn sin j1θ cos j2θ · · · cos jkθ −λn sin j1θ cos j2θ · · · cos jk−1θ sin jkθ

)
. (8)

Finally, using (6), we get for the word (5) simply

Wn(θ)= (hi1 R j1
θ · · · h

ik−1 R jk−1
θ hik R jk

θ )h
ik+1

=

(
λi1+···+ik cos j1θ · · · cos jkθ λi1+···+ik cos j1θ · · · cos jk−1θ sin jkθ

0 0

)
×

(
λik+1 0

0 0

)
=

(
λn cos j1θ · · · cos jkθ 0

0 0

)
. (9)
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Therefore ‖Wn(θ)‖ is given by

λn
|cos j1θ · · · cos jk−1θ |

(
|cos jkθ | + |sin jkθ |

)
for Wn of type (2),

λn
|cos j2θ · · · cos jkθ |

(
|cos j1θ | + |sin j1θ |

)
for Wn of type (3),

λn
|cos j2θ · · · cos jk−1θ |

(
|cos j1θ | + |sin j1θ |

)
×
(
|cos jkθ | + |sin jkθ |

)
for Wn of type (4),

λn
|cos j1θ · · · cos jkθ | for Wn of type (5).

Remark. This shows that, among words with k rotation blocks, min
Wn
‖Wn(θ)‖ is

reached by words of type (5).

Theorem 2. Let

Sα =
{
θ ∈ [0, 2π)

∣∣ |cosαθ |< λ−(1−δ)α/ε−1},
S̃α =

{
θ ∈ [0, 2π)

∣∣ |cosαθ |< λ−(1−δ)α/ε
}
.

Then the resonant set R satisfies⋃
α∈N

Sα ⊆R⊆
⋃
α∈N

S̃α.

Proof. Suppose θ ∈
⋃
α∈N Sα. Then θ ∈ Sα for some α ∈ N and

|cosαθ |< λ−(1−δ)α/ε−1.

Let n = [α/ε] + 1. Then, n − 1 ≤ α/ε < n and α < εn. Consider the word
ωn(θ)= hi1 Rαθ hi2 where i1+ i2 = n. Since m = α, we have m ≤ εn. Then

fn(θ)= min
Wn(θ)
‖Wn(θ)‖ ≤ ‖ωn(θ)‖ = λ

n
|cosαθ |< λn

· λ−(1−δ)α/ε−1
≤ λδn.

Therefore θ ∈R.
Now suppose θ /∈

⋃
α∈N S̃α. Then |cosαθ | ≥ λ−(1−δ)α/ε for all α ∈ N. Choose

an arbitrary n ∈ N. Then

fn(θ)= min
Wn(θ)
‖Wn(θ)‖ = ‖ωn(θ)‖ (for some word ωn(θ))

= λn
|cos j1θ · · · cos jkθ | (by the remark above)

= λn
|cosα1θ

m1 · · · cosαlθ
ml |,

where α1 < · · ·< αl and m1α1+ · · ·+mlαl = m ≤ εn. Then

fn(θ)= λ
n
|cosα1θ

m1 · · · cosαlθ
ml |

≥ λn
· λ−(1−δ)(m1α1+···+mlαl )/ε = λn

· λ−m(1−δ)/ε
≥ λδn,

and therefore θ /∈R. �
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We claim that R is a dense open set. To show that R is open, we show that for
each n, fn is continuous. For each n,

Rn = {θ ∈ [0, 2π) | fn(θ) < λ
δn
} = f −1

n ((−∞, λδn)),

which is open as the preimage of a continuous function of an open set. Note that
R=

⋃
∞

n=1 Rn , a union of open sets, so R is open.
To show that fn is continuous, we note that fn is the minimum of a finite number

of continuous functions (the norms of a finite number of words). Denote these
functions by F1, F2, . . . , FM , M ∈ N. Fix arbitrary θ ∈ [0, 2π), fix ζ > 0, and let
η > 0 be such that whenever |θ− θ̃ |<η, |Fk(θ)−Fk(θ̃)|< ζ for all k = 1, . . . ,M .
Consider arbitrary θ̃ ∈ (θ − η, θ + η). For some i, j ,

fn(θ)= Fi (θ) and fn(θ̃)= F j (θ̃).

By the definition of fn ,

Fi (θ)≤ F j (θ) and F j (θ̃)≤ Fi (θ̃).

Notice that if Fi (θ)= F j (θ̃), then | fn(θ)− fn(θ̃)|=0<ζ and we are done. Suppose
that Fi (θ) > F j (θ̃). Then | fn(θ)− fn(θ̃)| = Fi (θ)− F j (θ̃) ≤ F j (θ)− F j (θ̃) < ζ .
Otherwise, if Fi (θ) < F j (θ̃), then

| fn(θ)− fn(θ̃)| = F j (θ̃)− Fi (θ)≤ Fi (θ̃)− Fi (θ) < ζ.

To see that R is dense, let I be any open interval in [0, 2π). The collection
of points Rα = {π/2α + (π/α)k : k ∈ {1, . . . , 2α − 1}} is in Sα; indeed, for any
φ ∈ Rα, cosαφ = 0 < λ−(1−δ)α/ε−1. If we choose α > |I |/π , then there must be
some element φ of Rα in I . Since φ ∈

⋃
α∈N Sα ⊆R⊆

⋃
α∈N S̃α, we see that every

open interval in [0, 2π) contains a point in R.
Now we are ready to estimate the size of R. Consider S̃α for arbitrary α ∈ N.

The measure of this set is

|S̃α| = 4α
( π

2α
−

1
α

cos−1(λ−(1−δ)α/ε)
)

= 2π − 4 cos−1(λ−(1−δ)α/ε)

≈ 2π − 2π + 4λ−(1−δ)α/ε

= 4λ−(1−δ)α/ε .

Then our estimate for the size of R is

|R| ≤

∣∣∣∣⋃
α∈N

S̃α

∣∣∣∣≤ ∞∑
α=1

|S̃α| ≈ 4
∞∑
α=1

λ−(1−δ)α/ε =
4λ−(1−δ)/ε

1− λ−(1−δ)/ε
≈ 4λ−(1−δ)/ε,

as ε ∼ 0 and λ, δ are fixed.
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3. Some numerical evidence

We provide some numerical and graphical evidence of what was proved. We see
how the graphs of the model case and the real case compare for fixed n and m.
In addition, it is shown graphically that changing the multiplicities of H affects
the word’s norm, but in the model case the word’s norm is invariant under these
changes. The graphs in this section were plotted with Maple 14.

Based on the similarities between the pictures of the real case and the model
case, we conjecture that the resonant set in the model case is, in some sense, the
limiting set of the resonant set in the real case as λ grows large, since the λ−1 term
goes to 0 as λ goes to infinity. Of course, since here we take λ relatively small
(λ = 2) for graphing convenience, this is a rough conjecture; in fact, proving it
seems to be rather difficult.

Figure 1 shows a red curve and a blue curve. The blue curve is the graph of
‖hi1 R2

θhi2 R3
θhi3‖where i1, i2, i3∈N and i1+i2+i3=15. Recall that h is the matrix

we use in the model case, where λ−1 is replaced by 0. With these combinatorics,
varying i1, i2, i3 does not change the graph, as long as their sum is 15. Specifically,
Figure 1 is the model case of n = 15, m = 5 ( j1 = 2, j2 = 3), and λ= 2.

10
20
30
40

Figure 1. Graphs of the functions ‖H 5 R2
θ H 5 R3

θ H 5
‖ (red curve)

and ‖h5 R2
θh5 R3

θh5
‖ (blue curve) when λ = 2. (The curves have

been slightly offset horizontally; otherwise they would coincide at
this resolution.) The thin black curve on the bottom right is the
difference between the first and second functions, with the y-axis
expanded 1000 times.
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Figure 2. Graphs of the functions ‖H 5 R2
θ H 9 R3

θ H 1
‖ (red curve)

and ‖h5 R2
θh9 R3

θh1
‖ (blue curve) when λ= 2.

The red curve in Figure 1 shows the case where we replace h with H and set
i1 = i2 = i3 = 5. Explicitly, we are graphing ‖H 5 R2

θ H 5 R3
θ H 5
‖.

In Figure 2 we change only two parameters relative to Figure 1: the lengths of
the last two blocks of H ’s (or h’s) are now i2 = 9, and i3 = 1. As already seen,
the h curve (blue) remains the same, but the H curve (red) — that is, the graph of
the function ‖H 5 R2

θ H 9 R3
θ H 1
‖— changes significantly as a result of changing the

order of multiplication in the word.
By comparing the red curves in Figures 1 and 2, we observe that a greater

disparity between the multiplicities of H (the ik’s) is correlated with a smaller
resonant set (the set of points θ between 0 and 2π such that the norm of the word
is within a certain distance of zero). The slope of the word’s norm is steeper in
Figure 2 than it is in Figure 1 and the peaks in Figure 2 are associated with larger
values of the word’s norm than in the case depicted by Figure 1. Both conditions
lead to fewer points θ that are mapped to a norm of the word that is close to
zero.

Figure 3 shows the graph of ‖H 1 R2
θ H 1 R3

θ H 13
‖. Comparing this graph with

Figure 2 provides further evidence that a greater disparity between the multiplicities
of H results in a smaller resonant set.

To further justify our use of the model case, consider the Figure 4, which treats
the case of a word of the form (4). Specifically, the blue curve shows the function
‖Rθhi1 Rθhi2 Rθ‖, where i1+i2=15 and λ=2. We take i1=7 and i2=8 and replace
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Figure 3. Graphs of the functions ‖H 1 R2
θ H 1 R3

θ H 13
‖ (red curve)

and ‖h1 R2
θh1 R3

θh13
‖ (blue curve) when λ= 2.

h by H to obtain the red curve. As in Figure 1, the two curves are indistinguishable
to within the plot’s resolution.

Note that the blue curve in Figure 4 is not comparable to that of Figures 1–3.
Both show the model case, but with different combinatorics on the word: expres-
sion (5) for the earlier figures, and (4) for Figure 4. Both graphs still have a small
resonant set.

Figure 5 shows the graphs of ‖Rθ H 14 Rθ H Rθ‖ (red) and of ‖Rθh14 Rθh Rθ‖
(blue); the latter of course is the same as the blue curve of Figure 4. Comparing
Figure 4 with Figure 5, again we see that a greater disparity between the multiplic-
ities of H results in a smaller resonant set.

4. Conclusion

We hope that our model problem is a viable approximation for what happens when
the matrix H is used. The next step might be to express the the Bochi–Fayad
problem in terms of the model problem. One way to do this might be to write
H = h+ e, where e is the matrix

e =
(

0 0
0 λ−1

)
,

and then express a product of H ’s and Rθ’s in terms of a product of h’s and Rθ’s, and
some other, hopefully small, error terms. The numerical evidence above suggests
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−2
−1

1
2

Figure 4. Graphs of the functions ‖Rθ H 7 Rθ H 8 Rθ‖ (red curve)
and ‖Rθh7 Rθh8 Rθ‖ (blue curve) when λ = 2. (The curves have
been slightly offset horizontally; otherwise they would coincide at
this resolution.) The thin black curve on the bottom right is the
difference between the first and second functions, with the y-axis
expanded 2500 times.

Figure 5. Graphs of ‖Rθh14 Rθh Rθ‖ and ‖Rθ H 14 Rθ H Rθ‖ when
λ= 2.
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that the resonant set for words using the matrix H would actually be smaller than
that for words using the matrix h, especially if the distribution of H ’s is in some
sense irregular. This behavior might become more apparent when λ is taken much
larger, and ε much smaller, than in the experiments above.
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Continuous p-Bessel mappings
and continuous p-frames in Banach spaces

Mohammad Hasan Faroughi and Elnaz Osgooei

(Communicated by David R. Larson)

We define the concept of continuous p-frames (cp-frames) for Banach spaces,
generalizing discrete p-frames. We prove that under certain conditions the direct
sum of a finite number of cp-frames is again a cp-frame. We obtain equivalent
conditions for duals of cp-Bessel mappings and show existence and uniqueness
of duals of independent cp-frames. Lastly we discuss perturbation of these
frames.

1. Introduction

Frames were first introduced in the context of nonharmonic Fourier series [Duffin
and Schaeffer 1952]. Outside of signal processing, frames did not seem to generate
much interest until the groundbreaking work [Daubechies et al. 1986]. Today, the
theory of discrete frames plays an important role not just in digital signal pro-
cessing and scientific computation, but also in pure and applied mathematics. The
interested reader is referred to [Han and Larson 2000; Heil and Walnut 1989] for
theory and applications of frames.

A discrete frame is a countable family of elements in a separable Hilbert space
which allows stable not necessarily unique decomposition of arbitrary elements
into expansions of the frame elements. This concept was generalized in [Ali et al.
1993] to families indexed by some locally compact space endowed with a Radon
measure; these frames are known as continuous frames. For more studies about
frame theory and continuous frames we refer to [Christensen 2003; Ali et al. 1993;
Gabardo and Han 2003; Rahimi et al. 2006].

Various generalizations of frames have been proposed recently, such as frames of
subspaces [Asgari and Khosravi 2005], p-frames [Aldroubi et al. 2001; Cao et al.
2008; Christensen and Stoeva 2003], p-frames of subspaces [Najati and Faroughi
2007], g-frames [Sun 2006], and continuous g-frames [Abdollahpour and Faroughi

MSC2010: primary 42C99, 42C15; secondary 42C40.
Keywords: frames, continuous p-frames, Schauder basis, reflexive space.
This is part of Osgooei’s Ph.D. thesis at Tabriz University.
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2008; Joveini and Amini 2009]. We take as our starting point the generalization
presented in [Christensen and Stoeva 2003].

Throughout this paper, (�,µ) will be a measure space and µ a positive, σ -
finite measure. X is a Banach space with dual X∗. We choose 1 < p <∞ and
q such that 1

p +
1
q = 1. The normed dual X∗ of a Banach space X is itself a

Banach space and hence has a normed dual of its own, denoted by X∗∗. A mapping
3X : X 7→ X∗∗ is well defined by the equation 〈x, x∗〉=〈x∗,3X x〉 for each x∗∈ X∗;
also, ‖3X x‖=‖x‖ for each x ∈ X . So3X : X→ X∗∗ is an isometric isomorphism
of X onto a closed subspace of X∗∗. If X is a reflexive Banach space then 3X is
an isometric isomorphism of X onto X∗∗.

Definition 1.1. A countable family {gi }
∞

i=1 ⊂ X∗ is a p-frame for X if there exist
constants A, B > 0 such that

A‖ f ‖ ≤
( ∞∑

i=1

|gi ( f )|p
)1/p

≤ B‖ f ‖. (1-1)

If at least the second of these inequalities, called the upper p-frame condition, is
satisfied, we say that {gi } is a p-Bessel sequence.

Definition 1.2. Let H be a complex Hilbert space and (�,µ) a measure space.
A map F : �→ H is called weakly measurable if, for each f ∈ H , the function
on � defined by ω 7→ 〈 f, F(ω)〉 is measurable. F is called a continuous frame
for H with respect to (�,µ) if F is weakly measurable and there exist constants
A, B > 0 such that

A‖ f ‖2 ≤
∫
�

|〈 f, F(ω)〉|2dµ(ω)≤ B‖ f ‖2, f ∈ H. (1-2)

In the next results, R( · ) denotes the range of a map.

Lemma 1.3 [Rudin 1973]. Suppose X and Y are Banach spaces and T ∈ B(X, Y ).
Then R(T ) = Y if and only if ‖T ∗y∗‖ ≥ c‖y∗‖ for some constant c > 0 and for
each y∗ ∈ Y ∗.

Theorem 1.4 [Rudin 1974]. L p(�,µ) is isometricly isomorphism to the dual
space of Lq(�,µ) via the mapping K p

: L p(�,µ)→ Lq(�,µ)∗ give by

K pψ(φ)=

∫
�

ψ(ω)φ(ω) dµ(ω)

for all ψ ∈ L p(�,µ) and φ ∈ Lq(�,µ). We can define an isometric isomorphism
K q
= (K p)∗3q : Lq(�,µ)→ L p(�,µ)∗ for which 3q is the isometric isomor-

phism of Lq(�,µ) onto Lq(�,µ)∗∗.

Lemma 1.5 [Heuser 1982]. Given a bounded operator U : X → Y , the adjoint
U∗ : Y ∗→ X∗ is surjective if and only if U has a bounded inverse on R(U ).
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Theorem 1.6 [Douglas 1972]. Let X and Y be Banach spaces. For all x ∈ X and
y ∈ Y , define the 1-norm, ‖(x, y)‖1 = ‖x‖X +‖y‖Y and the∞-norm ‖(x, y)‖∞ =
sup{‖x‖X , ‖y‖Y } on the algebraic direct sum X ⊕ Y . Then X ⊕ Y is a Banach
space with respect to both norms and these two norms are equivalent.

In Section 2, we define the concept of cp-Bessel mappings and cp-frames in
Banach spaces and show that under some conditions the direct sum of a finite
number of cp-frames is again a cp-frame. In Section 3, we define the concept of
a cq-Riesz basis and study some relations between cp-frames and cq-Riesz bases.
In Section 4, we present a cp-frame mapping SF : X → X∗ and show that two
cp-frames are similar if and only if their analysis operators have the same range.
We obtain some equivalent conditions for duals of cp-Bessel mappings and show
existence and uniqueness of duals of independent cp-frames in Section 5 and finally
in Section 6 we discuss the perturbation of these frames.

2. Continuous p-frames

Definition 2.1. A mapping F :�→ X∗ is called a cp-frame for X with respect to
(�,µ) if F is weakly measurable (Definition 1.2) and there exist positive constants
A and B such that

A‖x‖ ≤
(∫

�

|〈x, F(ω)〉|pdµ(ω)
)1/p

≤ B‖x‖, x ∈ X. (2-1)

The constants A and B are called the lower and upper cp-frame bounds, respec-
tively. F is called a tight cp-frame if A and B can be chosen such that A= B, and
a Parseval cp-frame if A and B can be chosen such that A = B = 1.

F is called a cp-Bessel mapping for X with respect to (�,µ) if it is weakly
measurable and the second inequality in (2-1) holds. In this case B is called a
cp-Bessel constant.

If, in the definition of a cp-frame, we take � = N and let µ be the counting
measure, then our cp-frame will be a p-frame; thus we expect that some properties
of p-frames can be satisfied in cp-frames.

Throughout this paper, we simply say F is a cp-frame for X and F is a cp-
Bessel mapping for X , instead of F is a cp-frame for X with respect to (�,µ) and
F is a cp-Bessel mapping for X with respect to (�,µ), respectively.

Our study of a cp-frame is based on analysis of two operators,

UF : X→ L p(�,µ) and TF : Lq(�,µ)→ X∗.

The first is defined by

UF x(ω)= 〈x, F(ω)〉, x ∈ X, ω ∈�, (2-2)
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and the second is weakly defined by

TFφ(x)= 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω), φ ∈ Lq(�,µ), x ∈ X. (2-3)

It is clear that if F is a cp-Bessel mapping, then UF is well defined and bounded
operator. UF is called the analysis and TF is called the synthesis operator of F .

Lemma 2.2. Let F be a cp-frame for X. Then the operator UF : X → L p(�,µ),
given by (2-2), has a closed range and X is reflexive.

Proof. It is easy to verify that UF has a closed range. By the cp-frame condition,
X is isomorphic to R(UF ), but R(UF ) is reflexive because it is a closed subspace
of the reflexive space L p(�,µ) and therefore X is reflexive. �

Theorem 2.3. Let F : �→ X∗ be a cp-Bessel mapping for X with Bessel bound
B. Then the operator TF : Lq(�,µ)→ X∗, weakly defined in (2-3), is well defined,
linear and ‖TF‖ ≤ B.

Proof. It is straightforward. �

Lemma 2.4. Let F :�→ X∗ be a cp-Bessel mapping for X.

(i) U∗F = TF (K q)−1.

(ii) If X is reflexive, then T ∗F = K pUF3
−1
X .

Proof. (i) Since F is a cp-Bessel mapping for X , there exists a unique operator
U∗F : L

p(�,µ)∗→ X∗ such that

〈x,U∗Fψ〉 = 〈UF x, ψ〉, x ∈ X, ψ ∈ L p(�,µ)∗.

Using Theorem 1.4, we can find φ ∈ Lq(�,µ) such that K q(φ) = ψ . So, for all
x ∈ X and ψ ∈ L p(�,µ)∗,

〈x,U∗Fψ〉 = 〈UF x, ψ〉 = 〈UF x, K q(φ)〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)

= 〈x, TF (φ)〉 = 〈x, TF (K q)−1ψ〉.

Therefore U∗F = TF (K q)−1.

(ii) By Theorem 2.3, TF is well defined and bounded. So for all f ∈ X∗∗ and
φ∈ Lq(�,µ)we have 〈φ, T ∗F f 〉=〈TFφ, f 〉. Since X is reflexive, for each f ∈ X∗∗

we can find x ∈ X such that 3X x = f . Therefore

〈φ, T ∗F f 〉 = 〈TFφ, f 〉 = 〈TFφ,3X x〉 = 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)

= K p(〈x, F〉)(φ)= K p(〈3−1
X f, F〉)(φ)= 〈φ, K pUF3

−1
X f 〉.

So T ∗F = K pUF3
−1
X . �
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Theorem 2.5. Let X be a reflexive Banach space and F : � → X∗ be weakly
measurable. If the mapping TF : Lq(�,µ)→ X∗ weakly defined by

〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉dµ(ω), φ ∈ Lq(�,µ), x ∈ X,

is a bounded operator and ‖TF‖ ≤ B, then F is a cp-Bessel mapping for X.

Proof. Since TF is well defined and bounded, we have for all f ∈ X∗∗ and φ ∈
Lq(�,µ)

〈φ, T ∗F f 〉 = 〈TFφ, f 〉 =
∫
�

φ(ω)〈3−1
X f, F(ω)〉 dµ(ω).

For each f ∈ X∗∗, we define ψf :�→ C by ψf (ω)= 〈3
−1
X f, F(ω)〉. Since ψf is

measurable and∣∣∣∣∫
�

φ(ω)ψf (ω) dµ(ω)
∣∣∣∣<∞ for all φ ∈ Lq(�,µ),

we obtain ψf ∈ L p(�,µ). By Theorem 1.4, we have

ψf (ω)= (K p)−1(T ∗F f )(ω), ω ∈�.

Hence, for each x ∈ X ,(∫
�

|〈x, F(ω)〉|pdµ(ω)
)1/p

= ‖(K p)−1T ∗F3X x‖ = ‖T ∗F3X x‖

≤ ‖T ∗F‖‖x‖ ≤ B‖x‖. �

Theorem 2.6. Let X be a reflexive Banach space and F : �→ X∗ be a weakly
measurable mapping. Then F is a cp-frame for X if and only if TF is a well defined
and bounded operator of Lq(�,µ) onto X∗. In this case, the frame bounds are
‖(T ∗F )

−1
‖
−1 and ‖TF‖.

Proof. By Theorems 2.3 and 2.5, the upper cp-frame condition satisfies if and only
if TF is well defined and bounded operator of Lq(�,µ) into X∗. Now suppose
that F is a cp-frame for X . Then UF has a bounded inverse on its range R(UF )

and by Lemma 1.5, U∗F is surjective and therefore TF is surjective by Lemma 2.4.
Conversely, suppose that TF is a well defined and bounded operator of Lq(�,µ)

onto X∗. By Lemma 2.4, for each x ∈ X ,

‖UF x‖ = ‖(K P)−1T ∗F3X x‖ = ‖T ∗F3X x‖ ≤ ‖TF‖‖x‖.

On the other hand since TF is bounded and surjective, T ∗F is one to one, hence T ∗F
has a bounded inverse on R(T ∗F ). So, by Lemma 2.4, for each x ∈ X we have

‖x‖ = ‖3X x‖ = ‖(T ∗F )
−1T ∗F3X x‖ ≤ ‖(T ∗F )

−1
‖‖UF x‖. �
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Corollary 2.7. Let G : � → X∗∗ be a weakly measurable mapping. Then the
following assertions are equivalent:

(i) There exist positive constants A and B such that

A‖g‖ ≤
(∫

�

|〈g,G(ω)〉|pdµ(ω)
)1/p

≤ B‖g‖, g ∈ X∗.

(ii) X is reflexive and TG : Lq(�,µ)→ X∗∗ is a well defined, bounded operator
of Lq(�,µ) onto X∗∗.

Proof. (i) means that G : �→ X∗∗ constitutes a cp-frame for X∗. Therefore X∗

is reflexive by Lemma 2.2, and thus X is reflexive. The converse is evident by
Theorem 2.6. �

Theorem 2.8. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

is a cp-Bessel mapping for X and W : Y → X is a bounded operator.

(i) W ∗F :�→ Y ∗ is a cp-Bessel mapping for Y and W ∗TF = TW ∗F .

(ii) Let F : �→ X∗ be a cp-frame for X. Then, W ∗F is a cp-frame for Y if and
only if W ∗ is surjective.

Proof. (i) For each y ∈ Y , the function ω 7→ 〈y,W ∗F(ω)〉 = 〈W y, F(ω)〉 is
measurable. Let B be an upper frame bound for F . Then, for each y ∈ Y ,(∫

�

|〈y,W ∗F(ω)〉|pdµ(ω)
)1/p

=

(∫
�

|〈W y, F(ω)〉|pdµ(ω)
)1/p

≤ B‖W y‖ ≤ B‖W‖‖y‖.

Therefore W ∗F is a cp-Bessel mapping for Y . For all y ∈ Y and φ ∈ Lq(�,µ),

〈y, TW ∗Fφ〉 =

∫
�

φ(ω)〈y,W ∗F(ω)〉 dµ(ω)=
∫
�

φ(ω)〈W y, F(ω)〉 dµ(ω)

= 〈W y, TFφ〉 = 〈y,W ∗TFφ〉.

(ii) If W ∗ is surjective, then by Theorem 2.6, W ∗TF is surjective. So W ∗F is a
cp-frame for Y . Conversely, if W ∗F is a cp-frame for Y then TW ∗F is surjective
and so W ∗ is surjective. �

Proposition 2.9 [Fabian et al. 2001]. Let Y be a closed subspace of a Banach space
Z. If Y is complemented and X is a complement of Y in Z , then Z/Y is isomorphic
to X. The dual Z∗ is then isomorphic to Y ∗⊕ X∗; in short, (Y ⊕ X)∗ = Y ∗⊕ X∗.

Theorem 2.10. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

and G : �→ Y ∗ are cp-Bessel mappings. Then ψ : �→ X∗ ⊕ Y ∗ ∼= (X ⊕ Y )∗,
ψ(ω)= (F(ω),G(ω)) is a cp-Bessel mapping for X ⊕ Y . The mapping

Tψ : Lq(�,µ)→ (X ⊕ Y )∗ ∼= X∗⊕ Y ∗
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is well defined and bounded, and Tψφ = (TFφ, TGφ) for all φ ∈ Lq(�,µ). Also,

T ∗ψ : (X ⊕ Y )∗∗ ∼= X∗∗⊕ Y ∗∗→ Lq(�,µ)∗

is well defined, linear and bounded and T ∗ψ( f, g) = T ∗F f + T ∗G g for all ( f, g) in
X∗∗⊕ Y ∗∗.

Proof. Using Theorem 1.6 and Proposition 2.9, the proof is evident. �

Theorem 2.11. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

and G : �→ Y ∗ are cp-frames for X and Y , respectively. If R(T ∗F )∩ R(T ∗G) = 0
and R(T ∗F )+ R(T ∗G) is a closed subspace of Lq(�,µ)∗, then ψ :�→ (X⊕Y )∗ is
a cp-frame for X ⊕ Y .

Proof. We define L : R(T ∗F )⊕ R(T ∗G)→ R(T ∗F )+ R(T ∗G) by L(η, γ ) = η + γ .
Clearly L is well defined, linear and bijective. We have ‖L(η, γ )‖ = ‖η+ γ ‖ ≤
(‖η‖ + ‖γ ‖) = ‖(η, γ )‖1. By Theorem 1.6, L is continuous. By the open map-
ping theorem, L−1 is well defined and bounded, since R(T ∗F )+ R(T ∗G) is a closed
subspace of Lq(�,µ)∗. Therefore by Theorem 1.6, there exists M > 0 such that

‖(η, γ )‖∞ ≤ M‖η+ γ ‖. (2-4)

Let A1 and A2 be lower cp-frame bounds for F and G, and set K =min{A1, A2}.
By Theorem 1.6, there exists M1 > 0 such that, for all (x, y) ∈ X ⊕ Y ,

K p
‖(x, y)‖p

∞
≤ K p M p

1 (‖x‖+‖y‖)
p
≤ K p M p

1 2p(‖x‖p
+‖y‖p)

≤ 2p M p
1

∫
�

|〈x, F(ω)〉|pdµ(ω)+ 2p M p
1

∫
�

|〈y,G(ω)〉|pdµ(ω)

≤ 2p M p
1 ‖(K

p)−1T ∗F3X x‖+ 2p M p
1 ‖(K

p)−1T ∗G3Y y‖

= 2p M p
1 ‖T

∗

F3X x‖+ 2p M p
1 ‖T

∗

G3Y y‖

= 2p M p
1 ‖(T

∗

F3X x, T ∗G3Y y)‖1,
(2-5)

where 3X : X → X∗∗ and 3Y : Y → Y ∗∗ are isometric isomorphisms of X onto
X∗∗ and of Y onto Y ∗∗, respectively. Again by using Theorem 1.6, there is M2 > 0
such that

‖(T ∗F3X x, T ∗G3Y y)‖1 ≤ M2‖(T ∗F3X x, T ∗G3Y y)‖∞. (2-6)

By (2-4), (2-5) and (2-6)

K p
‖(x, y)‖p

∞
≤ 2p M p

1 M2 M‖T ∗F3X x+T ∗G3Y y‖ = 2p M p
1 M2 M‖T ∗ψ(3X x,3Y y)‖

= 2p M p
1 M2 M‖(K p)−1T ∗ψ(3X x,3Y y)‖

= 2p M p
1 M2 M‖(K p)−1T ∗ψ3X⊕Y (x, y)‖

= 2p M p
1 M2 M

∫
�

|〈(x, y), ψ(ω)〉|pdµ(ω). �
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Corollary 2.12. Let X1, · · · , Xn be reflexive Banach spaces. Suppose that Fi :

�→ X∗i , are cp-frames for X i for all i ∈ N. If R(T ∗F j
) ∩

(∑n
i=1i 6= j

R(T ∗Fi
)
)
= 0

for each j ∈ N and
∑n

i=1 R(T ∗Fi
) is a closed subspace of Lq(�,µ)∗, then the map

η : � →
(⊕n

i=1 X i
)∗ defined by η(ω) = (F1(ω), · · · , Fn(ω)) is a cp-frame for⊕n

i=1 X i .

3. Continuous q-Riesz bases

Throughout this paper X is a reflexive Banach space.

Definition 3.1. Let 1< q <∞. A mapping F :�→ X∗ is called a cq-Riesz basis
for X∗ if

(i) {x : 〈x, F(ω)〉 = 0, w ∈�} = {0},

(ii) F is weakly measurable, and

(iii) the operator TF : Lq(�,µ)→ X∗ weakly defined by

〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω), x ∈ X, φ ∈ Lq(�,µ),

is well defined and there are positive constants A and B such that

A‖φ‖q ≤ ‖TFφ‖X∗ ≤ B‖φ‖q , φ ∈ Lq(�,µ).

A and B are called, respectively, the lower and upper cq-Riesz basis bounds of F .

Theorem 3.2. Let F : �→ X∗ be a cq-Riesz basis for X∗ with cq-Riesz basis
bounds A and B. Then F is a cp-frame for X with cp-frame bounds A and B.

Proof. Since F is a cq-Riesz basis for X∗, the operator TF is well defined, bounded
and surjective. By Theorem 2.6, F is a cp-frame for X . The upper cq-Riesz basis
bound coincide with the upper cp-frame bound by Theorem 2.5. The analogue
statement for the lower bound follows from [Dunford and Schwartz 1958, p. 479]
and Theorem 2.6. �

Theorem 3.3. Let F :�→ X∗ be a cp-frame for X. Then the following statements
are equivalent:

(i) F is a cq-Riesz basis for X∗.

(ii) TF is injective.

(iii) R(UF )= L p(�,µ).

Proof. (i) =⇒ (ii) By the definition of cq-Riesz basis the proof is evident.

(ii) =⇒ (i) TF is well defined, bounded and onto by Theorem 2.6, and is injective
by (ii), so it has a bounded inverse. Therefore F is a cq-Riesz basis for X∗.
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(i) =⇒ (iii) By assumption, TF has a bounded inverse on R(TF ) = X∗. By
Lemma 1.5, T ∗F is surjective and Lemma 2.4, implies that R(UF )= L p(�,µ).

(iii) =⇒ (i) is clear. �

4. Maps of cp-frames and their invertibility

In this section, we need a mapping from the Banach space L p(�,µ) into its dual
space, Lq(�,µ). For this we use the concept of duality mapping.

First recall that a Banach space X is said to be:

• strictly convex if, whenever x, y ∈ X with x 6= y, ‖x‖ = ‖y‖ = 1, then
‖λx + (1− λ)y‖< 1 for λ ∈ (0, 1);

• uniformly convex if the conditions {xi } ⊆ X , {yi } ⊆ X , ‖xi‖ ≤ 1, ‖yi‖ ≤ 1,
limi→∞ ‖xi + yi‖ = 2, imply that limi→∞ ‖xi − yi‖ = 0.

Definition 4.1. The mapping φX of X into the set of subsets of X∗, defined by

φX x = {x∗ ∈ X∗ : x∗(x)= ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖}

is called the duality mapping on X .

By the Hahn–Banach theorem φX x is nonempty for all x ∈ X and φX 0 = 0. In
general the duality mapping is set-valued, but for certain spaces it is single-valued
and such spaces are called smooth.

Proposition 4.2 [Dragomir 2004]. (i) If X∗ is strictly convex then for each x ∈ X ,
φX x consists of unique element x∗ ∈ X∗.

(ii) If X and X∗ are strictly convex and X is reflexive then φX is bijective.

(iii) If H is a Hilbert space then φH x = x for each x ∈ H.

Remark 4.3. We can deduce by [Carothers 2005, Corollary 11.13] and [Martin
1976, p. 12] that Lq(�,µ) is strictly convex.

The next statement is clear from the definition of duality mapping on L p(�,µ):

Proposition 4.4. For all nonzero ψ ∈ L p(�,µ) we have φL p(�,µ)ψ =
ψ |ψ |p−2

‖ψ‖
p−2
p

.

Definition 4.5. Let F : � → X∗ be a cp-frame for X . The bounded mapping
SF : X → X∗ defined by SF = TF (K q)−1φL p(�,µ)UF will be called a cp-frame
mapping of F .

Proposition 4.6. Suppose that F :�→ X∗ is a cp-frame for X with frame bounds
A and B. Then SF has the following properties:

(i) SF =U∗FφL p(�,µ)UF .

(ii) A2
‖x‖2 ≤ SF x(x)≤ B2

‖x‖2, x ∈ X.
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Proof. Clear from the definition of SF and of the duality mapping on L p(�,µ). �

Definition 4.7. A mapping [ · , · ] from X × X into R is said to be a semi-inner
product on X if it has these properties:

(i) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 if and only if x = 0.

(ii) [αx +βy, z] = α[x, z] +β[y, z] for all α, β ∈ R and for all x, y, z ∈ X .

(iii) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X .

If X∗ is strictly convex, then there is a unique semi-inner product on X such that
‖x‖X = [x, x]1/2 for all x ∈ X and φX x(y) = [y, x] for all x, y ∈ X [Dragomir
2004], where φX is the duality mapping on X . In this case an operator A : X→ X
is said to be adjoint abelian if [Ax, y] = [x, Ay] for all x, y ∈ X or equivalently
A∗φX = φX A [Stampfli 1969].

An element x ∈ X is called (Giles-)orthogonal to y ∈ X , and we write x ⊥ y, if
[y, x] = 0. If M is a linear subspace of X , the orthogonal complement of M in the
Giles sense is denoted by M⊥ = {x ∈ X; x ⊥ y, y ∈ M}.

Remark 4.8. Let F : �→ X∗ be a cp-frame for X . Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ), then clearly the opera-
tor TF |(Ker(TF ))⊥ is invertible and T⊥F = (TF |(Ker(TF ))⊥)

−1 is a bounded right inverse
of TF .

Definition 4.9. Let F : �→ X∗ be a cp-frame for X . Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ), we define the mapping
K : X∗→ X by K =3−1

X (T
⊥

F )
∗φLq (�,µ)T⊥F .

Lemma 4.10. Let F : �→ X∗ be a cp-frame for X. Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ).

(i) K (g)(g)≥ ‖g‖2X∗/B2, where B denotes an upper cp-frame bound for F.

Moreover, when the operator T⊥F TF is adjoint abelian, the following assertions
hold:

(ii) SF is invertible and S−1
F = K .

(iii) S−1
F =U−1

F (K p)−1φLq (�,µ)T⊥F .

Proof. The proof is similar to that of [Stoeva 2008, Theorem 5.1]. �

Definition 4.11. Two cp-frames F :�→ X∗ and G :�→ X∗ for X are similar if
there exists an invertible operator V : X→ X such that F(ω)= V ∗G(ω) for each
ω ∈�.

Theorem 4.12. Let the assumptions in Definition 4.9 be satisfied for F : �→ X∗

and G : �→ X∗. Suppose that T⊥F TF and T⊥G TG are adjoint abelian operators.
Then F and G are similar if and only if their analysis operators have same ranges.



cp-BESSEL MAPPINGS AND cp-FRAMES IN BANACH SPACES 177

Proof. Suppose F and G are similar. Then there exists an invertible operator
V : X→ X such that F(ω)= V ∗G(ω), ω ∈�. Let φ ∈ R(UF ). Then there exists
x ∈ X , such that

φ(ω)=UF x(ω)= 〈x, F(ω)〉 = 〈x, V ∗G(ω)〉 =UG(V x)(ω), ω ∈�.

So φ ∈ R(UG). By a similar argument, R(UG)⊆ R(UF ).
Conversely, assume R(UF ) = R(UG). For each x ∈ X , there is y ∈ X such

that UF (x) = UG(y) or 〈x, F(ω)〉 = 〈y,G(ω)〉, ω ∈ �. We define the operator
V : X→ X by V x = y. Since the cp-frame mappings for F and G are invertible,
y is uniquely determined by V and V is linear, one to one and surjective. �

5. Duals of cp-Bessel mappings

In this section, X is an infinite-dimensional, reflexive Banach space.

Definition 5.1 [Fabian et al. 2001]. A sequence {ei }
∞

i=1 in X is called a Schauder
basis of X , if for each x ∈ X there is a unique sequence of scalars (ai )

∞

i=1, called
the coordinates of x , such that x =

∑
∞

i=1 ai ei .

Let {ei }
∞

i=1 be a Schauder basis of a Banach space X . For j ∈ N and x=
∑
∞

i=1 ai ei ,
denote f j (x) = a j . Using [Fabian et al. 2001, Theorem 6.5], f j ∈ X∗. The
functionals { fi }

∞

i=1 are called the associated biorthogonal functionals (coordinate
functionals) to {ei }

∞

i=1 and for each x ∈ X , we have x =
∑
∞

i=1 fi (x)ei .
We will denote the biorthogonal functionals { fi } by {e∗i }, and say that {ei , e∗i } is

a Schauder basis of X . Such a Schauder basis is called shrinking if span{e∗i } = X∗.
It is called boundedly complete if

∑
∞

i=1 ai ei converges whenever the scalars ai are
such that supn ‖

∑n
i=1 ai ei‖<∞.

Theorem 5.2 [Fabian et al. 2001]. Let {ei , e∗i } be a Schauder basis of a Banach
space X with the canonical projections pn : X → X , pn(

∑
∞

i=1 ai ei ) =
∑n

i=1 ai ei

for each n ∈ N. Then the following assertions are equivalent:

(i) {ei , e∗i } is shrinking.

(ii) {e∗i , ei } is a Schauder basis of X∗.

Theorem 5.3 [Fabian et al. 2001]. Let X be a Banach space with a Schauder
basis {ei , e∗i }

∞

i=1. Then X is reflexive if and only if {ei , e∗i } is both shrinking and
boundedly complete.

Theorem 5.4. Let F : �→ X∗ be a cp-Bessel mapping for X and G : �→ X∗∗

be a cq-Bessel mapping for X∗. Then the following assertions are equivalent:

(i) For each x ∈ X , x =3−1
X TG(K p)−1T ∗F3X x.

(ii) For each g ∈ X∗, g = TF (K q)−1T ∗G(3
∗

X )
−1g.

(iii) For each x ∈ X and g ∈ X∗, 〈x, g〉 =
∫
�
〈x, F(ω)〉〈g,G(ω)〉 dµ(ω).
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(iv) For each Schauder basis {ei , e∗i } of X ,

〈ei , e∗j 〉 =
∫
�

〈ei , F(ω)〉〈e∗j ,G(ω)〉 dµ(ω), i, j ∈ N.

Proof. (i) =⇒ (ii) Let x ∈ X and g ∈ X∗. We have

〈x, g〉 = 〈3−1
X TG(K p)−1T ∗F3X x, g〉 = 〈TG(K p)−1T ∗F3X x, (3∗X )

−1g〉

= 〈(K p)−1T ∗F3X x, T ∗G(3
∗

X )
−1g〉 = 〈T ∗F3X x,3q(K q)−1T ∗G(3

∗

X )
−1g〉

= 〈3X x, T ∗∗F 3q(K q)−1T ∗G(3
∗

X )
−1g〉

= 〈3X x, (3−1
X )
∗TF (K q)−1T ∗G(3

∗

X )
−1g〉

= 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉.

So, for each g ∈ X∗,
g = TF (K q)−1T ∗G(3

∗

X )
−1g.

(ii) =⇒ (iii) For all x ∈ X and g ∈ X∗,

〈x, g〉 = 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉

=

∫
�

〈x, F(ω)〉(K q)−1T ∗G(3
∗

X )
−1g(ω) dµ(ω). (5-1)

But for all ψ ∈ L p(�,µ) and h ∈ X∗∗∗ (the dual of X∗∗),

〈ψ, T ∗Gh〉 = 〈TGψ, h〉 =
∫
�

ψ(ω)〈3∗X h,G(ω)〉 dµ(ω)= K q(〈3∗X h,G〉)(ψ).

So

T ∗Gh = K q(〈3∗X h,G〉). (5-2)

Therefore, by (5-1) and (5-2), we have

〈x, g〉 =
∫
�

〈x, F(ω)〉(K q)−1K q(〈3∗X (3
∗

X )
−1g,G(ω)〉) dµ(ω)

=

∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω).

(iii) =⇒ (ii) This is clear from the proof of (ii) =⇒ (iii).

(ii) =⇒ (i) For all x ∈ X and g ∈ X∗, we have

〈x, g〉 = 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉 = 〈 x,3∗X T ∗∗F 3q(K q)−1T ∗G(3

∗

X )
−1g〉

= 〈T ∗F (3X x),3q(3q)
−1((K p)∗)−1T ∗G(3

∗

X )
−1g〉

= 〈TG(K p)−1T ∗F (3X x), (3∗X )
−1g〉 = 〈3−1

X TG(K p)−1T ∗F (3X x), g〉.
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Since X∗ separates the points of X , we get

x =3−1
X TG(K p)−1T ∗F (3X x), x ∈ X.

(iii) =⇒ (iv) is obvious.

(iv) =⇒ (iii) For all x ∈ X and g ∈ X∗,∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω)= K p(〈x, F〉)(〈g,G〉). (5-3)

By Theorem 5.2 and 5.3, {e∗i , ei } and {3ei , e∗i } are Schauder basis of X∗ and X∗∗,
respectively. Therefore

K p(〈x, F〉)(〈g,G〉)= K p
(〈

x,
∞∑

i=1

〈ei , F〉e∗i

〉)(〈
g,
∞∑
j=1

〈e∗j ,G〉3X e j

〉)

=

( ∞∑
i, j=1

〈x, e∗i 〉〈g,3X e j 〉

)
K p(〈ei , F〉)(〈e∗j ,G〉)

=

( ∞∑
i, j=1

〈x, e∗i 〉〈g,3X e j 〉

)∫
�

〈ei , F(ω)〉〈e∗j ,G(ω)〉 dµ(ω)

=

∞∑
i, j=1

〈x, e∗i 〉〈e j , g〉〈ei , e∗j 〉

=

〈 ∞∑
i=1

〈x, e∗i 〉ei ,

∞∑
j=1

〈e j , g〉e∗j

〉
= 〈x, g〉.

So, by (5-3), ∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω)= 〈x, g〉. �

Definition 5.5. Let F :�→ X∗ be a cp-Bessel mapping for X and G :�→ X∗∗

be a cq-Bessel mapping for X∗. We say that (F,G) is a c-dual pair if one of the
assertions of Theorem 5.4 is satisfied.

In this case F is called a cp-dual of G and by Theorem 5.4, we can say that G
is a cq-dual of F .

Theorem 5.6. Let (F,G) be a c-dual pair. Then F is a cp-frame for X and G is a
cq-frame for X∗.

Proof. For each x ∈ X , we have

‖x‖ = ‖3−1
X TG(K p)−1T ∗F3X x‖ = ‖TG(K p)−1T ∗F3X x‖

≤ ‖TG‖‖(K p)−1T ∗F3X x‖ = ‖TG‖

∫
�

|〈x, F(ω)〉|pdµ(ω).
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Since (F,G) is a c-dual pair, ‖TG‖ is nonzero. Thus

‖x‖
‖TG‖

≤

(∫
�

|〈x, F(ω)〉|pdµ(ω)
)1/p

.

Hence F is a cp-frame for X . We prove similarly that G is a cq-frame for X∗. �

Definition 5.7. Let F :�→ X∗ be a cp-frame for X . We say that F is independent
if, for every measurable function φ :�→ C and every x ∈ X , the condition∫

�

〈x, F(ω)〉φ(ω) dµ(ω)= 0

implies that φ = 0.

Theorem 5.8. Let F : �→ X∗ be a cp-frame for X and µ(E) ≥ k > 0 for each
measurable set E except E =∅.

(i) If F is an independent cp-frame for X , there exists a unique cq-frame, G :
�→ X∗∗ for X∗, such that (F,G) is a c-dual pair.

(ii) If Ker(TF ) and (Ker(TF ))
⊥ are topologically complementary in Lq(�,µ),

then there exists a cq-frame G :�→ X∗∗ for X∗, such that (F,G) is a c-dual
pair.

Proof. (i) Let F be an independent cp-frame for X . Then TF : Lq(�,µ)→ X∗ is
invertible. We define G(ω) = p(ω)(TF )

−1, w ∈ �, where p(ω) : Lq(�,µ)→ C,
defined by p(ω)(φ)=φ(ω). Now we show that for a fix ω0 ∈�, p(ω0) is bounded.

For each φ ∈ Lq(�,µ), ‖φ‖ ≤ 1, put 1= {ω ∈� : |φ(ω)| ≥ |φ(ω0)|}. Clearly
1 is nonempty and measurable. Since

‖φ‖q =

∫
�

|φ(ω)|q dµ(ω)≥
∫
1

|φ(ω)|q dµ(ω)≥ µ(1)|φ(ω0)|
q
≥ k|φ(ω0)|

q ,

and

‖p(ω0)‖ = sup
‖φ‖≤1

|p(ω0)(φ)| = sup
‖φ‖≤1

|φ(ω0)| ≤ sup
‖φ‖≤1

(1
k

)1/q
‖φ‖ =

(1
k

)1/q
,

for each ω ∈ �, p(ω) is bounded. Therefore G(ω) ∈ X∗∗. By the definition of
G(ω), for each g ∈ X∗, the mapping ω→ 〈g,G(ω)〉 is measurable and

‖g‖
‖TF‖

≤

(∫
�

|〈g,G(ω)〉|qdµ(ω)
)1/q

= ‖(TF )
−1g‖ ≤ ‖(TF )

−1
‖‖g‖.

Therefore, G is a cq-frame for X∗ with bounds ‖TF‖
−1 and ‖(TF )

−1
‖.

By the definition of G, T ∗G = K q T−1
F 3∗X . So, for each g ∈ X∗, we have

g = TF T−1
F (g) = TF (K q)−1T ∗G(3

∗

X )
−1g. Therefore (F,G) is a c-dual pair by

Theorem 5.4.
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Now we will show the uniqueness of G. Let (F,W ) be another c-dual pair.
Then

TF (K q)−1T ∗G(3
∗

X )
−1
= TF (K q)−1T ∗W (3

∗

X )
−1
= IX∗ .

Thus T ∗G = T ∗W . So W = G.

(ii) Since R(TF )= X∗, by Remark 4.8, there is an operator T⊥F : X
∗
→ Lq(�,µ)

such that TF T⊥F = IX∗ . For each g ∈ X∗, let φ = T⊥F g. Therefore for all x ∈ X and
g ∈ X∗

〈x, g〉 = 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)=
∫
�

T⊥F g(ω)〈x, F(ω)〉 dµ(ω).

For each ω ∈�, define G(ω) : X∗→ C,G(ω)(g)= (T⊥F g)(ω). Then

|G(ω)g| = |p(ω)(T⊥F g)| ≤
(1

k

)1/q
‖T⊥F ‖‖g‖,

where p(ω) is defined in the proof of (i). Therefore G is weakly measurable and
G(ω) ∈ X∗∗. Since TF T⊥F = IX∗ , we have, for each g ∈ X∗,

‖g‖
‖TF‖

≤

(∫
�

|〈g,G(ω)〉|qdµ(ω)
)1/q

= ‖T⊥F g‖q ≤ ‖T⊥F ‖‖g‖. �

Theorem 5.9. Let F : �→ X∗ be an independent cp-frame for X. Suppose that
µ(E)≥ k > 0 for each measurable set E except E =∅. Let ω0 ∈� be such that

µ({ω0}) 6=
1

〈F(ωo),G(ωo)〉
,

where G : �→ X∗∗ is the unique cq-dual of F , obtained in Theorem 5.8. Then
F :� \ {ω0} → X∗ is a cp-frame for X.

Proof. It is clear that the upper frame condition holds. For the lower frame bound,
we have

〈x, F(ω0)〉 =

∫
�

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω), x ∈ X.

Therefore 〈x, F(ω0)〉 is given by∫
�\{ω0}

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω)+〈x, F(ω0)〉〈F(ω0),G(ω0)〉µ({ω0}),

that is,

〈x, F(ω0)〉=
1

1−µ({ω0})〈F(ω0),G(ω0)〉

∫
�\{ω0}

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω).
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Let A be the lower frame bound of F . For each x ∈ X ,

|〈x, F(ω0)〉|
p
≤ K

∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω),

where

K =
(

1
1−µ({ω0})〈F(ω0),G(ω0)〉

)p(∫
�\{ω0}

|〈F(ω0),G(ω)〉|qdµ(ω)
)p/q

.

Therefore, for each x ∈ X ,

A‖x‖X ≤

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

+
(
|〈x, F(ω0)〉|

pµ({ω0})
)1/p

≤

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

+

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

K 1/p(µ({ωo}))
1/p

=
(
1+ K 1/p(µ({ωo}))

1/p)(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

.

Therefore F :� \ {ω0} → X∗ is a cp-frame for X with lower frame bound

A
1+ K 1/p(µ({ωo}))1/p . �

Corollary 5.10. Let F : �→ X∗ be a cp-frame for X and assume µ(E) ≥ k > 0
for each measurable set E except E =∅. Let ω0 ∈� be such that

µ({ω0}) 6=
1

〈F(ωo),G(ωo)〉
.

Suppose Ker(TF ) and (Ker(TF ))
⊥ are topologically complementary in Lq(�,µ).

Then F :� \ {ω0} → X∗ is a cp-frame for X.

6. Perturbation of cp-frames

Perturbation of discrete frames has been discussed in [Cazassa and Christensen
1997]. The proof of the following theorem is based on the following lemma, which
was proved in [Cazassa and Christensen 1997].

Lemma 6.1. Let U be a linear operator on a Banach space X and assume that
there exist λ1, λ2 ∈ [0, 1) such that for each x ∈ X ,

‖x −U x‖ ≤ λ1‖x‖+ λ2‖U x‖.
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Then U is bounded and invertible. Moreover, for each x ∈ X ,

1− λ1

1+ λ2
‖x‖ ≤ ‖U x‖ ≤

1+ λ1

1− λ2
‖x‖

and
1− λ2

1+ λ1
‖x‖ ≤ ‖U−1x‖ ≤

1+ λ2

1− λ1
‖x‖.

Theorem 6.2. Let F be an independent cp-frame for X andµ(E)≥ k>0, for each
measurable set E , except E =∅. Suppose that G :�→ X∗ is weakly measurable
and assume that there exist constants λ1, λ2, γ ≥ 0 with max(λ1 + γ /A, λ2) < 1.
Suppose also that, for all φ ∈ Lq(�,µ) and x in the unit sphere of X ,∣∣∣∣∫
�

φ(ω)〈x, F(ω)−G(ω)〉 dµ(ω)
∣∣∣∣

≤ λ1

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ λ2

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣+ γ ‖φ‖.

Then G :�→ X∗ is a cp-frame for X with bounds

A
1− (λ1+ γ /A)

1+ λ2
and B

1+ λ1+ γ /B
1− λ2

,

where A and B are the frame bounds of F.

Proof. Let X1 = {x ∈ X : ‖x‖ = 1} be the unit sphere of X . We first prove that G
is a cp-Bessel mapping for X . By assumption, for all x ∈ X and φ ∈ Lq(�,µ),∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣

≤

∣∣∣∣∫
�

φ(ω)〈x, F(ω)−G(ω)〉 dµ(ω)
∣∣∣∣+ ∣∣∣∣∫

�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣

≤ (1+ λ1)

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ λ2

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣+ γ ‖φ‖,

which implies that∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣≤ 1+ λ1

1− λ2

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ γ

1− λ2
‖φ‖

≤

(
1+ λ1

1− λ2
B+

γ

1− λ2

)
‖φ‖.

Let K : Lq(�,µ)→ X∗ be defined by

〈x, Kφ〉 =
∫
�

φ(ω)〈x,G(ω)〉 dµ(ω), x ∈ X, φ ∈ Lq(�,µ).
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Then

‖Kφ‖ = sup
‖x‖=1

|〈x, Kφ〉| = sup
‖x‖=1

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣

≤

(
1+ λ1

1− λ2
B+

γ

1− λ2

)
‖φ‖.

Therefore K is well defined and bounded. So by Theorem 2.5, G is a cp-Bessel
mapping for X with upper bound B(1+ λ1+ γ /B)/(1− λ2).

We define V = K (K q)−1T ∗W (3
∗

X )
−1, for which W is the unique cq-dual of F

which is obtained in Theorem 5.8. Then, for all x ∈ X and g ∈ X∗,

〈x, V g〉 = 〈x, K (K q)−1T ∗W (3
∗

X )
−1g〉 =

∫
�

〈g,W (ω)〉〈x,G(ω)〉 dµ(ω)

and

〈x, g〉 =
∫
�

〈x, F(ω)〉〈g,W (ω)〉 dµ(ω).

Let φg :�→C be defined by φg(ω)= 〈g,W (ω)〉. Clearly φg ∈ Lq(�,µ). There-
fore, by assumption, we deduce that for all x ∈ X1 and g ∈ X∗,

|〈x, g− V g〉| ≤ λ1|〈x, g〉| + λ2|〈x, V g〉| + γ ‖φg‖.

Hence

‖g− V g‖ = sup
‖x‖=1

|〈x, g− V g〉| ≤ λ1‖g‖+ λ2‖V g‖+ γ ‖φg‖

≤

(
λ1+

γ

A

)
‖g‖+ λ2‖V g‖.

By Lemma 6.1, V is invertible and

‖V ‖ ≤
1+ λ1+ γ /A

1− λ2
, ‖V−1

‖ ≤
1+ λ2

1− (λ1+ γ /A)
.

Then

〈x, g〉 = 〈x, V V−1g〉 =
∫
�

〈V−1g,W (ω)〉〈x,G(ω)〉 dµ(ω),

and we obtain

‖x‖ = ‖3X x‖ = sup
‖g‖=1

|〈g,3X x〉| = sup
‖g‖=1

|〈x, g〉|

= sup
‖g‖=1

|

∫
�

〈V−1g,W (ω)〉〈x,G(ω)〉 dµ(ω)|

≤ sup
‖g‖=1

(∫
�

|〈V−1g,W (ω)〉|qdµ(ω)
)1/q(∫

�

|〈x,G(ω)〉|pdµ(ω)
)1/p

.
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Therefore, for each x ∈ X ,

A
1− (λ1+ γ /A)

1+ λ2
‖x‖ ≤

(∫
�

|〈x,G(ω)〉|pdµ(ω)
)1/p

. �
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The multidimensional Frobenius problem
Jeffrey Amos, Iuliana Pascu, Vadim Ponomarenko,

Enrique Treviño and Yan Zhang

(Communicated by Scott Chapman)

We provide a variety of results concerning the problem of determining maximal
vectors g such that the Diophantine system Mx = g has no solution: conditions
for the existence of g, conditions for the uniqueness of g, bounds on g, deter-
mining g explicitly in several important special cases, constructions for g, and a
reduction for M .

1. Introduction

Let m, x be column vectors from the nonnegative integers N0. Georg Frobenius
focused attention on determining the maximal integer g such that the linear Dio-
phantine equation mT x= g has no solutions. This problem has attracted substantial
attention in the last 100 years; for a survey see [Ramírez Alfonsín 2006]. In this
paper, we consider the problem of determining maximal vectors g such that the
system of linear Diophantine equations Mx = g has no solutions.

For any real matrix X and any S ⊆ R, we write X S for {Xs : s ∈ Sk
}, where k

denotes the number of columns of X . We write X1 for the vector in X{1}. We fix
M ∈ Zn×(n+m), and write M = [A|B], where A is n × n. We call AR≥0 the cone,
and MN0 the monoid. |A| denotes henceforth the absolute value of det A, if A is a
square matrix; but still the cardinality of A, if A is a set. If |A| 6= 0, then we follow
[Novikov 1992] and call the cone volume. If each column of B lies in the volume
cone, then we call M simplicial. Unless otherwise noted, we assume henceforth
that M is simplicial. Note that if n ≤ 2 and there is some half-space containing all
the columns of M , then we may always rearrange columns to make M simplicial.
For x ∈ Rn , we call x +MR≥0 = x + AR≥0 the cone at x , writing cone(x).

Let u, v ∈Rn . If u−v ∈ AZ, then we write u≡ v and say that u, v are equivalent
mod A. If u−v ∈ AR≥0 , then we write u ≥ v. If u−v ∈ AR>0 , then we write u � v.
Note that u � v implies u ≥ v, and u � v ≥w implies u �w; however, u  v does

MSC2010: 11B75, 11D04, 11D72.
Keywords: Frobenius, coin-exchange, linear Diophantine system.
Research supported in part by NSF grant 0097366.
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not imply that u � v. For v ∈ Rn , we write (v)i for the i-th coordinate of v, and
[�v] = {u ∈Zn

: u � v}. We say that v is complete if [�v] ⊆MN0 . We set G, more
precisely G(M), to be the set of all ≥-minimal complete vectors. We call elements
of G Frobenius vectors; they are the vector analogue of g that we will investigate.

Set Q = (1/|A|)Z ⊆ Q. Although G is defined in Rn , in fact it is a subset of
Qn , by the following result. Furthermore, the columns of B are in AQ≥0 ; hence
MQ≥0 = AQ≥0 and without loss we work over Q rather than over R.

Proposition 1.1. Let v ∈ Rn . There exists v? ∈ Qn with [� v] = [� Av?] and
v ≥ Av?.

Proof. We choose v? ∈ Qn such that A−1v − v? = ε = (ε1, ε2, . . . , εn) with 0 ≤
εi < 1/|A|. Multiplying by A we get v − Av? = Aε; hence v ≥ Av?. We will
now show that for u ∈ Zn , u � v if and only if u � Av?. If u � v, then u � Av?

because u � v ≥ Av?. On the other hand, suppose that u � Av? and u � v.
Hence u − Av? ∈ AR>0 and u − v ∈ AR \ AR>0 . Multiplying by A−1 we get
A−1u−v? ∈ IR>0 and A−1u−A−1v ∈ IR\ IR>0 . Therefore, there is some coordinate
i with (A−1u − v?)i > 0 and (A−1u − A−1v)i ≤ 0. Because u ∈ Zn and A is an
integer matrix, we have A−1u ∈ Qn; hence in fact (A−1u − v?)i ≥ 1/|A|. Now,
0≥ (A−1u−A−1v)i = (A−1u−v?−(A−1v−v?))i = (A−1u−v?)i−εi ≥1/|A|−εi .
However, this contradicts εi < 1/|A|. �

Let x, y ∈ MQ≥0 . We write x = Ax ′, y = Ay′, with x ′, y′ ∈ (Q≥0)n , define z′

via (z′)i = max((x ′)i , (y′)i ), and set lub(x, y) = Az′. We have lub(x, y) ∈ MQ≥0 ,
although in general lub(x, y) /∈ MN0 (even if x, y ∈ MN0) because A−1 B need not
have integer entries.

For u ∈ MQ , we set V (u) = (u + AQ∩(0,1]) ∩ Zn . It was known to Dedekind
[1877] that |V (u)| = |A|, and that V (u) is a complete set of coset representatives
mod A (as restricted to Zn). Note that u is complete if and only if V (u)⊆ MN0 .

The following equivalent conditions on M generalize the one-dimensional no-
tion of relatively prime generators. Portions of the following have been repeatedly
rediscovered [Frumkin 1981; Ivanov and Shevchenko 1975; Novikov 1992; Ryc-
erz 2000; Vizvári 1987]. We assume henceforth, unless otherwise noted, that M
possesses these properties. We call such M dense.

Theorem 1.2. The following are equivalent:

(1) G is nonempty.

(2) MZ = Zn .

(3) For all unit vectors ei (1≤ i ≤ n), ei ∈ MZ.

(4) There is some v ∈ MN0 with v+ ei ∈ MN0 for all unit vectors ei .

(5) The GCD of all the n× n minors of M has absolute value 1.

(6) The elementary divisors of M are all 1.
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Proof. The proof follows the plan (1)⇐⇒ (4)⇐⇒ (3)⇐⇒ (2)⇐⇒ (6)⇐⇒ (5).

(1)⇐⇒ (4): Let g ∈ G. Choose v ∈ [�g] far enough from the boundaries of the
cone so that v+ ei is also in [�g] for all unit vectors ei . Because g is complete,
v and v + ei are all in MN0 . The other direction is proved in [Novikov 1992,
Proposition 5].

(4)⇐⇒ (3): For one direction, write ei = M fi . Set k =maxi ‖ fi‖∞. Set v= Mkn .
We see that v + ei = M(kn

+ fi ) ⊆ MN0 . For the other direction, let 1 ≤ i ≤ n.
Write v = Mw, v+ ei = Mw′, where w,w′ ∈Nn

0 . Hence, ei = M(w′−w)⊆ MZ.

(3)⇐⇒ (2): Let v ∈ Zn; write v = (v1, v2, . . . , vn). Write ei = M fi , for fi ∈ Zn .
Then v = M

∑
vi fi , as desired. The other direction is trivial.

(2)⇐⇒ (6): We place M in Smith normal form: write M = L N R, where N is
a diagonal matrix of the same dimensions as M , and L , R are square matrices,
invertible over the integers. The diagonal entries of N are the elementary divisors
of M . We therefore have that (2)⇐⇒ N = [I |0] ⇐⇒ (6).

(6)⇐⇒ (5): The product of the elementary divisors is known (see, for example,
[van der Waerden 1967, Remark 3 in Section 12.2]) to be the absolute value of the
GCD of all n × n minors of M . If they are each one, then their product is one.
Conversely, if their product is one, then they must each be one since they are all
nonnegative integers. �

Classically, there is a second type of Frobenius number f , maximal so that
mT x = f has no solutions with x from N (rather than N0). This does not alter
the situation; in [Brauer and Shockley 1962] it was shown that f = g+mT 1. A
similar situation holds in the vector context.

Call v f-complete if [�v] ⊆ MN.

Proposition 1.3. Let F be the set of all ≥-minimal f-complete vectors. Then F =
G+M1.

Proof. It suffices to show that v∈Qn is complete if and only if v+M1 is f-complete.
The following conditions are equivalent for an integral vector u: (1) u ∈ [�v+M1];
(2) u� v+M1; (3) (u−M1)−v ∈MR≥0 ; (4) (u−M1)� v; (5) (u−M1)∈ [�v].
Now, suppose that v is complete. Let u ∈[�v+M1]; hence (u−M1)∈[�v]⊆MN0

and therefore u ∈ MN. So v+M1 is f-complete. On the other hand, suppose that
v+M1 is f-complete. Let (u−M1) ∈ [�v]; hence u ∈ [�v+M1] ⊆ MN. Hence
u−M1 ⊆ MN−M1 = MN0 , and v is complete. �

Having established the notation and basic groundwork for the problem, we
now present two useful techniques: the method of critical elements, and the MIN
method. Each will be shown to characterize the set G.
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2. The method of critical elements

For a vector u and i ∈ [1, n], let

C i (u)= {v : v ∈ Zn
\MN0, v = u+ Aw, (w)i = 0, (w) j ∈ (0, 1] for j 6= i}.

This set captures all lattice points missing from the monoid, in the i-th face of the
cone at u, that are minimal mod A. Let C(u)=

⋃
i∈[1,n] C

i (u), which is a disjoint
union of finite sets. We call elements of C(u) critical. Note that if v ∈ C i (u),
then v+ Aei ∈ V (u). Critical elements characterize G, as shown by the following
theorem.

Theorem 2.1. Let x be complete. The following statemements are equivalent.

(1) x ∈ G.

(2) Each face of cone(x) contains at least one lattice point not in the monoid.

(3) C i (x) 6=∅ for all i ∈ [1, n].

Proof. We write x = Ax ′. For each i ∈ [1, n], set x i
= x − (1/|A|)Aei and Si =

[�x i
] \ [�x]. Observe that Si = {Au ∈ Zn

: (u) j > (x ′) j (for j 6= i), (u)i = (x ′)i };
the Si are the lattice points in the i-th face of cone(x).

(1)=⇒ (2) If Si ⊆ MN0 , then x i is complete, which violates x ∈ G.

(2) =⇒ (3) Pick any minimal y ∈ Si \ MN0 . Suppose that (A−1(y − x)) j /∈ (0, 1]
for j 6= i ; in this case, y− Ae j would also be in Si \MN0 , violating the minimality
of y. Hence y ∈ C i (x), and thus C i (x) 6=∅.

(3) =⇒ (1) If x? < x , then x? ≤ x i for some i . But no x i is complete; hence x? is
not complete. Thus x is ≥-minimal and complete and thus x ∈ G. �

Critical elements can also be used to test for uniqueness of Frobenius vectors.
Set ei = 1− ei = (1, 1, . . . , 1, 0, 1, 1, . . . , 1).

Theorem 2.2. Let g ∈ G. Then |G| = 1 if and only if for each i ∈ [1, n] there is
some ci

∈ C i (g) with ci
+ k Aei /∈ MN0 for all k ∈ N0.

Proof. Suppose that for each i ∈[1, n] there is some ci
∈C i (g)with ci

+k Aei /∈MN0

for all k. Let g′ ∈G. If g′ 6= g, then for some i we must have (A−1g′)i < (A−1g)i .
As k→∞, (A−1ci

+ kei ) j →∞ (for j 6= i), but also (A−1ci
+ kei )i = (A−1g)i

for all k. Therefore, for some k we have ci
+k Aei � g′. Hence g′ is not complete,

which is violative of our assumption. Hence |G| = 1.
Now, let g ∈ G be unique, let i ∈ [1, n] be such that each ci

∈ C i (g) has some
k(i) with ci

+ k(i)Aei ∈ MN0 . If ci
+ k Aei ∈ MN0 , then ci

+ k ′Aei ∈ MN0 for any
k ′ ≥ k; hence because |C i (g)| <∞ there is some K ∈ N0 with ci

+ K Aei ∈ MN0
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for all ci
∈ C i (g). Now, set

g? = g+ (K + 1)Aei − (1/|A|)Aei ,

S = [�g?]\[�g] ⊆ {u ∈ Zn
: (A−1(u−g))i = 0, (A−1(u−g)) j ≥ K + 1 ( j 6= i)}.

We now show that S\MN0 is empty; otherwise, choose u therein. Set u′=u−Aa,
where (a)i = 0 and, for j 6= i ,

(a) j =

{⌊
(A−1(u− g)) j

⌋
if (A−1(u− g)) j /∈ Z,

(A−1(u− g)) j − 1 if (A−1(u− g)) j ∈ Z,

Then u′ ∈Zn
\MN0 , since otherwise u ∈MN0 . We also have (A−1(u′−g))i = 0 and

(A−1(u′−g)) j ∈ (0, 1] for j 6= i ; hence u′ ∈C i (g). But then u′+K Aei ∈MN0 and
hence u ∈ MN0 since u− (u′+ K Aei ) ∈ AN0 . Hence S ⊆ MN0 and g? is complete.
Now take g′ ∈G with g′≤ g?. We have (A−1g′)i ≤ (A−1g?)i <(A−1g)i and hence
g′ 6= g, which is violative of our hypothesis. �

Our next result generalizes a one-dimensional reduction result in [Johnson 1960]
which is very important because it allows the assumption that the generators are
pairwise relatively prime. The vector generalization unfortunately does not permit
us an analogous assumption in general.

Theorem 2.3. Let d ∈ N and let M = [A|B] be simplicial. Suppose that N =
[A|d B] is dense. Then M is dense, and G(N )= dG(M)+ (d − 1)A1.

Proof. Each n×n minor of M divides a corresponding minor of N , and hence M is
dense. Further, d divides all minors of N apart from |A|, and hence gcd(|A|, d)=
1 = gcd(|A|2, d). We can therefore pick d? ∈ N with d?d ∈ 1+ |A|2N0. For any
v ∈ Qn , we observe that d?dv−v ∈N0|A|2 Qn

=N0|A|Zn
⊆ AZ; hence d?dv≡ v.

Set θ(x)= dx+(d−1)A1n . We will show for any x ∈ Qn that x ∈MN0 if and only
if θ(x)∈ NN0 (in particular, if θ(x)∈ NN0 , then x ∈Zn). One direction is trivial; for
the other, assume θ(x)∈ NN0 . We have dx+d A1n

= A(y+1n)+d Bz, for y ∈Nn
0 ,

and z ∈ Nm
0 . We observe that x + A1n

= A(1/d)(y+ 1n)+ Bz, so x + A1n
≥ Bz.

Also, d?d(x+ A1n)= Ad?(y+1n)+d?d Bz, and hence x+ A1n
≡ Bz. Therefore

x + A1n
− Bz = Aw for some w ∈ Nn

0 . Further, w = (1/d)(y + 1n) so in fact
w ∈ Nn . Hence, x = A(w− 1n)+ Bz ∈ MN0 .

Next, we show that x is M-complete if and only if θ(x) is N -complete. First
suppose that θ(x) is N -complete. Let u ∈ [� x]; we have θ(u) ∈ [� θ(x)] ⊆ NN0 .
Hence u ∈ MN0 so x is M-complete. Now suppose that x is M-complete. Let
u ∈ V (θ(x)). Set u′ ∈ V (x) with du′ ≡ u. We have u = θ(x)+ Aε, u′ = x + Aε′,
where ε, ε′ ∈ (0, 1]n . We compute u−du′ = Aω, where ω= d(1n

−ε′)+ (ε−1n).
Because u ≡ du′ we also have u−du′ = Aα with α ∈ Zn . Since |A| 6= 0, we have
ω= α ∈ Zn . Further, since ε, ε′ ∈ (0, 1]n , each coordinate of d(1n

− ε′)+ (ε−1n)
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is strictly greater than −1 and hence ω ∈ Nn
0 . We have u′ ∈ MN0 since x is M-

complete. But then du′∈ NN0 , and thus u=du′+Aω∈ NN0 . Hence V (θ(x))⊆ NN0

and thus θ(x) is N -complete.
Let g ∈G(M). We will show that θ(g)∈G(N ). Let i ∈ [1, n]. By Theorem 2.1,

there is u ∈ [0, 1]n with ui = 0, u j > 0 (for j 6= i), such that g+ Au ∈ Zn
\MN0 .

We have θ(g+ Au) ∈ Zn
\NN0 . We write θ(g+ Au)= d(g+ Au)+ (d−1)A1n

=

θ(g)+ Adu. Write du = u′ + u′′ where (u′)i = 0, (u′) j ∈ (0, 1], and u′′ ∈ Nn
0 .

We have θ(g)+ Au′ ∈ C i (θ(g)); considering all i gives θ(g) ∈ G(N ). Now, let
g ∈G(N ). We will show that θ−1(g)= (1/d)(g− (d−1)A1n)∈G(M). We again
apply Theorem 2.1 to get an appropriate u with g + Au ∈ Zn

\ NN0 . Note that
g+ A(u+ d1n) ∈ NN0 ; hence

θ−1(g+ A(u+ d1n))= (1/d)(g+ Au+ d A1n
− (d − 1)A1n)

= θ−1(g)+ (1/d)Au+ A1n
∈ MN0 ⊆ Zn.

Thus, θ−1(g+ Au)= (1/d)(g+ Au− (d−1)A1n)= θ−1(g)+ (1/d)Au ∈ Zn . We
therefore have θ−1(g+ Au)∈C i (θ−1(g)); considering all i gives θ−1(g)∈G(M).

�

3. The MIN method

Let MIN = {x : x ∈ MN0; for all y ∈ MN0, if y ≡ x then y ≥ x}. Provided M
is dense, MIN will have at least one representative of each of the |A| equivalence
classes mod A. MIN is a generalization of a one-dimensional method in [Brauer
and Shockley 1962]; the following result shows that it characterizes the set G.

Theorem 3.1. Let g ∈ G. Then g = lub(N )− A1 for some complete set of coset
representatives N ⊆ MIN. Further, if n < |A| then there is some N ′ ⊆ N with
|N ′| = n and lub(N )= lub(N ′).

Proof. Observe that V (g) ⊆ [�g], and hence V (g) ⊆ MN0 since g is complete.
Let MIN′ = {u ∈MIN : ∃v ∈ V (g), u ≡ v, u ≤ v}. Now, for v ∈ C i (g), we have
v+Aei ∈V (g). Let vMIN∈MIN′ with vMIN≡v+Aei and vMIN≤v+Aei . We must
have (A−1vMIN)i ≥ (A−1v)i +1= (A−1g)i +1 because otherwise v ∈ vMIN+ AN0

and therefore v ∈MN0 , which is violative of v ∈C i (g). Set N ′={vMIN : i ∈ [1, n]}.
We have lub(N ′)≥ g+ A1, but also we have g+ A1 = lub(V (g))≥ lub(MIN′)≥
lub(N ′). Hence all the inequalities are equalities, and in fact lub(N ′)= lub(N ) for
any N with N ′ ⊆ N ⊆MIN′. Finally, we note that |N ′| ≤ n but also we may insist
that |N ′| ≤ |A| because |V (g)| = |A|. �

Elements of MIN have a particularly nice form. This is quite useful in compu-
tations.

Theorem 3.2. MIN⊆ {Bx : x ∈ Nm
0 , ‖x‖1 ≤ |A| − 1}.
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Proof. Let v ∈ MIN ⊆ MN0 . Write v = Mv′, where v′ ∈ Nn+m
0 . Suppose that

(v′)i > 0, for 1≤ i ≤ n. Set w′= v′−ei , and w=Mw′. We see that w≡ v, w≤ v,
andw∈MN0 ; this contradicts that v∈MIN. Hence MIN⊆ BN0 . Let z= Bx ∈MIN.
Suppose that ‖x‖1 ≥ |A|. Start with 0 and increment one coordinate at a time,
building a sequence B0 = Bv0 � Bv1 � Bv2 � · · · � Bv‖x‖1 = z where each
vi ∈ Nm

0 . We may do this since M is simplicial. Because there are at least |A| + 1
terms, two (say Bva � Bvb) are congruent mod A. We have z− Bvb ∈ MN0 and so
y = z− (Bvb− Bva) ∈ MN0 , but y � z and y ≡ z. This violates that z ∈MIN. �

Corollary 3.3. |G| is finite.

The following result, proved first in [Knight 1980] and rediscovered in [Simp-
son and Tijdeman 2003], generalizes the classical one-dimensional result on two
generators that g(a1, a2) = a1a2 − a1 − a2. Note that in the special case where
m = 1, we must have that |G| = 1 and G ⊆ Zn . Neither of these necessarily holds
for m > 1.

Corollary 3.4. If m = 1 then G = {|A|B− A1− B}.

Proof. By Theorem 3.2, we have MIN = {0, B, 2B, . . . , (|A| − 1)B}, a complete
set of coset representatives. By Theorem 3.1, any g ∈ G must have g + A1 =

lub(M I N )= (|A| − 1)B. �

Corollary 3.4 can be extended to the case where the column space of B is one
dimensional, using as an oracle function the (one-dimensional) Frobenius number.
In this special case we again have |G| = 1 and G ⊆ Zn .

Theorem 3.5. Consider a dense M = [A|B] with B a column (n× 1) vector, i.e.,
the special case m= 1. Let C =[c1, c2, . . . , cm] ∈Nm . Suppose that P =[ |A| | C ]
is dense. Then N = [A|BC] is dense, and G(N )= {G(P)B+ |A|B− A1}.

Proof. By Theorem 3.2, we have MIN(M) = {0, B, . . . , (|A| − 1)B}. Hence
Zn/AZn is cyclic, and B is a generator. Let S denote the set of all n×n minors of
M , apart from |A|. Using the denseness of M and P , we have

gcd(|A|, {ci s : 1≤ i ≤ m, s ∈ S})= gcd(|A|, gcd(c1, c2, . . . , cm) gcd(S))

= gcd(|A|, gcd(S))= 1;

hence N is dense. Again by Theorem 3.2, we have MIN(N )⊆ BN0 . We now show
that G(P)B /∈ MN0 . Suppose otherwise. We then write G(P)B = Ax + BCy and
hence Ax = Bq for q = (G(P)−Cy). We conclude that q B ≡ 0 mod A and hence
q = k|A| for some k ∈N (k > 0 since M is simplicial) since B generates Zn/AZn .
We now have BG(P) = Bk|A| + BCy, and hence G(P) = k|A| +Cy. But now
G(P)− 1 is complete (with respect to P), which violates the definition of G(P).
Therefore G(P)B /∈ MN0 . On the other hand, if α ∈ Z and α > G(P) we have
α = k|A| +Cy, for some k, y ∈ N0. Therefore, we have Bα = k|A|B + BCy =
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A
(
k|A|A−1 B

)
+BCy∈MN0 (note that A−1 B∈Q≥0 since M is simplicial). Hence,

T = {G(P)B+ k B : k ∈ [1, |A|]} ⊆ MN0 , with lub(T )= G(P)B+|A|B = β. Let
g ∈ G(N ), and let M be chosen as in Theorem 3.1 with |M | = |A|. Since T is a
complete set of coset representatives and both T and MIN(N ) lie on BR, we have
lub(M)≤ lub(MIN(N ))≤ lub(T )=G(P)B+|A|B = β. However, the coset of β
is precisely {G(P)B+k|A|B : k ∈ Z}. Therefore, β is the unique representative of
its equivalence class in MIN, and thus β ∈ M and lub(M)= β. Hence g+ A1 = β

for all g ∈ G, as desired. �

Example 3.6. Consider N =
(

5 0 84 105
0 4 84 105

)
. We have N = [A|BC], for A =

(
5 0
0 4

)
,

B =
(

3
3

)
, and C = (28, 35). Following Theorem 3.5, we have P = (20, 28, 35).

gcd(20, 28, 35) = 1 so P is dense; we now calculate G(P) = 197 using our one-
dimensional oracle. Therefore N is dense and G(N )=

{ (
646
647

) }
.

We give three more results using this method. First, we present a ≤-bound
for G. This generalizes a one dimensional bound, attributed to Schur in [Brauer
1942]: g(a1, a2, . . . , ak) ≤ a1ak − a1− ak (where a1 < a2 < · · · < ak). Note that
Corollary 3.4 shows that equality is sometimes achieved.

Theorem 3.7. For all g ∈ G, g ≤ lub ({|A|b− A1− b : b a column of B}).

Proof. Let x ∈MIN, fix 1≤ i ≤ n, and write

(A−1x)i = (A−1 Bx ′)i =
(∑

b
(x ′)b A−1b

)
i
,

where b ranges over all the columns of B. Set b? to be a column of B with
(A−1b?)i maximal. By Theorem 3.2, we have that (A−1x)i ≤ (A−1b?)i‖x ′‖1 ≤
(A−1b?)i (|A| − 1). By the choice of b?, and by varying i , we have shown that
x ≤ lub({(|A|−1)b}) and hence lub(MIN)≤ lub({(|A|−1)b}). For any g ∈G, we
apply Theorem 3.1 and have g+ A1 ≤ lub(MIN)≤ lub({(|A| − 1)b}). �

Next, we characterize possible G in our context for the special case m = 1. This
generalizes a one-dimensional construction found in [Rosales et al. 2004]. If we
allow m = 2, then it is an open problem to determine whether all G are possible.

Theorem 3.8. Let g ∈ Zn . There exists a simplicial, dense, M with m = 1 and
G = {g} if and only if 1

2 g /∈ Zn .

Proof. Suppose 1
2 g /∈Zn . By applying an invertible change of basis, if necessary, we

assume without loss that g ∈ Nn and that 1
2(g)1 /∈ Z. Set A = diag(2, 1, 1, . . . , 1),

and set B = A1+g. For i ∈ [1, n], define Ai to be A with the i-th column replaced
by B. Note that det A = 2 and det A1

= 2+ (g)1 (which is odd), and hence M is
dense. We now apply Corollary 3.4 to get G = {g}, as desired. Suppose now that
we have a simplicial dense M , with G = {g} and 1

2 g ∈ Zn . Applying Corollary 3.4
again, we get that g + A1 = (|A| − 1)B. Suppose that |A| were odd. Then each
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coordinate of (|A| − 1)B is even, as is each coordinate of g, and hence so is each
coordinate of A1. Considering the integers mod 2, we have |A| = 1 but A1 = 0n ,
a contradiction. Therefore we must have that |A| is even. We now consider the
system A(x1, x2, . . . , xn)

T
= B. We may apply Cramer’s rule since |A| 6= 0 and

B 6= 0n; we find that, uniquely, det Ai
= xi |A|. We now consider the system

reduced mod 2 (working in Q/2Q) and find that 1n solves the reduced system, as
B = |A|B − g − A1 ≡ −A1n

≡ A1n (mod 2). Hence, each xi is in fact an odd
integer, and thus det Ai is an even integer. Consequently, all n × n minors of M
are even, which is violative of the denseness of M . �

Our last result combines the two methods presented. It generalizes the one-
dimensional theorem g(a, a+c, a+2c, . . . , a+kc)= ad(a−1)/ke+ac−a−c,
as proved in [Roberts 1956]. The following determines G, for M of a similarly
special type.

Theorem 3.9. Fix A and a vector c ≥ 0. Set C = c(1n)T , a square matrix, and fix
k ∈ N. Set M = [A|A+C |A+ 2C | · · · |A+ kC]. Suppose that M is dense. Then
G(M)= {Ax + |A|c− A1− c : x ∈ Nn

0, ‖x‖1 = d(|A| − 1)/ke}.

Proof. We have

MN0 =

{ k∑
i=0
(A+ iC)x i

: x i
∈ Nn

0

}
=

{
A

k∑
i=0

x i
+C

k∑
i=0

i x i
: x i
∈ Nn

0

}
=

{
A

k∑
i=0

x i
+ c

k∑
i=0

i‖x i
‖1 : x i

∈ Nn
0

}
=

{
Ax + c

k∑
i=0

i‖x i
‖1 : x i

∈ Nn
0; x =

k∑
i=0

x i
}
.

Now, for a fixed x ∈Nn
0 , as we vary the decomposition x=

∑k
i=0 x i (for x i

∈Nn
0),

we find that
∑k

i=0 i‖x i
‖1 takes on all values from 0 to k‖x‖1. Hence MN0 =

{Ax + cγ : x ∈ Nn
0, γ ∈ N0, γ ≤ k‖x‖1}.

Choose any x ∈Nn
0 satisfying ‖x‖1 = d(|A|−1)/ke. Set T = {Ax+cγ ∈ MN0 :

0≤ γ ≤ |A| − 1}. By construction, we have T ⊆ MN0 . Further, the elements of T
must be inequivalent mod A, since c is a generator of the cyclic group Zn/AZ. Set
h= lub(T )−A1= Ax+(|A|−1)c−A1. Note that each t ∈ T either has t ∈V (h) or
t ≤ t ′ (and t≡ t ′) for some t ′∈V (h); hence V (h)⊆MN0 and h is complete. For any
i ∈[1, n], |A|−1>k‖x−ei‖1, so A(x−ei )+(|A|−1)c∈C i (h), and thus h∈G(M).
Now, let g ∈G(M). By Theorem 3.1, we have g≥ Ax+(|A|−1)c− A1, for some
x ∈Nn

0 with |A|− 1≤ k‖x‖1. By our earlier observation, Ax + (|A|− 1)c− A1 ∈

G(M), so we have equality by the minimality of g. �

Example 3.10. Consider M =
(

5 0 7 2 9 4 11 6 13 8 15 10 17 12 19 14
0 4 1 5 2 6 3 7 4 8 5 9 6 10 7 11

)
. We see that

M = [A|A+C |A+2C |A+3C |A+4C |A+5C |A+6C |A+7C] for A=
(

5 0
0 4

)
and
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C =
(

2 2
1 1

)
. M is dense since |A|= 20, |A+C |= 33 and gcd(20, 33)= 1. Applying

Theorem 3.9, we get G(M)=
{

Ax+
(

33
15

)
: x, ‖x‖1=3

}
=
{(

48
15

)
,
(

43
19

)
,
(

38
23

)
,
(

33
27

)}
.
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The Gauss–Bonnet formula on surfaces with
densities

Ivan Corwin and Frank Morgan

(Communicated by Michael Dorff)

The celebrated Gauss–Bonnet formula has a nice generalization to surfaces with
densities, in which both arclength and area are weighted by positive functions.
Surfaces with densities, especially when arclength and area are weighted by the
same factor, appear throughout mathematics, including probability theory and
Perelman’s recent proof of the Poincaré conjecture.

A classic, if somewhat anthropomorphic, question in mathematics is whether an
ant moving on a curve embedded in R3 or in a surface can measure the curvature
κ of the curve or say anything about how the curve is embedded in space. The
answer, no, stems from the fact that the ant can only measure distance along the
curve and has no way to determine changes in direction. Curvature is extrinsic to
a curve and must be measured from outside the curve.

Following this one might then ask whether a person moving in a surface em-
bedded in R3 has any chance of saying something about the surface’s curvature in
R3. Whereas the ant could only measure distance along the curve, a person on a
surface has the ability to measure both length and area on the surface. Does this
change things?

The answer is yes. Gauss’s Theorem Egregium declares that a certain measure of
surface curvature now known as the Gauss curvature G turns out to be an intrinsic
quantity, measurable from within the surface. This is not at all apparent from its
definition. G is defined as the product of the principal curvatures κ1, κ2, the largest
and smallest (or most positive and most negative) curvatures of one-dimensional
slices by planes orthogonal to the surface. For a plane, G = 0. For a sphere of
radius a, we have G = 1/a2. For the hyperbolic paraboloid {z= 1

2(x
2
− y2)}, at the

origin G equals−1: negative because the surface is curving up in one direction and

MSC2010: 53B20.
Keywords: Gauss–Bonnet, density.
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down in the other direction; as you move farther out in the surface, G approaches
0 as the surface flattens out.

The fact that the Gauss curvature is actually intrinsic is a consequence of the
celebrated Gauss–Bonnet formula (for a general reference see [do Carmo 1976;
Morgan 1998]). Gauss–Bonnet relates the integral of the Gauss curvature over a
smooth topological disc D in a surface to the integral over the boundary ∂D of the
curvature κ of the boundary: ∫

∂D
κ +

∫
D

G = 2π.

For example, for a smooth closed curve C in the plane, where G = 0,∫
C
κ = 2π,

that is, the total curvature of an embedded planar curve is 2π . For a smooth closed
curve C enclosing area A on the unit sphere, where G = 1,∫

C
κ + A = 2π.

For example, the equator, with curvature κ = 0, encloses area 2π . Note that we
are using the intrinsic or “geodesic” curvature κ , not the curvature of the curve in
R3 if the surface is embedded in R3.

Gauss–Bonnet has extensive applications throughout geometry and topology. It
can be used to classify two-dimensional surfaces by genus and to solve isoperi-
metric problems [Howards et al. 1999; Morgan 1998, Section 9.12]. The Gauss–
Bonnet formula provides an intrinsic definition of the Gauss curvature G of a
surface at a point p by considering ε-balls Bε of area A about p and taking a
limit as ε approaches 0:

G(p)=
1
A

∫
Bε

G = lim
1
A

(
2π −

∫
∂Bε

κ
)
.

This article considers what happens to the Gauss–Bonnet formula under some
simple intrinsic alterations of the surface. The most common alteration, called a
conformal change of metric, scales distance by a variable factor λ, so that ds =
λ ds0 and d A = λ2 d A0; that is, arc length is weighted by λ and area is weighted
by λ2. More generally, one can weight arc length and area by unrelated densities:

ds = δ1ds0, d A = δ2 d A0.

If the two densities are equal, δ1 = δ2 = 9, the result is simply called a surface
with density 9. Surfaces with density appear throughout mathematics, including
probability theory and Perelman’s recent proof of the Poincaré conjecture [Morgan
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2009, Chapter 18]. Important examples include quotients of Riemannian manifolds
by symmetries and Gauss space, defined as Rn with Gaussian density c exp(−r2).

Perelman’s paper and many other applications require generalizations of cur-
vature to general dimensional surfaces with densities. In higher dimensions, the
important intrinsic curvature is the so-called Ricci curvature, for which many gen-
eralizations have been proposed, each for its own purpose, one particular choice
employed by Perelman (see [Morgan 2009, Section 18.3] and references therein).
Corwin et al. [2006, Section 5] proposed a generalization of Gauss curvature and
the Gauss–Bonnet formula to surfaces with density9. In principle, their definition
generalizes to surfaces with length density δ1 and area density δ2 by a conformal
change of metric. The following proposition gives a simple, direct presentation of
that generalization. The generalized Gauss curvature G ′ is given by

G ′ = G−1 log δ1.

An intriguing feature is that G ′ depends only on the length density δ1, not on the
area density δ2. For a conformal change of metric (δ1 = λ, δ2 = λ

2), (1) below
agrees with the standard Gauss–Bonnet formula (and gives an easy proof): the
first integrand becomes κλds0 = κds and the second integrand becomes the new
Gauss curvature G ′λ2d A0=G ′d A because G ′= (G−1 log λ)/λ2 [Dubrovin et al.
1992, Theorem 13.1.3].

For a disc with density (the case δ2= δ1), (1) agrees with the formula in [Corwin
et al. 2006, Proposition 5.2]. For a disc with area density (the case δ1 = 1), (1)
agrees with the formula in [Carroll et al. 2008, Proposition 3.3].

There are other possible generalizations of Gauss curvature to surfaces with
density, for example, coming from the power series expansions for the area and
perimeter of geodesic balls [Corwin et al. 2006, Propositions 5.8 and 5.9].

Proposition. Consider a smooth Riemannian disc D with Gauss curvature G,
length density δ1, area density δ2, classical boundary curvature κ0 (inward nor-
mal), and hence generalized boundary curvature

κ = (δ1/δ2)κ0− (1/δ2)∂δ1/∂n.

Then ∫
δD

(δ2/δ1)κds0+

∫
D
(G−1 log δ1) d A0 = 2π. (1)

Proof. We begin by explaining the formula for κ . The geometric interpretation of
curvature is minus the rate of change of length per change in enclosed area as you
deform the curve normal to itself [Corwin et al. 2006, Proposition 3.2]. First of all,
the densities weight this effect by δ1/δ2. There is a second effect due to the rate of
change ∂δ1/∂n of the length density in the normal direction, divided again by the
area density δ2.
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To prove (1), first consider the conformal metric ds = δ1ds0, with area density
δ2

1 and curvature
κ ′ = (1/δ1)κ0− (1/δ2

1)∂δ1/∂n.

Multiplying the area density by µ= δ2/δ
2
1 multiplies the curvature by 1/µ= δ2

1/δ2:

κ = (δ1/δ2)κ0− (1/δ2)∂δ1/∂n.

Hence by substitution, by the classical Gauss–Bonnet Theorem and the divergence
theorem, and by trivial algebra,∫

∂D
(δ2/δ1)κds0 =

∫
∂D
κ0ds0−

∫
∂D
∂ log δ1/∂n ds0

= 2π −
∫

D
Gd A0+

∫
D
1 log δ1 d A0

= 2π −
∫

D
(G−1 log δ1) d A0,

as desired. �
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