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We define a generalization of the chromatic number of a graph G called the k-
clique-relaxed chromatic number, denoted χ (k)(G). We prove bounds on χ (k)(G)
for all graphs G, including corollaries for outerplanar and planar graphs. We
also define the k-clique-relaxed game chromatic number, χ (k)g (G), of a graph G.
We prove χ (2)g (G) ≤ 4 for all outerplanar graphs G, and give an example of an
outerplanar graph H with χ (2)g (H)≥ 3. Finally, we prove that if H is a member
of a particular subclass of outerplanar graphs, then χ (2)g (H)≤ 3.

1. Introduction

The chromatic number of a graph G, denoted χ(G), is the least number of colors
required to color the vertices of G such that adjacent vertices receive different
colors. The study of this characteristic of graphs is interesting in itself, and several
extensions have also been explored. For example, the k-relaxed chromatic number
of a graph G, denoted χ k(G), is the least number of colors necessary to color
the vertices of G such that each vertex is adjacent to at most k vertices of the
same color. Note that χ0(G) = χ(G). This parameter has been studied in many
papers, including [Cowen et al. 1986; 1997; Eaton and Hull 1999]. In this paper
we introduce a relaxation to vertex coloring which forbids monochromatic (k+1)-
cliques, where a k-clique is a set of k pairwise-adjacent vertices.

Another area of research branching from graph coloring is competitive graph
coloring. Two players, Alice and Bob, take turns (with Alice going first) coloring
uncolored vertices of a graph G with legal colors from a set X of m colors, where
the definition of a legal color for a vertex varies depending on the version of the
game. In the standard game [Bodlaender 1992], a color α ∈ X is legal for an
uncolored vertex u if u has no neighbors already colored α. Alice wins this game
if all vertices of G are eventually colored. Bob wins when there is an uncolored
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vertex for which no legal color exists. The least m such that Alice has a winning
strategy for this game is called the game chromatic number of G, and is denoted
χg(G). In the k-relaxed version of the game [Chou et al. 2003; Dunn and Kierstead
2004a; 2004b; 2004c; He et al. 2004], a color is legal for a vertex if it does not result
in any vertex with more than k neighbors of the same color. Said differently, a color
α ∈ X is legal for an uncolored vertex u if once u is colored α, for every β ∈ X , the
subgraph H induced by all vertices colored β satisfies 1(H)≤ k, where 1(H) is
the maximum degree of H . Alice wins if all the vertices of G are eventually col-
ored. Bob wins if there is at least one uncolored vertex in G with no legal color. The
least m such that Alice has a winning strategy for this game is called the k-relaxed
game chromatic number of G, denoted χk

g(G). We will show how competitive
coloring can be integrated with the definition of a clique-relaxed coloring.

2. Clique-relaxed coloring

A coloring of a graph G is a proper k-clique-relaxed coloring if G has no monochro-
matic (k+1)-cliques. For any graph G, the k-clique-relaxed chromatic number of
G, denoted χ (k)(G), is defined as the least number of colors that can be used to
color the vertices of a graph G such that if H is a subgraph induced by one of the
color classes, then ω(H) ≤ k, where ω(H) is the size of the largest clique in H .
Notice that χ (1)(G) = χ(G) for all graphs G, and more generally that for every
positive integer k, we have that χ (k)(G)≤ χ k−1(G). The following theorem gives
an upper bound for the k-clique-relaxed chromatic number of a graph G in terms
of the standard chromatic number of G.

Theorem 1. Let G be a graph. Then χ (k)(G)≤
⌈
χ(G)

k

⌉
for any positive integer k.

Proof. Let G be a graph with χ(G) = m. Then G has a proper m-coloring. Let k
be a positive integer. We know that there are unique nonnegative integers q and r ,
r < k, such that m = qk+r . We can thus divide the m colors into q groups of size
k and one of size r if r 6= 0. This gives dm/ke = n groups. Let A1, A2, . . . , An be
these groups of colors. Now, using the proper m-coloring, we color a vertex v with
a color βi if c(v) ∈ Ai , where c(v) denotes the color of v. The colors used in this
new coloring are β1, β2, . . . , βn . Thus n colors are used. Notice that the vertices
of any (k+1)-clique in the proper m-coloring must have been colored using k+1
different colors, and any set of k+1 colors from the proper m-coloring must be in
at least two groups Ai and A j where i 6= j . So in the new coloring, the vertices of
any (k+1)-clique must include at least two colors. Therefore, the new coloring is
a proper k-clique-relaxed coloring with n colors. So χ (k)(G)≤ n = dχ(G)/ke. �

Using known characteristics of outerplanar and planar graphs it is easy to ap-
ply the result in Theorem 1 to these classes of graphs. By the 2-degeneracy of
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outerplanar graphs, χ(G) ≤ 3 for all outerplanar graphs G, and by the four-color
theorem [Appel and Haken 1976], χ(H) ≤ 4 for all planar graphs H . We then
have the following corollary.

Corollary 2. If G is an outerplanar graph, then

χ (2)(G)≤ 2 and χ (k)(G)= 1 for k ≥ 3.

Similarly, if H is a planar graph, then

χ (2)(H)≤ 2, χ (3)(H)≤ 2, and χ (k)(H)= 1 for k ≥ 4.

Observe that K3 is an outerplanar graph with χ (2)(K3)= 2, since if every vertex
in K3 is colored α, there is a 3-clique in the subgraph induced by the color α.
Similarly, K4 is a planar graph with χ (2)(K4)= 2 and χ (3)(K4)= 2, Since if every
vertex in K4 is colored α, there is a 4-clique and four 3-cliques in the subgraph
induced by the color α.

We note that our discussion of clique-relaxed coloring can be reframed within
the context of hypergraph colorings. For a given graph G we define the hypergraph
H= (V, E), where V =V (G) and E is the set of hyperedges induced by the (k+1)-
cliques in G. In this way, k-clique-relaxed coloring in G is equivalent to standard
hypergraph coloring in H . However, for the simplicity of our arguments, we will
remain within the context of graphs rather than hypergraphs.

3. Clique-relaxed coloring game

A natural extension of this relaxed coloring number is its application to competitive
graph coloring. The k-clique-relaxed n-coloring game on a graph G is between
two players, Alice and Bob, who take turns coloring uncolored vertices of G with
colors from a set X of n colors. A color α ∈ X is legal for an uncolored vertex u
if coloring u with α does not result in a monochromatic (k + 1)-clique. At each
step the players must color an uncolored vertex with a legal color. As before with
the k-relaxed coloring game, we can restate this in terms of the subgraphs induced
by the color classes. A color α is legal for u if once u is colored α, for every
β ∈ X , the subgraph H induced by the vertices of color β satisfies ω(H) ≤ k.
Alice always colors first, and she wins the game when all the vertices are colored.
Hence, Bob wins when there is at least one uncolored vertex in G with no legal
color. The k-clique-relaxed game chromatic number of G, denoted χ (k)g (G), is the
least n such that Alice has a winning strategy in the k-clique-relaxed n-coloring
game on G.

Notice that χ (1)g (G)=χg(G) for all graphs. Also, since outerplanar graphs have
maximum clique size at most three, χ (k)g (G)= 1 for all outerplanar graphs G and
k ≥ 3. Therefore, we will be concerned only with the 2-clique-relaxed game on
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Figure 1. Alice will create trunks at the vertices v and u.

outerplanar graphs. Before proving an upper bound for the 2-clique-relaxed game
chromatic number of outerplanar graphs, we will reprove Lemma 1 of [Guan and
Zhu 1999] which is key to Alice’s strategy.

The separator strategy on a tree T is defined as follows. Let c(v) denote the
color of a vertex v. At any point in the coloring game on T if a vertex v is colored
and has degree d , Alice will imagine vertex v is replaced by d vertices, all colored
c(v), where each of these d vertices is incident with exactly one edge that was
incident with v. We call these partially-colored subgraphs trunks. For example,
consider the partially-colored tree on the left side of Figure 1. The vertices v and
u are colored, so Alice creates trunks at these vertices as shown on the right side
of the figure.

Lemma 3. Using the separator strategy, Alice can ensure that after each of her
turns each trunk has at most two colored vertices.

Proof. Let T be a tree. It is clear that the property holds after Alice’s first turn.
Suppose this holds after Alice’s k-th turn, and Bob colors a vertex u on a trunk.
So at the end of Bob’s turn there is at most one trunk with more than two colored
vertices. If such a trunk exists, it is the trunk with vertex u, and this trunk has
three colored vertices. If u lies on the path between the other two colored vertices,
then according to Alice’s view of the game, this trunk will be broken into two
trunks, each with two colored vertices. Then, if possible, Alice will color on a
trunk with only one colored vertex. If there are no such trunks, she can color a
vertex on the distinct path between two colored vertices within a trunk with two
colored vertices, separating the trunk at the vertex she just colored. If u does not
lie on this path, Alice can color the unique vertex at which the paths between the
three colored vertices intersect. Call this vertex v. As she is using the separator
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strategy, she then separates the unique trunk containing v of T at v into d trunks
where d = deg(v). Now each of these d trunks has at most two colored vertices.

Suppose, instead, that Bob colors in a trunk with only one colored vertex. Then
Alice plays as above in the case when Bob colored on the path between two colored
vertices. Thus, in either case, the property holds after Alice’s (k+ 1)-th turn. �

Theorem 4. Let G be an outerplanar graph. Then χ (2)g (G)≤ 4.

Proof. Let G = (V, E) be an outerplanar graph. Alice will use a strategy for the
2-clique-relaxed 4-coloring game on G adapted from [Guan and Zhu 1999]. Alice
begins by creating auxiliary graphs G ′ and T which she will use to determine which
vertex she colors in the game on G.

To create G ′ = (V ′, E ′), Alice adds edges to G so that G ′ is maximally outer-
planar. Notice that V = V ′, and E ⊆ E ′. Guan and Zhu [1999] showed that for
every maximally outerplanar graph, there is a linear ordering L = v1v2 . . . vn of
the vertices of G ′ such that

• v1 and v2 are adjacent,

• v1v2 is on the outer face of G ′, and

• for all i ≥ 3, vi is adjacent to exactly two vertices va(i) and vb(i) such that
a(i) < i and b(i) < i .

We call va(i) and vb(i) the major parent and minor parent of vi , respectively, where
a(i) < b(i).

To create T = (VT , ET ), Alice deletes all edges of the form vivb(i). In other
words, for each vertex u she deletes the edge between u and its minor parent.
According to Lemma 1 of [Guan and Zhu 1999], each vertex is the minor parent
of at most two vertices. Since each vertex also has at most one minor parent,
every vertex in T is incident to at most three deleted edges from G ′. Notice that
VT = V ′ = V and ET ⊆ E ′.

We can see in T that v1 and v2 are still adjacent, and now for all i ≥ 3, vi is
adjacent to exactly one vertex with a lower index, namely its major parent va(i). So
T is a tree. Alice will use the separator strategy on T to choose which vertex she
will color. Let v be the vertex she chooses. She will look at the partially colored
graph G and choose a legal color for v. We show that in the 2-clique-relaxed
4-coloring game, v will always have a legal color.

We proved in Lemma 3 that by using the separator strategy, Alice can ensure
that after her turn each trunk has at most two colored vertices. After Bob’s turn
there may be one trunk with three colored vertices, so v is adjacent to at most
three colored vertices in T . Since, as noted earlier, each vertex is incident to at
most three deleted edges from G ′, the vertex v may be adjacent to three additional
colored vertices in G ′. Since ET ⊆ E ′, v is adjacent to at most six colored vertices
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Figure 2. The vertex v is uncolorable in the 2-clique-relaxed 4-
coloring game.

in G ′. Also, because E ⊆ E ′, we know that v is adjacent to at most six colored
vertices in G. If v is uncolorable, then it must form a 3-clique with each of the
four color classes (see Figure 2). Thus, it must be adjacent to at least eight colored
vertices in G. Since v is only adjacent to six colored vertices, there is a legal color
for v and Alice can win the 2-clique-relaxed 4-coloring-game on G. �

We do not yet know if the above bound is sharp. The theorem that follows gives
an example of a graph G such that χ (2)g (G)≥ 3. In order to prove this we show that
Bob has a winning strategy in the 2-clique-relaxed 2-coloring game on G. This
means that Alice would need three or more colors to have a winning strategy on
G. We begin our proof with two lemmas which involve subgraphs of G.

Lemma 5. Let H be the partially colored graph in Figure 3, where c(v1)= c(v2),
c(v3) 6= c(v1), the vertices x , y, z, and w are uncolored, the color c(v1) is legal for
both x and z, and the color c(v2) is legal for both y and w. If H is a subgraph of
an outerplanar graph G at any point in the 2-clique-relaxed 2-coloring game on
G, then Bob has a winning strategy.

Proof. Assume v1 and v2 are colored α and v3 is colored β. If it is Bob’s turn
he can color either y or w with β. Vertex z can then be colored neither α nor β,
so Bob wins. Suppose instead that it is Alice’s turn. If she does not color z, then
either y or w is still uncolored after her turn (if not both). Suppose without loss of

v3

wz

v2

v1

x
y

Figure 3. Bob can win the 2-clique-relaxed 2-coloring game.
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Figure 4. Bob can win the 2-clique-relaxed 2-coloring game.

generality that y is uncolored. Then Bob can color y with β leaving z uncolorable.
If Alice does color z, she must color it β. Bob can then color x with α. Now y can
be colored neither α nor β, so Bob has a winning strategy. �

Lemma 6. Let H be the partially colored graph in Figure 4, where c(v1)= c(v2)=

α and all other vertices in the subgraph are uncolored. Suppose Alice and Bob
are playing the 2-clique-relaxed 2-coloring game on an outerplanar graph G with
colors α and β. If H is a subgraph of G and β is legal for both xand y, then Bob
has a winning strategy.

Proof. Assume v1 and v2 are colored α. If it is Bob’s turn he can color either x or
y with β, and by Lemma 5 Bob can win. If instead it is Alice’s turn, she can only
play on one side of the line of symmetry. If she colors a vertex on the side with x ,
Bob can color y with β; if she colors a vertex on the side with y, Bob can color x
with β. Either way, by Lemma 5, Bob can win. �

Theorem 7. There exists an outerplanar graph G such that χ (2)g (G)≥ 3.

Proof. Consider the graph in Figure 5. If Alice colors v with α, then Bob can color
u1, u2, or u3 with α, and, by Lemma 6, Bob can win. If Alice does not color v,

u1

u2 u3

v

Figure 5. Bob has a winning strategy on this graph.
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then Bob can color v on his first turn with α. On Bob’s second turn at least one
of the three identical trunks adjacent to v has no colored vertices since Alice has
only played twice. Suppose without loss of generality that the part containing u1

has no colored vertices. Bob can color u1 with α, and by Lemma 6 he can win. �

4. Family representation for outerplanar graphs

In this section, we present a representation for outerplanar graphs such that each
component of the graph is rooted, and its vertices are organized into generations.
Recall that a graph is outerplanar if and only if it has no K2,3 or K4 minor. Let
G be an outerplanar graph with m components, and let G1,G2, . . . ,Gm be the
components of G.

• For each Gi choose any vertex ri to be the root.

• Partition V (Gi ) into V i
0 , V i

1 , . . . , V i
k such that

V i
j = {x ∈ V (G) | d(x, ri )= j},

where d(x, ri ) is the distance between x and ri . Define V j =
⋃m

i=1 V i
j . Each

V j is the j -th generation of G.

Since the vertex set of any outerplanar graph can be partitioned according to
the distance of a vertex from a fixed root and the edge set remains unchanged, all
outerplanar graphs have a family representation.

Let v ∈ V j for some j ≥ 1. Then u is a parent of v if u ∈ V j−1 ∩ N (v), where
N (v) is the set of neighbors of v. Likewise, u is a child of v if u ∈ V j+1 ∩ N (v).
We call a vertex u a descendant of v if there is a shortest (nonempty) path from u
to the root that includes v. We note that if the following properties of the family
representation are true for each component of G, then they are true for G; thus, we
may assume that G is connected.

Proposition 8. All vertices in G have at most two parents.

Proof. Assume that a vertex x ∈ V j has three parents in V j−1. Note, j 6= 1 since V0

has only one vertex. Call the three parents a, b, and c. Let M = {Vi | i < j − 1}.
Clearly, G[M], the graph induced by M , is connected. The vertices a, b, and c
each have at least one parent in M . Let X ={a, b, c} and let Y ={x,G[M]}. These
bipartite sets and the edges that connect them form a minor of K2,3, contradicting
the fact that G is outerplanar. Thus, each vertex has at most two parents. �

Proposition 9. For each v ∈ V j , |N (v)∩ V j | ≤ 2.

Proof. Assume that a vertex x ∈ V j has three neighbors in V j . Call the three
neighbors a, b, and c. Let M = {Vi | i < j}. As in the previous proof, we see that
with X = {a, b, c} and Y = {x,G[M]}, we have a K2,3 minor, contradicting the
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fact that G is outerplanar. So, each vertex in the j-th generation has at most two
neighbors in the j-th generation. �

5. The coloring game on certain outerplanar graphs

It is known [Guan and Zhu 1999] that for the class G of outerplanar graphs, that

6≤max
G∈G

χg(G)≤ 7.

In this section we consider a specific subclass of outerplanar graphs for which we
can improve this upper bound. We consider outerplanar graphs for which there
exists a family representation such that each vertex u has at most one parent p(u).
This means that for each vertex v ∈ V (Gi ) there is a unique shortest path from v

to root ri . We call this class F. See Figure 6.
Alice will use an activation strategy to win the usual 6-coloring game and the

2-clique-relaxed 3-coloring game on graphs in F. At any point in the game, we
define U to be the set of uncolored vertices, and C to be the set of colored vertices.
Alice maintains a set of active vertices, A. Any colored vertex is automatically
active, and once a vertex is active it remains active. Therefore C ⊆ A.

Activation strategy: On Alice’s first turn, she colors a vertex in V0. Suppose Bob
colors vertex v ∈ V (Gi ).

(1) Search stage:
• If v is not a root and p(v) is uncolored, Alice begins activating vertices

along the shortest path from v to root ri . As she does this, there are four
possible cases for each vertex x she reaches.

– If x is active and uncolored, she lets u = x and moves to the coloring
stage.

– If x is inactive and is the root ri , she activates x , chooses u = x , and
moves to the coloring stage.

r

Figure 6. An example of a graph in F.
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– If x is inactive and p(x) is colored, she activates x , chooses u = x ,
and moves to the coloring stage.

– If x is inactive and p(x) is uncolored, she activates x and continues
up the path.

• If v is a root or p(v) is colored, Alice chooses an arbitrary uncolored
vertex u ∈ V j , where j is the least index such that V j has an uncolored
vertex, and moves to the coloring stage.

(2) Coloring stage:
• On each turn, Alice chooses a legal color for u.

We now prove an important lemma which will help bound the parameters of
interest.

Lemma 10. If Alice uses the activation strategy, at any point in the game any
uncolored vertex u has at most two active children.

Proof. Consider the case where u has no active children. The strategy ensures that
Alice will not color a descendant of any inactive vertex. Thus, if Alice activates a
child of u, it must be the direct result of Bob coloring a descendant of u. When
Alice activates a child of u, she activates u as well. Now consider Alice activating
a second child of u. Again, this must be a result of Bob coloring a descendant of
u by the argument above. After Alice activates the second child of u, she will take
action at u. Since u is active, Alice colors u. Therefore, an uncolored vertex u has
at most two active children. �

Theorem 11. For all graphs G in F, χg(G)≤ 6.

Proof. Consider an uncolored vertex u. Note that u has at most one parent p(u),
and by Proposition 9, u has at most two adjacent siblings, say u∗ and u′. See
Figure 7. It is easy to see that if Alice uses the activation strategy, it may be the
case that p(u), u∗, and u′ are all colored with u remaining uncolored. Since u
has at most two active children, it has at most two colored children. Therefore, u
has at most five colored neighbors. This means that Alice needs at most six colors
available to win the original game on graphs in F. �

Now we prove a similar result for the 2-clique-relaxed game. Recall that in
Theorem 4 and Theorem 7 we showed that

3≤max
G∈G

χ(2)g (G)≤ 4

for the class of outerplanar graphs G. With the following result, we provide an
improved upper bound for the class F.

Corollary 12. For all graphs G in F, χ(2)g (G)≤ 3.
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.  .  ..  .  .

p(u)

u∗
u

u′

Figure 7. An uncolored vertex u and its
neighbors.

u

Figure 8. The vertex u is
uncolorable in the 2-clique-
relaxed 3-coloring game.

Proof. Suppose Alice and Bob are playing the 2-clique-relaxed coloring game on
a graph in F with three colors. For Bob to win the game, he requires an uncolored
vertex u, with neighbors as in Figure 8. This would require that six of the neighbors
of u be colored while u remains uncolored. By the proof for Theorem 11, u has
at most five colored neighbors. Hence, three colors are sufficient for Alice to win
the 2-clique relaxed game on any graph in F. �

6. Future work

At present, we do not know whether the bounds in Theorem 11 and Corollary 12
are tight. In the case of the latter, it is clear that the graph in Theorem 7 is not in
F. Showing this bound is tight would require providing an example of a graph in
F such that Bob has a winning strategy with 2 colors. However, it may be the case
that Alice has a winning strategy with 2 colors. We are certain that the strategy
we have provided will not suffice; however, it is possible that a modification could
yield an upper bound of 2.

We now have an upper bound, χ (2)g (G) ≤ 4, for outerplanar graphs G and an
example of an outerplanar graph such that χ (2)g (G) ≥ 3. The next question is
whether there exists an outerplanar graph G such that χ (2)g (G) = 4. If there is,
then such an example must lie outside of the subclass F of outerplanar graphs. In
particular, Proposition 8 guarantees that such an example would require a vertex
with two parents.

Another area for further investigation is the clique-relaxed game chromatic num-
ber of planar graphs. All planar graphs have maximum clique size at most four.
For this reason, with a k-clique relaxation, where k ≥ 4, planar graphs can always
be completely colored with one color. The games of interest are then the 2- and
3-clique-relaxed games on planar graphs.

More broadly, as we noted earlier in Section 2, much of this work can be re-
framed in terms of hypergraph coloring. We have presented competitive coloring
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results for a specific class of hypergraphs. This could lead to more questions in the
area of competitive hypergraph coloring.
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