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Suppose that P(x), Q(x) ∈ Z[x] are two relatively prime polynomials, and that
P(x)/Q(x)=

∑
∞

n=0 an xn has the property that an ∈ Z for all n. We show that if
Q(1/α)= 0, then α is an algebraic integer. Then, we show that this result can be
used to provide a solution to Problem 11213(b) of the American Mathematical
Monthly (2006).

1. Introduction and statement of results

This paper has two goals. One is to prove this general observation:

Theorem 1. Suppose P(x), Q(x) ∈ Z[x] are relatively prime polynomials with
integer coefficients and their quotient is the generating function of an integer series:

P(x)
Q(x)

=

∞∑
n=0

anxn, with an ∈ Z for all n.

Then the inverse of any root of Q is an algebraic integer.

The second goal is to apply this result to solve a problem from the American
Mathematical Monthly:

Problem 11213 [AMM 2006]. Proposed by Stanley Rabinowitz, Chelmsford, MA.
For positive integers n and m with n odd and greater than 1, let

S(n,m)=
(n−1)/2∑

k=1

sec2m
(

kπ
n+ 1

)
.

(a) Show that if n is one less than a power of 2, then S(n,m) is a positive integer.

(b*) Show that if n does not have the form of Part (a), then there exists a positive
integer m such that S(n,m) is not an integer.

MSC2000: primary 11R04; secondary 11R18.
Keywords: algebraic number theory, generating functions, secant function.
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118 JEFFREY MUDROCK

The * indicates that no solution was known to the Monthly editors. (A solution
to (a) was provided in [AMM 2008].) We solve part (b) of Problem 11213 by
proving the contrapositive:

Theorem 2. Let n > 1 be an odd integer. If , for every positive integer m, the sum

S(n,m)=
(n−1)/2∑

k=1

sec2m kπ
n+ 1

has an integer value, then n+ 1 is a power of 2.

A similar result to Theorem 1 (but less general) had appeared before in the
Monthly, as a problem proposed and solved by Michael Larsen:

Problem E 2993 [AMM 1983; 1986]. Let α1, α2, . . . , αn a complex numbers such
that

∑n
1 α

m
i is an integer for every positive m; then the polynomial

∏n
1(x−αi ) has

integer coefficients.

Here is an outline of the paper. After recalling the necessary concepts from
algebraic number theory in Section 2, we prove in Section 3 two intermediate
results: S(n,m) is always rational, and the generating function of the sequence
{S(n,m)}m>0 (for fixed odd n > 0) has integer coefficients. In Section 4 we prove
Theorem 1, from which Theorem 2 follows easily given the intermediate results.

2. Background

We review some basic algebraic number theory, which is carefully laid out in
[Stewart and Tall 2002], for example. (This citation will be abbreviated as [ST].)

An algebraic number is any zero of a polynomial with integer coefficients. An
algebraic integer is any zero of a monic polynomial with integer coefficients. The
set of algebraic numbers is a field, and the set of algebraic integers forms a ring
[ST, Theorems 2.1 and 2.9].

For example, if p is prime, ζp = e2π i/p is an algebraic integer since it is a zero
of the polynomial x p

− 1.
The minimal polynomial of an algebraic number α is the monic polynomial p(x)

with rational coefficients and the smallest possible degree such that p(α) = 0.
All polynomials of which α is a root are divisible by p. For example, r(x) =
x p−1
+ x p−2

+ · · ·+ x + 1= (x p
− 1)/(x − 1) is the minimal polynomial of ζp.

Definition. If K is a field contained in L , we say that L is a field extension of K ,
and we denote this by L : K .

If K is a field and α is an algebraic number let K (α) denote the smallest field
containing all the elements of K and α. One way to think about field extensions is
that if L :K is a field extension, then L has a natural structure as a vector space over
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K . The dimension of this vector space, which is called the degree, is represented
with [L : K ]. If [L : K ] is a number the field extension is called finite. If H , K ,
and L are fields such that K is a subset of L and H is a subset of K , then

[L : H ] = [L : K ][K : H ] (1)

[ST, Theorem 1.10].
In algebraic number theory field extensions of the form Q(α) are of interest.

If α is an algebraic number, then [Q(α) : Q] equals the degree of the minimal
polynomial of α [ST, Theorem 1.1]. A field K is called an algebraic number field
if [K :Q] is finite. If K =Q(α) and α is an algebraic number, then the ring of al-
gebraic integers in K is finitely generated as an abelian group [ST, Theorem 2.16].

Definition. If K = Q(α) is an algebraic number field of degree n, then there are
n distinct monomorphisms σ1, . . . , σn from K to C. The conjugates of an element
β ∈ K are the numbers σi (β) for all i between 1 and n.

The conjugates of an algebraic number α are the zeros of the minimal polyno-
mial of α. For example, if α = ζn = e2π i/n , where n > 0 is an integer, then α has
φ(n) conjugates in Q(α), where φ is the Möbius function. The conjugates of ζn

are all the elements in the set

{e2π ik/n
: (k, n)= 1}.

This information can be found in [Milne 2009, page 93].

Definition. Let K =Q(α) be an algebraic number field, and consider β ∈ K . The
trace of β in K , denoted by TrKβ, is the sum of all the conjugates of β. The norm
of β in K , denoted by NK (β), is the product of all of the conjugates of β.

Thus TrK ζp=−1 and NK (ζp)= (−1)p−1 for p prime, where K =Q(ζp). If one
notes that

ζn + ζ
−1
n

2
= cos

2π
n

and applies (1) one can see that the conjugates of α = cos 2π
n

in Q(α) are all the
elements in the set {

cos 2πk
n
: (k, n)= 1, 0< k < n/2

}
. (2)

A formal proof of this can be found in [Milne 2009, pages 95–96]. Also, as a
consequence of Theorem 2.6(a), Lemma 2.13, and Lemma 1.7 of [ST], if α is an
algebraic number its trace is rational; and as a consequence of Lemma 2.14 of the
same reference, if α is an algebraic integer its norm is an integer.
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3. Intermediate results

Lemma 3. If n > 1 is odd and m ≥ 1, the sum S(n,m) of Theorem 2 is a rational
number.

Proof. We make use of the trigonometric identity sec2 x = 2
cos(2x)+1

to write
sec2m x = f (cos 2x), where

f (x) :=
( 2

x+1

)m
.

Then, dropping m from the notation and introducing N = n+ 1 for convenience,
we can rewrite our sum as∑

0<k<N/2

s(k), where s(k) := f
(

cos 2πk
N

)
. (3)

We assume at first that N/2 is an odd prime. All the s(k) then lie in the extension
K =Q(cos 2π/N ), as follows from the characterization (2) (with n in that formula
equal to N here). More precisely, if k is odd, cos 2πk/N is a conjugate of cos 2π/N
in K . If k is even, cos 2πk/N equals−cos 2πk ′/N , for k ′= N/2−k odd; therefore
it is a conjugate of −cos 2π/N . Either way, cos 2πk/N lies in K , and therefore
so does s(k), since f is a rational function.

The operation of taking conjugates commutes with applying f (monomorphisms
preserve sums, products and inverses, and fix the numbers 1 and 2). Putting this
together with the previous paragraph, we conclude that half of the s(k) (those where
k is odd) make up the conjugates in K of s(1), while the other half make up the
conjugates of s(2) (taking k = 2 as a representative of the even k’s). It follows that

N/2−1∑
k=1

s(k)= TrK s(1)+TrK s(2)= TrK f
(

cos
2πk
N

)
+TrK f

(
cos

2× 2πk
N

)
.

Thus S(n,m) is the sum of two traces of algebraic numbers, and so rational.
Now let N/2 be arbitrary. Our strategy is the same: we partition the values of

k according to their gcd with N . Let d1, . . . , dl be all the divisors of N apart from
N and N/2, and define

Di :={k :gcd(k,N )=di , 0<k<N/2}={di j :gcd( j,N/di )=1, 0< j<N/(2di )}.

The Di are disjoint, and together they account for all the k in the sum (3). Moreover,∑
k∈Di

s(k)=
∑

j :gcd( j,N/di )=1
0< j<N/(2di )

f
(

cos
2π j
N/di

)
= TrQ(cos 2π

N/di
) f
(

cos
2π

N/di

)
,

where the last equality follows from the same reasoning used earlier for k odd (with
N replaced by N/di ). We have expressed S(n,m) as a sum of traces of algebraic
numbers, which means it is rational. �
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This result allows us to prove that the generating function for the sequence
{S(n,m)}m>0 (for fixed odd n > 0) is a rational function.

Lemma 4. If n > 1 is odd, m ≥ 1, and

Fn(x)=
∞∑

m=0

S(n,m)xm,

then there exist P(x), Q(x) ∈ Z[x] such that Fn(x)= P(x)/Q(x).

Proof. Using the formula for the sum of a geometric series, we write

Fn(x)=
∞∑

m=0

( (n−1)/2∑
k=1

sec2m kπ
n+ 1

)
xm
=

(n−1)/2∑
k=1

1

1− x sec2 kπ
n+1

,

so that

Q(x)=
(n−1)/2∏

k=1

(
1− x sec2 kπ

n+ 1

)
.

We will show that Q(x) is a polynomial with rational coefficients. Set

bk := sec2 kπ
n+ 1

,

where 1≤ k≤ (n−1)/2. Let si be the sum of the products of each i-element subset
of the set {b1, b2, . . . , b(n−1)/2} (in other words, si is the i-th elementary symmetric
polynomial applied to the bi ). The coefficient of x i in Q(x) is (−1)i si . Also, let

pr :=

n∑
k=1

br
k .

The Newton–Girard formulas tell us that

pi − s1 pi−1+ s2 pi−2+ · · ·+ (−1)i−1si−1 p1+ (−1)i isi = 0,

for all 1 ≤ i ≤ (n − 1)/2. It is clear that pi is rational for all i by Lemma 4. An
easy induction argument implies that si is rational for all i . Since the coefficients of
Q(x) can be expressed in terms of the si , we see that Q(x) has rational coefficients.
Thus P(x)= Fn(x)Q(x) has rational coefficients. The desired result follows. �

Lemma 5. Suppose that a and b are algebraic numbers, and

F(x)=
a

1− bx
=

∞∑
n=0

anxn.

If an is an algebraic integer for all n, then b is an algebraic integer.
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Proof. The assumption implies that an = abn . We know that abn is an algebraic
integer for all n, and so lies in the ring of algebraic integers of the field K =Q(b).
This ring is finitely generated as an abelian group. Suppose that it is generated by
{v1, v2, . . . , vl}. Then bn must be in the finitely generated abelian group generated
by {v1/a, . . . , vl/a} for all n. Lemma 2.8 of [ST] states that a complex number
θ is an algebraic integer if and only if the additive group generated by all powers
1, θ, θ2, . . . is finitely generated. Thus, b is an algebraic integer. �

Now, we wish to expand upon the ideas presented in Lemma 5.

Definition. A sequence {an} of algebraic numbers has a bounded denominator if
there exists a positive integer m such that man is an algebraic integer for all n.

Lemma 6. Let

F(x)=
∞∑

n=0

anxn,

where {an} is a sequence with bounded denominator. Suppose p(x) is a polynomial
whose coefficients are algebraic numbers and let

F(x)p(x)=
∞∑

n=0

bnxn.

Then, the sequence {bn} has bounded denominator.

Proof. This follows from the fact that the algebraic numbers form a subfield of
the complex numbers and the fact that given an algebraic number a there exists a
positive integer n such that na is an algebraic integer. �

Lemma 7. Let ζ4p = e2π i/4p, where p is an odd prime. Then

NQ(ζ4p)(ζ4p + ζ
−1
4p )= p2.

Proof. First note that
ζ4p + ζ

−1
4p = 2 cos π

2p
,

and recall the characterization of the conjugates of cos 2π/n given in (2). We have

NQ(ζ4p)(ζ4p + ζ
−1
4p ) =

∏
(k,4p)=1
1≤k≤4p

(
e

2π ik
4p + e

−2π ik
4p

)
= ζ

−φ(4p)2p
4p

∏
(k,4p)=1
1≤k≤4p

(
e

4π ik
4p + 1

)
.

Now, we know that

NQ(ζ2p)(ζ2p + 1)=
∏

(k,2p)=1
1≤k≤2p

(e
2π ik
2p + 1).
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This implies

ζ
−φ(4p)2p
4p

∏
(k,4p)=1
1≤k≤4p

(
e

4π ik
4p + 1

)
= NQ(ζ2p)(ζ2p + 1)2(e−2π i ).

Now, the minimal polynomial of ζ2p is the same as that of −ζp. Furthermore,

r(x)= x p−1
+ x p−2

+ · · ·+ x + 1=
p−1∏
k=1

(x − ζ k
p).

So, NQ(ζp)(1− ζp)= r(1)= p since the minimal polynomial of ζp is r(x). Thus,

NQ(ζ2p)(ζ2p + 1)2(e−2π i )= NQ(ζp)(1− ζp)
2
= p2,

as desired. �

Lemma 8. If , for all k satisfying 1 ≤ k ≤ (n − 1)/2, the value of sec2 kπ
n+1

is an
algebraic integer, then n+ 1 is a power of two.

Proof. Assume that n+ 1 is not a power of two. Let p be an odd prime factor of
2(n + 1). Since n is odd, 2(n + 1) is a multiple of 4 and so 4p divides 2(n + 1).
Let k = 2(n+ 1)/(4p), so 2(n+ 1)/k = 4p. Then

sec2 kπ
n+ 1

=

(
2

ζ k
2(n+1)+ ζ

−k
2(n+1)

)2

=

(
2

ζ4p + ζ
−1
4p

)2

.

Now, from the previous lemma, NQ(ζ4p)(ζ4p + ζ
−1
4p )= p2. This implies

NQ(ζ4p)

(
2

ζ4p + ζ
−1
4p

)2

=
22φ(4p)

p4 .

Then, since p is an odd prime we know that 22φ(4p)/p4 is not an integer. This
means that with the chosen k, sec2 kπ/(n + 1) is not an algebraic integer. This
proves the desired result. �

4. Proof of the theorems

Proof of Theorem 2. This is a more general version of Lemma 5. Let α1, α2, . . . , αn

be all the numbers whose reciprocals are zeros of Q(x). Then F(x) has a partial
fraction expansion whose terms are of the form

Ai,l

(1−αi x)l
,
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plus a polynomial part. Write

Q(x)=
n∏

i=1

(1−αi x)ki .

Let j be the largest positive integer such that in the partial fraction decomposition
of F(x) the term Ai, j/(1−αi x) j is nonzero. Clearly j > 0, since P(x) and Q(x)
are relatively prime. Now, let

Qi (x)=
Q(x)

(1−αi x)ki− j+1 .

The highest power of (1−αi x) that divides Qi (x) is clearly j − 1.
We have

F(x)Qi (x)=
∞∑

n=0

bnxn.

Then, by Lemma 6, {bn} has a bounded denominator. Now, we will consider the
effect of multiplying F(x) and Qi (x) by considering what happens to each term
in the partial fraction expansion of F(x). With the exception of the term

Ai, j

(1−αi x) j ,

Qi (x) times a term in the partial fraction expansion of F(x) is a polynomial of
finite degree. Now, one can see that

Qi (x)
Ai, j

(1−αi x) j =
Qi (x)

(1−αi x) j−1

Ai, j

(1−αi x)
.

It is clear that Qi (x)/(1−αi x) j−1 is a polynomial. Thus,

F(x)Qi (x)= q(x)+
Di

1−αi x
,

where q(x) is a polynomial and Di is some algebraic number. So, we can say that
for sufficiently large n, bn = Diα

n
i where Di and bn are algebraic numbers. Then,

by Lemma 5, αi is an algebraic integer. �

Proof of Theorem 1. Suppose S(n,m) is an integer for all m > 0. By Lemma 4,

Fn(x)=
∞∑

m=0

( (n−1)/2∑
k=1

sec2m kπ
n+ 1

)
xm
=

(n−1)/2∑
k=1

(
1

1− x sec( kπ
n+1)

)
is a rational function. Hence, Fn(x) = P(x)/Q(x) where P(x), Q(x) ∈ Q[x].
Theorem 1 now implies that sec2(kπ/(n+1)) is an algebraic integer for all k with
1≤ k ≤ (n−1)/2. According to Lemma 8, this means n+1 is a power of two. �
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