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We define the concept of continuous p-frames (cp-frames) for Banach spaces,
generalizing discrete p-frames. We prove that under certain conditions the direct
sum of a finite number of cp-frames is again a cp-frame. We obtain equivalent
conditions for duals of cp-Bessel mappings and show existence and uniqueness
of duals of independent cp-frames. Lastly we discuss perturbation of these
frames.

1. Introduction

Frames were first introduced in the context of nonharmonic Fourier series [Duffin
and Schaeffer 1952]. Outside of signal processing, frames did not seem to generate
much interest until the groundbreaking work [Daubechies et al. 1986]. Today, the
theory of discrete frames plays an important role not just in digital signal pro-
cessing and scientific computation, but also in pure and applied mathematics. The
interested reader is referred to [Han and Larson 2000; Heil and Walnut 1989] for
theory and applications of frames.

A discrete frame is a countable family of elements in a separable Hilbert space
which allows stable not necessarily unique decomposition of arbitrary elements
into expansions of the frame elements. This concept was generalized in [Ali et al.
1993] to families indexed by some locally compact space endowed with a Radon
measure; these frames are known as continuous frames. For more studies about
frame theory and continuous frames we refer to [Christensen 2003; Ali et al. 1993;
Gabardo and Han 2003; Rahimi et al. 2006].

Various generalizations of frames have been proposed recently, such as frames of
subspaces [Asgari and Khosravi 2005], p-frames [Aldroubi et al. 2001; Cao et al.
2008; Christensen and Stoeva 2003], p-frames of subspaces [Najati and Faroughi
2007], g-frames [Sun 2006], and continuous g-frames [Abdollahpour and Faroughi
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2008; Joveini and Amini 2009]. We take as our starting point the generalization
presented in [Christensen and Stoeva 2003].

Throughout this paper, (�,µ) will be a measure space and µ a positive, σ -
finite measure. X is a Banach space with dual X∗. We choose 1 < p <∞ and
q such that 1

p +
1
q = 1. The normed dual X∗ of a Banach space X is itself a

Banach space and hence has a normed dual of its own, denoted by X∗∗. A mapping
3X : X 7→ X∗∗ is well defined by the equation 〈x, x∗〉=〈x∗,3X x〉 for each x∗∈ X∗;
also, ‖3X x‖=‖x‖ for each x ∈ X . So3X : X→ X∗∗ is an isometric isomorphism
of X onto a closed subspace of X∗∗. If X is a reflexive Banach space then 3X is
an isometric isomorphism of X onto X∗∗.

Definition 1.1. A countable family {gi }
∞

i=1 ⊂ X∗ is a p-frame for X if there exist
constants A, B > 0 such that

A‖ f ‖ ≤
( ∞∑

i=1

|gi ( f )|p
)1/p

≤ B‖ f ‖. (1-1)

If at least the second of these inequalities, called the upper p-frame condition, is
satisfied, we say that {gi } is a p-Bessel sequence.

Definition 1.2. Let H be a complex Hilbert space and (�,µ) a measure space.
A map F : �→ H is called weakly measurable if, for each f ∈ H , the function
on � defined by ω 7→ 〈 f, F(ω)〉 is measurable. F is called a continuous frame
for H with respect to (�,µ) if F is weakly measurable and there exist constants
A, B > 0 such that

A‖ f ‖2 ≤
∫
�

|〈 f, F(ω)〉|2dµ(ω)≤ B‖ f ‖2, f ∈ H. (1-2)

In the next results, R( · ) denotes the range of a map.

Lemma 1.3 [Rudin 1973]. Suppose X and Y are Banach spaces and T ∈ B(X, Y ).
Then R(T ) = Y if and only if ‖T ∗y∗‖ ≥ c‖y∗‖ for some constant c > 0 and for
each y∗ ∈ Y ∗.

Theorem 1.4 [Rudin 1974]. L p(�,µ) is isometricly isomorphism to the dual
space of Lq(�,µ) via the mapping K p

: L p(�,µ)→ Lq(�,µ)∗ give by

K pψ(φ)=

∫
�

ψ(ω)φ(ω) dµ(ω)

for all ψ ∈ L p(�,µ) and φ ∈ Lq(�,µ). We can define an isometric isomorphism
K q
= (K p)∗3q : Lq(�,µ)→ L p(�,µ)∗ for which 3q is the isometric isomor-

phism of Lq(�,µ) onto Lq(�,µ)∗∗.

Lemma 1.5 [Heuser 1982]. Given a bounded operator U : X → Y , the adjoint
U∗ : Y ∗→ X∗ is surjective if and only if U has a bounded inverse on R(U ).
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Theorem 1.6 [Douglas 1972]. Let X and Y be Banach spaces. For all x ∈ X and
y ∈ Y , define the 1-norm, ‖(x, y)‖1 = ‖x‖X +‖y‖Y and the∞-norm ‖(x, y)‖∞ =
sup{‖x‖X , ‖y‖Y } on the algebraic direct sum X ⊕ Y . Then X ⊕ Y is a Banach
space with respect to both norms and these two norms are equivalent.

In Section 2, we define the concept of cp-Bessel mappings and cp-frames in
Banach spaces and show that under some conditions the direct sum of a finite
number of cp-frames is again a cp-frame. In Section 3, we define the concept of
a cq-Riesz basis and study some relations between cp-frames and cq-Riesz bases.
In Section 4, we present a cp-frame mapping SF : X → X∗ and show that two
cp-frames are similar if and only if their analysis operators have the same range.
We obtain some equivalent conditions for duals of cp-Bessel mappings and show
existence and uniqueness of duals of independent cp-frames in Section 5 and finally
in Section 6 we discuss the perturbation of these frames.

2. Continuous p-frames

Definition 2.1. A mapping F :�→ X∗ is called a cp-frame for X with respect to
(�,µ) if F is weakly measurable (Definition 1.2) and there exist positive constants
A and B such that

A‖x‖ ≤
(∫

�

|〈x, F(ω)〉|pdµ(ω)
)1/p

≤ B‖x‖, x ∈ X. (2-1)

The constants A and B are called the lower and upper cp-frame bounds, respec-
tively. F is called a tight cp-frame if A and B can be chosen such that A= B, and
a Parseval cp-frame if A and B can be chosen such that A = B = 1.

F is called a cp-Bessel mapping for X with respect to (�,µ) if it is weakly
measurable and the second inequality in (2-1) holds. In this case B is called a
cp-Bessel constant.

If, in the definition of a cp-frame, we take � = N and let µ be the counting
measure, then our cp-frame will be a p-frame; thus we expect that some properties
of p-frames can be satisfied in cp-frames.

Throughout this paper, we simply say F is a cp-frame for X and F is a cp-
Bessel mapping for X , instead of F is a cp-frame for X with respect to (�,µ) and
F is a cp-Bessel mapping for X with respect to (�,µ), respectively.

Our study of a cp-frame is based on analysis of two operators,

UF : X→ L p(�,µ) and TF : Lq(�,µ)→ X∗.

The first is defined by

UF x(ω)= 〈x, F(ω)〉, x ∈ X, ω ∈�, (2-2)
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and the second is weakly defined by

TFφ(x)= 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω), φ ∈ Lq(�,µ), x ∈ X. (2-3)

It is clear that if F is a cp-Bessel mapping, then UF is well defined and bounded
operator. UF is called the analysis and TF is called the synthesis operator of F .

Lemma 2.2. Let F be a cp-frame for X. Then the operator UF : X → L p(�,µ),
given by (2-2), has a closed range and X is reflexive.

Proof. It is easy to verify that UF has a closed range. By the cp-frame condition,
X is isomorphic to R(UF ), but R(UF ) is reflexive because it is a closed subspace
of the reflexive space L p(�,µ) and therefore X is reflexive. �

Theorem 2.3. Let F : �→ X∗ be a cp-Bessel mapping for X with Bessel bound
B. Then the operator TF : Lq(�,µ)→ X∗, weakly defined in (2-3), is well defined,
linear and ‖TF‖ ≤ B.

Proof. It is straightforward. �

Lemma 2.4. Let F :�→ X∗ be a cp-Bessel mapping for X.

(i) U∗F = TF (K q)−1.

(ii) If X is reflexive, then T ∗F = K pUF3
−1
X .

Proof. (i) Since F is a cp-Bessel mapping for X , there exists a unique operator
U∗F : L

p(�,µ)∗→ X∗ such that

〈x,U∗Fψ〉 = 〈UF x, ψ〉, x ∈ X, ψ ∈ L p(�,µ)∗.

Using Theorem 1.4, we can find φ ∈ Lq(�,µ) such that K q(φ) = ψ . So, for all
x ∈ X and ψ ∈ L p(�,µ)∗,

〈x,U∗Fψ〉 = 〈UF x, ψ〉 = 〈UF x, K q(φ)〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)

= 〈x, TF (φ)〉 = 〈x, TF (K q)−1ψ〉.

Therefore U∗F = TF (K q)−1.

(ii) By Theorem 2.3, TF is well defined and bounded. So for all f ∈ X∗∗ and
φ∈ Lq(�,µ)we have 〈φ, T ∗F f 〉=〈TFφ, f 〉. Since X is reflexive, for each f ∈ X∗∗

we can find x ∈ X such that 3X x = f . Therefore

〈φ, T ∗F f 〉 = 〈TFφ, f 〉 = 〈TFφ,3X x〉 = 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)

= K p(〈x, F〉)(φ)= K p(〈3−1
X f, F〉)(φ)= 〈φ, K pUF3

−1
X f 〉.

So T ∗F = K pUF3
−1
X . �
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Theorem 2.5. Let X be a reflexive Banach space and F : � → X∗ be weakly
measurable. If the mapping TF : Lq(�,µ)→ X∗ weakly defined by

〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉dµ(ω), φ ∈ Lq(�,µ), x ∈ X,

is a bounded operator and ‖TF‖ ≤ B, then F is a cp-Bessel mapping for X.

Proof. Since TF is well defined and bounded, we have for all f ∈ X∗∗ and φ ∈
Lq(�,µ)

〈φ, T ∗F f 〉 = 〈TFφ, f 〉 =
∫
�

φ(ω)〈3−1
X f, F(ω)〉 dµ(ω).

For each f ∈ X∗∗, we define ψf :�→ C by ψf (ω)= 〈3
−1
X f, F(ω)〉. Since ψf is

measurable and∣∣∣∣∫
�

φ(ω)ψf (ω) dµ(ω)
∣∣∣∣<∞ for all φ ∈ Lq(�,µ),

we obtain ψf ∈ L p(�,µ). By Theorem 1.4, we have

ψf (ω)= (K p)−1(T ∗F f )(ω), ω ∈�.

Hence, for each x ∈ X ,(∫
�

|〈x, F(ω)〉|pdµ(ω)
)1/p

= ‖(K p)−1T ∗F3X x‖ = ‖T ∗F3X x‖

≤ ‖T ∗F‖‖x‖ ≤ B‖x‖. �

Theorem 2.6. Let X be a reflexive Banach space and F : �→ X∗ be a weakly
measurable mapping. Then F is a cp-frame for X if and only if TF is a well defined
and bounded operator of Lq(�,µ) onto X∗. In this case, the frame bounds are
‖(T ∗F )

−1
‖
−1 and ‖TF‖.

Proof. By Theorems 2.3 and 2.5, the upper cp-frame condition satisfies if and only
if TF is well defined and bounded operator of Lq(�,µ) into X∗. Now suppose
that F is a cp-frame for X . Then UF has a bounded inverse on its range R(UF )

and by Lemma 1.5, U∗F is surjective and therefore TF is surjective by Lemma 2.4.
Conversely, suppose that TF is a well defined and bounded operator of Lq(�,µ)

onto X∗. By Lemma 2.4, for each x ∈ X ,

‖UF x‖ = ‖(K P)−1T ∗F3X x‖ = ‖T ∗F3X x‖ ≤ ‖TF‖‖x‖.

On the other hand since TF is bounded and surjective, T ∗F is one to one, hence T ∗F
has a bounded inverse on R(T ∗F ). So, by Lemma 2.4, for each x ∈ X we have

‖x‖ = ‖3X x‖ = ‖(T ∗F )
−1T ∗F3X x‖ ≤ ‖(T ∗F )

−1
‖‖UF x‖. �
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Corollary 2.7. Let G : � → X∗∗ be a weakly measurable mapping. Then the
following assertions are equivalent:

(i) There exist positive constants A and B such that

A‖g‖ ≤
(∫

�

|〈g,G(ω)〉|pdµ(ω)
)1/p

≤ B‖g‖, g ∈ X∗.

(ii) X is reflexive and TG : Lq(�,µ)→ X∗∗ is a well defined, bounded operator
of Lq(�,µ) onto X∗∗.

Proof. (i) means that G : �→ X∗∗ constitutes a cp-frame for X∗. Therefore X∗

is reflexive by Lemma 2.2, and thus X is reflexive. The converse is evident by
Theorem 2.6. �

Theorem 2.8. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

is a cp-Bessel mapping for X and W : Y → X is a bounded operator.

(i) W ∗F :�→ Y ∗ is a cp-Bessel mapping for Y and W ∗TF = TW ∗F .

(ii) Let F : �→ X∗ be a cp-frame for X. Then, W ∗F is a cp-frame for Y if and
only if W ∗ is surjective.

Proof. (i) For each y ∈ Y , the function ω 7→ 〈y,W ∗F(ω)〉 = 〈W y, F(ω)〉 is
measurable. Let B be an upper frame bound for F . Then, for each y ∈ Y ,(∫

�

|〈y,W ∗F(ω)〉|pdµ(ω)
)1/p

=

(∫
�

|〈W y, F(ω)〉|pdµ(ω)
)1/p

≤ B‖W y‖ ≤ B‖W‖‖y‖.

Therefore W ∗F is a cp-Bessel mapping for Y . For all y ∈ Y and φ ∈ Lq(�,µ),

〈y, TW ∗Fφ〉 =

∫
�

φ(ω)〈y,W ∗F(ω)〉 dµ(ω)=
∫
�

φ(ω)〈W y, F(ω)〉 dµ(ω)

= 〈W y, TFφ〉 = 〈y,W ∗TFφ〉.

(ii) If W ∗ is surjective, then by Theorem 2.6, W ∗TF is surjective. So W ∗F is a
cp-frame for Y . Conversely, if W ∗F is a cp-frame for Y then TW ∗F is surjective
and so W ∗ is surjective. �

Proposition 2.9 [Fabian et al. 2001]. Let Y be a closed subspace of a Banach space
Z. If Y is complemented and X is a complement of Y in Z , then Z/Y is isomorphic
to X. The dual Z∗ is then isomorphic to Y ∗⊕ X∗; in short, (Y ⊕ X)∗ = Y ∗⊕ X∗.

Theorem 2.10. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

and G : �→ Y ∗ are cp-Bessel mappings. Then ψ : �→ X∗ ⊕ Y ∗ ∼= (X ⊕ Y )∗,
ψ(ω)= (F(ω),G(ω)) is a cp-Bessel mapping for X ⊕ Y . The mapping

Tψ : Lq(�,µ)→ (X ⊕ Y )∗ ∼= X∗⊕ Y ∗
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is well defined and bounded, and Tψφ = (TFφ, TGφ) for all φ ∈ Lq(�,µ). Also,

T ∗ψ : (X ⊕ Y )∗∗ ∼= X∗∗⊕ Y ∗∗→ Lq(�,µ)∗

is well defined, linear and bounded and T ∗ψ( f, g) = T ∗F f + T ∗G g for all ( f, g) in
X∗∗⊕ Y ∗∗.

Proof. Using Theorem 1.6 and Proposition 2.9, the proof is evident. �

Theorem 2.11. Let X and Y be reflexive Banach spaces. Suppose that F :�→ X∗

and G : �→ Y ∗ are cp-frames for X and Y , respectively. If R(T ∗F )∩ R(T ∗G) = 0
and R(T ∗F )+ R(T ∗G) is a closed subspace of Lq(�,µ)∗, then ψ :�→ (X⊕Y )∗ is
a cp-frame for X ⊕ Y .

Proof. We define L : R(T ∗F )⊕ R(T ∗G)→ R(T ∗F )+ R(T ∗G) by L(η, γ ) = η + γ .
Clearly L is well defined, linear and bijective. We have ‖L(η, γ )‖ = ‖η+ γ ‖ ≤
(‖η‖ + ‖γ ‖) = ‖(η, γ )‖1. By Theorem 1.6, L is continuous. By the open map-
ping theorem, L−1 is well defined and bounded, since R(T ∗F )+ R(T ∗G) is a closed
subspace of Lq(�,µ)∗. Therefore by Theorem 1.6, there exists M > 0 such that

‖(η, γ )‖∞ ≤ M‖η+ γ ‖. (2-4)

Let A1 and A2 be lower cp-frame bounds for F and G, and set K =min{A1, A2}.
By Theorem 1.6, there exists M1 > 0 such that, for all (x, y) ∈ X ⊕ Y ,

K p
‖(x, y)‖p

∞
≤ K p M p

1 (‖x‖+‖y‖)
p
≤ K p M p

1 2p(‖x‖p
+‖y‖p)

≤ 2p M p
1

∫
�

|〈x, F(ω)〉|pdµ(ω)+ 2p M p
1

∫
�

|〈y,G(ω)〉|pdµ(ω)

≤ 2p M p
1 ‖(K

p)−1T ∗F3X x‖+ 2p M p
1 ‖(K

p)−1T ∗G3Y y‖

= 2p M p
1 ‖T

∗

F3X x‖+ 2p M p
1 ‖T

∗

G3Y y‖

= 2p M p
1 ‖(T

∗

F3X x, T ∗G3Y y)‖1,
(2-5)

where 3X : X → X∗∗ and 3Y : Y → Y ∗∗ are isometric isomorphisms of X onto
X∗∗ and of Y onto Y ∗∗, respectively. Again by using Theorem 1.6, there is M2 > 0
such that

‖(T ∗F3X x, T ∗G3Y y)‖1 ≤ M2‖(T ∗F3X x, T ∗G3Y y)‖∞. (2-6)

By (2-4), (2-5) and (2-6)

K p
‖(x, y)‖p

∞
≤ 2p M p

1 M2 M‖T ∗F3X x+T ∗G3Y y‖ = 2p M p
1 M2 M‖T ∗ψ(3X x,3Y y)‖

= 2p M p
1 M2 M‖(K p)−1T ∗ψ(3X x,3Y y)‖

= 2p M p
1 M2 M‖(K p)−1T ∗ψ3X⊕Y (x, y)‖

= 2p M p
1 M2 M

∫
�

|〈(x, y), ψ(ω)〉|pdµ(ω). �
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Corollary 2.12. Let X1, · · · , Xn be reflexive Banach spaces. Suppose that Fi :

�→ X∗i , are cp-frames for X i for all i ∈ N. If R(T ∗F j
) ∩

(∑n
i=1i 6= j

R(T ∗Fi
)
)
= 0

for each j ∈ N and
∑n

i=1 R(T ∗Fi
) is a closed subspace of Lq(�,µ)∗, then the map

η : � →
(⊕n

i=1 X i
)∗ defined by η(ω) = (F1(ω), · · · , Fn(ω)) is a cp-frame for⊕n

i=1 X i .

3. Continuous q-Riesz bases

Throughout this paper X is a reflexive Banach space.

Definition 3.1. Let 1< q <∞. A mapping F :�→ X∗ is called a cq-Riesz basis
for X∗ if

(i) {x : 〈x, F(ω)〉 = 0, w ∈�} = {0},

(ii) F is weakly measurable, and

(iii) the operator TF : Lq(�,µ)→ X∗ weakly defined by

〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω), x ∈ X, φ ∈ Lq(�,µ),

is well defined and there are positive constants A and B such that

A‖φ‖q ≤ ‖TFφ‖X∗ ≤ B‖φ‖q , φ ∈ Lq(�,µ).

A and B are called, respectively, the lower and upper cq-Riesz basis bounds of F .

Theorem 3.2. Let F : �→ X∗ be a cq-Riesz basis for X∗ with cq-Riesz basis
bounds A and B. Then F is a cp-frame for X with cp-frame bounds A and B.

Proof. Since F is a cq-Riesz basis for X∗, the operator TF is well defined, bounded
and surjective. By Theorem 2.6, F is a cp-frame for X . The upper cq-Riesz basis
bound coincide with the upper cp-frame bound by Theorem 2.5. The analogue
statement for the lower bound follows from [Dunford and Schwartz 1958, p. 479]
and Theorem 2.6. �

Theorem 3.3. Let F :�→ X∗ be a cp-frame for X. Then the following statements
are equivalent:

(i) F is a cq-Riesz basis for X∗.

(ii) TF is injective.

(iii) R(UF )= L p(�,µ).

Proof. (i) =⇒ (ii) By the definition of cq-Riesz basis the proof is evident.

(ii) =⇒ (i) TF is well defined, bounded and onto by Theorem 2.6, and is injective
by (ii), so it has a bounded inverse. Therefore F is a cq-Riesz basis for X∗.
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(i) =⇒ (iii) By assumption, TF has a bounded inverse on R(TF ) = X∗. By
Lemma 1.5, T ∗F is surjective and Lemma 2.4, implies that R(UF )= L p(�,µ).

(iii) =⇒ (i) is clear. �

4. Maps of cp-frames and their invertibility

In this section, we need a mapping from the Banach space L p(�,µ) into its dual
space, Lq(�,µ). For this we use the concept of duality mapping.

First recall that a Banach space X is said to be:

• strictly convex if, whenever x, y ∈ X with x 6= y, ‖x‖ = ‖y‖ = 1, then
‖λx + (1− λ)y‖< 1 for λ ∈ (0, 1);

• uniformly convex if the conditions {xi } ⊆ X , {yi } ⊆ X , ‖xi‖ ≤ 1, ‖yi‖ ≤ 1,
limi→∞ ‖xi + yi‖ = 2, imply that limi→∞ ‖xi − yi‖ = 0.

Definition 4.1. The mapping φX of X into the set of subsets of X∗, defined by

φX x = {x∗ ∈ X∗ : x∗(x)= ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖}

is called the duality mapping on X .

By the Hahn–Banach theorem φX x is nonempty for all x ∈ X and φX 0 = 0. In
general the duality mapping is set-valued, but for certain spaces it is single-valued
and such spaces are called smooth.

Proposition 4.2 [Dragomir 2004]. (i) If X∗ is strictly convex then for each x ∈ X ,
φX x consists of unique element x∗ ∈ X∗.

(ii) If X and X∗ are strictly convex and X is reflexive then φX is bijective.

(iii) If H is a Hilbert space then φH x = x for each x ∈ H.

Remark 4.3. We can deduce by [Carothers 2005, Corollary 11.13] and [Martin
1976, p. 12] that Lq(�,µ) is strictly convex.

The next statement is clear from the definition of duality mapping on L p(�,µ):

Proposition 4.4. For all nonzero ψ ∈ L p(�,µ) we have φL p(�,µ)ψ =
ψ |ψ |p−2

‖ψ‖
p−2
p

.

Definition 4.5. Let F : � → X∗ be a cp-frame for X . The bounded mapping
SF : X → X∗ defined by SF = TF (K q)−1φL p(�,µ)UF will be called a cp-frame
mapping of F .

Proposition 4.6. Suppose that F :�→ X∗ is a cp-frame for X with frame bounds
A and B. Then SF has the following properties:

(i) SF =U∗FφL p(�,µ)UF .

(ii) A2
‖x‖2 ≤ SF x(x)≤ B2

‖x‖2, x ∈ X.
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Proof. Clear from the definition of SF and of the duality mapping on L p(�,µ). �

Definition 4.7. A mapping [ · , · ] from X × X into R is said to be a semi-inner
product on X if it has these properties:

(i) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 if and only if x = 0.

(ii) [αx +βy, z] = α[x, z] +β[y, z] for all α, β ∈ R and for all x, y, z ∈ X .

(iii) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X .

If X∗ is strictly convex, then there is a unique semi-inner product on X such that
‖x‖X = [x, x]1/2 for all x ∈ X and φX x(y) = [y, x] for all x, y ∈ X [Dragomir
2004], where φX is the duality mapping on X . In this case an operator A : X→ X
is said to be adjoint abelian if [Ax, y] = [x, Ay] for all x, y ∈ X or equivalently
A∗φX = φX A [Stampfli 1969].

An element x ∈ X is called (Giles-)orthogonal to y ∈ X , and we write x ⊥ y, if
[y, x] = 0. If M is a linear subspace of X , the orthogonal complement of M in the
Giles sense is denoted by M⊥ = {x ∈ X; x ⊥ y, y ∈ M}.

Remark 4.8. Let F : �→ X∗ be a cp-frame for X . Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ), then clearly the opera-
tor TF |(Ker(TF ))⊥ is invertible and T⊥F = (TF |(Ker(TF ))⊥)

−1 is a bounded right inverse
of TF .

Definition 4.9. Let F : �→ X∗ be a cp-frame for X . Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ), we define the mapping
K : X∗→ X by K =3−1

X (T
⊥

F )
∗φLq (�,µ)T⊥F .

Lemma 4.10. Let F : �→ X∗ be a cp-frame for X. Suppose that Ker(TF ) and
(Ker(TF ))

⊥ are topologically complementary in Lq(�,µ).

(i) K (g)(g)≥ ‖g‖2X∗/B2, where B denotes an upper cp-frame bound for F.

Moreover, when the operator T⊥F TF is adjoint abelian, the following assertions
hold:

(ii) SF is invertible and S−1
F = K .

(iii) S−1
F =U−1

F (K p)−1φLq (�,µ)T⊥F .

Proof. The proof is similar to that of [Stoeva 2008, Theorem 5.1]. �

Definition 4.11. Two cp-frames F :�→ X∗ and G :�→ X∗ for X are similar if
there exists an invertible operator V : X→ X such that F(ω)= V ∗G(ω) for each
ω ∈�.

Theorem 4.12. Let the assumptions in Definition 4.9 be satisfied for F : �→ X∗

and G : �→ X∗. Suppose that T⊥F TF and T⊥G TG are adjoint abelian operators.
Then F and G are similar if and only if their analysis operators have same ranges.
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Proof. Suppose F and G are similar. Then there exists an invertible operator
V : X→ X such that F(ω)= V ∗G(ω), ω ∈�. Let φ ∈ R(UF ). Then there exists
x ∈ X , such that

φ(ω)=UF x(ω)= 〈x, F(ω)〉 = 〈x, V ∗G(ω)〉 =UG(V x)(ω), ω ∈�.

So φ ∈ R(UG). By a similar argument, R(UG)⊆ R(UF ).
Conversely, assume R(UF ) = R(UG). For each x ∈ X , there is y ∈ X such

that UF (x) = UG(y) or 〈x, F(ω)〉 = 〈y,G(ω)〉, ω ∈ �. We define the operator
V : X→ X by V x = y. Since the cp-frame mappings for F and G are invertible,
y is uniquely determined by V and V is linear, one to one and surjective. �

5. Duals of cp-Bessel mappings

In this section, X is an infinite-dimensional, reflexive Banach space.

Definition 5.1 [Fabian et al. 2001]. A sequence {ei }
∞

i=1 in X is called a Schauder
basis of X , if for each x ∈ X there is a unique sequence of scalars (ai )

∞

i=1, called
the coordinates of x , such that x =

∑
∞

i=1 ai ei .

Let {ei }
∞

i=1 be a Schauder basis of a Banach space X . For j ∈ N and x=
∑
∞

i=1 ai ei ,
denote f j (x) = a j . Using [Fabian et al. 2001, Theorem 6.5], f j ∈ X∗. The
functionals { fi }

∞

i=1 are called the associated biorthogonal functionals (coordinate
functionals) to {ei }

∞

i=1 and for each x ∈ X , we have x =
∑
∞

i=1 fi (x)ei .
We will denote the biorthogonal functionals { fi } by {e∗i }, and say that {ei , e∗i } is

a Schauder basis of X . Such a Schauder basis is called shrinking if span{e∗i } = X∗.
It is called boundedly complete if

∑
∞

i=1 ai ei converges whenever the scalars ai are
such that supn ‖

∑n
i=1 ai ei‖<∞.

Theorem 5.2 [Fabian et al. 2001]. Let {ei , e∗i } be a Schauder basis of a Banach
space X with the canonical projections pn : X → X , pn(

∑
∞

i=1 ai ei ) =
∑n

i=1 ai ei

for each n ∈ N. Then the following assertions are equivalent:

(i) {ei , e∗i } is shrinking.

(ii) {e∗i , ei } is a Schauder basis of X∗.

Theorem 5.3 [Fabian et al. 2001]. Let X be a Banach space with a Schauder
basis {ei , e∗i }

∞

i=1. Then X is reflexive if and only if {ei , e∗i } is both shrinking and
boundedly complete.

Theorem 5.4. Let F : �→ X∗ be a cp-Bessel mapping for X and G : �→ X∗∗

be a cq-Bessel mapping for X∗. Then the following assertions are equivalent:

(i) For each x ∈ X , x =3−1
X TG(K p)−1T ∗F3X x.

(ii) For each g ∈ X∗, g = TF (K q)−1T ∗G(3
∗

X )
−1g.

(iii) For each x ∈ X and g ∈ X∗, 〈x, g〉 =
∫
�
〈x, F(ω)〉〈g,G(ω)〉 dµ(ω).
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(iv) For each Schauder basis {ei , e∗i } of X ,

〈ei , e∗j 〉 =
∫
�

〈ei , F(ω)〉〈e∗j ,G(ω)〉 dµ(ω), i, j ∈ N.

Proof. (i) =⇒ (ii) Let x ∈ X and g ∈ X∗. We have

〈x, g〉 = 〈3−1
X TG(K p)−1T ∗F3X x, g〉 = 〈TG(K p)−1T ∗F3X x, (3∗X )

−1g〉

= 〈(K p)−1T ∗F3X x, T ∗G(3
∗

X )
−1g〉 = 〈T ∗F3X x,3q(K q)−1T ∗G(3

∗

X )
−1g〉

= 〈3X x, T ∗∗F 3q(K q)−1T ∗G(3
∗

X )
−1g〉

= 〈3X x, (3−1
X )
∗TF (K q)−1T ∗G(3

∗

X )
−1g〉

= 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉.

So, for each g ∈ X∗,
g = TF (K q)−1T ∗G(3

∗

X )
−1g.

(ii) =⇒ (iii) For all x ∈ X and g ∈ X∗,

〈x, g〉 = 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉

=

∫
�

〈x, F(ω)〉(K q)−1T ∗G(3
∗

X )
−1g(ω) dµ(ω). (5-1)

But for all ψ ∈ L p(�,µ) and h ∈ X∗∗∗ (the dual of X∗∗),

〈ψ, T ∗Gh〉 = 〈TGψ, h〉 =
∫
�

ψ(ω)〈3∗X h,G(ω)〉 dµ(ω)= K q(〈3∗X h,G〉)(ψ).

So

T ∗Gh = K q(〈3∗X h,G〉). (5-2)

Therefore, by (5-1) and (5-2), we have

〈x, g〉 =
∫
�

〈x, F(ω)〉(K q)−1K q(〈3∗X (3
∗

X )
−1g,G(ω)〉) dµ(ω)

=

∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω).

(iii) =⇒ (ii) This is clear from the proof of (ii) =⇒ (iii).

(ii) =⇒ (i) For all x ∈ X and g ∈ X∗, we have

〈x, g〉 = 〈x, TF (K q)−1T ∗G(3
∗

X )
−1g〉 = 〈 x,3∗X T ∗∗F 3q(K q)−1T ∗G(3

∗

X )
−1g〉

= 〈T ∗F (3X x),3q(3q)
−1((K p)∗)−1T ∗G(3

∗

X )
−1g〉

= 〈TG(K p)−1T ∗F (3X x), (3∗X )
−1g〉 = 〈3−1

X TG(K p)−1T ∗F (3X x), g〉.
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Since X∗ separates the points of X , we get

x =3−1
X TG(K p)−1T ∗F (3X x), x ∈ X.

(iii) =⇒ (iv) is obvious.

(iv) =⇒ (iii) For all x ∈ X and g ∈ X∗,∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω)= K p(〈x, F〉)(〈g,G〉). (5-3)

By Theorem 5.2 and 5.3, {e∗i , ei } and {3ei , e∗i } are Schauder basis of X∗ and X∗∗,
respectively. Therefore

K p(〈x, F〉)(〈g,G〉)= K p
(〈

x,
∞∑

i=1

〈ei , F〉e∗i

〉)(〈
g,
∞∑
j=1

〈e∗j ,G〉3X e j

〉)

=

( ∞∑
i, j=1

〈x, e∗i 〉〈g,3X e j 〉

)
K p(〈ei , F〉)(〈e∗j ,G〉)

=

( ∞∑
i, j=1

〈x, e∗i 〉〈g,3X e j 〉

)∫
�

〈ei , F(ω)〉〈e∗j ,G(ω)〉 dµ(ω)

=

∞∑
i, j=1

〈x, e∗i 〉〈e j , g〉〈ei , e∗j 〉

=

〈 ∞∑
i=1

〈x, e∗i 〉ei ,

∞∑
j=1

〈e j , g〉e∗j

〉
= 〈x, g〉.

So, by (5-3), ∫
�

〈x, F(ω)〉〈g,G(ω)〉 dµ(ω)= 〈x, g〉. �

Definition 5.5. Let F :�→ X∗ be a cp-Bessel mapping for X and G :�→ X∗∗

be a cq-Bessel mapping for X∗. We say that (F,G) is a c-dual pair if one of the
assertions of Theorem 5.4 is satisfied.

In this case F is called a cp-dual of G and by Theorem 5.4, we can say that G
is a cq-dual of F .

Theorem 5.6. Let (F,G) be a c-dual pair. Then F is a cp-frame for X and G is a
cq-frame for X∗.

Proof. For each x ∈ X , we have

‖x‖ = ‖3−1
X TG(K p)−1T ∗F3X x‖ = ‖TG(K p)−1T ∗F3X x‖

≤ ‖TG‖‖(K p)−1T ∗F3X x‖ = ‖TG‖

∫
�

|〈x, F(ω)〉|pdµ(ω).
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Since (F,G) is a c-dual pair, ‖TG‖ is nonzero. Thus

‖x‖
‖TG‖

≤

(∫
�

|〈x, F(ω)〉|pdµ(ω)
)1/p

.

Hence F is a cp-frame for X . We prove similarly that G is a cq-frame for X∗. �

Definition 5.7. Let F :�→ X∗ be a cp-frame for X . We say that F is independent
if, for every measurable function φ :�→ C and every x ∈ X , the condition∫

�

〈x, F(ω)〉φ(ω) dµ(ω)= 0

implies that φ = 0.

Theorem 5.8. Let F : �→ X∗ be a cp-frame for X and µ(E) ≥ k > 0 for each
measurable set E except E =∅.

(i) If F is an independent cp-frame for X , there exists a unique cq-frame, G :
�→ X∗∗ for X∗, such that (F,G) is a c-dual pair.

(ii) If Ker(TF ) and (Ker(TF ))
⊥ are topologically complementary in Lq(�,µ),

then there exists a cq-frame G :�→ X∗∗ for X∗, such that (F,G) is a c-dual
pair.

Proof. (i) Let F be an independent cp-frame for X . Then TF : Lq(�,µ)→ X∗ is
invertible. We define G(ω) = p(ω)(TF )

−1, w ∈ �, where p(ω) : Lq(�,µ)→ C,
defined by p(ω)(φ)=φ(ω). Now we show that for a fix ω0 ∈�, p(ω0) is bounded.

For each φ ∈ Lq(�,µ), ‖φ‖ ≤ 1, put 1= {ω ∈� : |φ(ω)| ≥ |φ(ω0)|}. Clearly
1 is nonempty and measurable. Since

‖φ‖q =

∫
�

|φ(ω)|q dµ(ω)≥
∫
1

|φ(ω)|q dµ(ω)≥ µ(1)|φ(ω0)|
q
≥ k|φ(ω0)|

q ,

and

‖p(ω0)‖ = sup
‖φ‖≤1

|p(ω0)(φ)| = sup
‖φ‖≤1

|φ(ω0)| ≤ sup
‖φ‖≤1

(1
k

)1/q
‖φ‖ =

(1
k

)1/q
,

for each ω ∈ �, p(ω) is bounded. Therefore G(ω) ∈ X∗∗. By the definition of
G(ω), for each g ∈ X∗, the mapping ω→ 〈g,G(ω)〉 is measurable and

‖g‖
‖TF‖

≤

(∫
�

|〈g,G(ω)〉|qdµ(ω)
)1/q

= ‖(TF )
−1g‖ ≤ ‖(TF )

−1
‖‖g‖.

Therefore, G is a cq-frame for X∗ with bounds ‖TF‖
−1 and ‖(TF )

−1
‖.

By the definition of G, T ∗G = K q T−1
F 3∗X . So, for each g ∈ X∗, we have

g = TF T−1
F (g) = TF (K q)−1T ∗G(3

∗

X )
−1g. Therefore (F,G) is a c-dual pair by

Theorem 5.4.
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Now we will show the uniqueness of G. Let (F,W ) be another c-dual pair.
Then

TF (K q)−1T ∗G(3
∗

X )
−1
= TF (K q)−1T ∗W (3

∗

X )
−1
= IX∗ .

Thus T ∗G = T ∗W . So W = G.

(ii) Since R(TF )= X∗, by Remark 4.8, there is an operator T⊥F : X
∗
→ Lq(�,µ)

such that TF T⊥F = IX∗ . For each g ∈ X∗, let φ = T⊥F g. Therefore for all x ∈ X and
g ∈ X∗

〈x, g〉 = 〈x, TFφ〉 =

∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)=
∫
�

T⊥F g(ω)〈x, F(ω)〉 dµ(ω).

For each ω ∈�, define G(ω) : X∗→ C,G(ω)(g)= (T⊥F g)(ω). Then

|G(ω)g| = |p(ω)(T⊥F g)| ≤
(1

k

)1/q
‖T⊥F ‖‖g‖,

where p(ω) is defined in the proof of (i). Therefore G is weakly measurable and
G(ω) ∈ X∗∗. Since TF T⊥F = IX∗ , we have, for each g ∈ X∗,

‖g‖
‖TF‖

≤

(∫
�

|〈g,G(ω)〉|qdµ(ω)
)1/q

= ‖T⊥F g‖q ≤ ‖T⊥F ‖‖g‖. �

Theorem 5.9. Let F : �→ X∗ be an independent cp-frame for X. Suppose that
µ(E)≥ k > 0 for each measurable set E except E =∅. Let ω0 ∈� be such that

µ({ω0}) 6=
1

〈F(ωo),G(ωo)〉
,

where G : �→ X∗∗ is the unique cq-dual of F , obtained in Theorem 5.8. Then
F :� \ {ω0} → X∗ is a cp-frame for X.

Proof. It is clear that the upper frame condition holds. For the lower frame bound,
we have

〈x, F(ω0)〉 =

∫
�

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω), x ∈ X.

Therefore 〈x, F(ω0)〉 is given by∫
�\{ω0}

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω)+〈x, F(ω0)〉〈F(ω0),G(ω0)〉µ({ω0}),

that is,

〈x, F(ω0)〉=
1

1−µ({ω0})〈F(ω0),G(ω0)〉

∫
�\{ω0}

〈x, F(ω)〉〈F(ω0),G(ω)〉 dµ(ω).
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Let A be the lower frame bound of F . For each x ∈ X ,

|〈x, F(ω0)〉|
p
≤ K

∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω),

where

K =
(

1
1−µ({ω0})〈F(ω0),G(ω0)〉

)p(∫
�\{ω0}

|〈F(ω0),G(ω)〉|qdµ(ω)
)p/q

.

Therefore, for each x ∈ X ,

A‖x‖X ≤

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

+
(
|〈x, F(ω0)〉|

pµ({ω0})
)1/p

≤

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

+

(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

K 1/p(µ({ωo}))
1/p

=
(
1+ K 1/p(µ({ωo}))

1/p)(∫
�\{ωo}

|〈x, F(ω)〉|pdµ(ω)
)1/p

.

Therefore F :� \ {ω0} → X∗ is a cp-frame for X with lower frame bound

A
1+ K 1/p(µ({ωo}))1/p . �

Corollary 5.10. Let F : �→ X∗ be a cp-frame for X and assume µ(E) ≥ k > 0
for each measurable set E except E =∅. Let ω0 ∈� be such that

µ({ω0}) 6=
1

〈F(ωo),G(ωo)〉
.

Suppose Ker(TF ) and (Ker(TF ))
⊥ are topologically complementary in Lq(�,µ).

Then F :� \ {ω0} → X∗ is a cp-frame for X.

6. Perturbation of cp-frames

Perturbation of discrete frames has been discussed in [Cazassa and Christensen
1997]. The proof of the following theorem is based on the following lemma, which
was proved in [Cazassa and Christensen 1997].

Lemma 6.1. Let U be a linear operator on a Banach space X and assume that
there exist λ1, λ2 ∈ [0, 1) such that for each x ∈ X ,

‖x −U x‖ ≤ λ1‖x‖+ λ2‖U x‖.
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Then U is bounded and invertible. Moreover, for each x ∈ X ,

1− λ1

1+ λ2
‖x‖ ≤ ‖U x‖ ≤

1+ λ1

1− λ2
‖x‖

and
1− λ2

1+ λ1
‖x‖ ≤ ‖U−1x‖ ≤

1+ λ2

1− λ1
‖x‖.

Theorem 6.2. Let F be an independent cp-frame for X andµ(E)≥ k>0, for each
measurable set E , except E =∅. Suppose that G :�→ X∗ is weakly measurable
and assume that there exist constants λ1, λ2, γ ≥ 0 with max(λ1 + γ /A, λ2) < 1.
Suppose also that, for all φ ∈ Lq(�,µ) and x in the unit sphere of X ,∣∣∣∣∫
�

φ(ω)〈x, F(ω)−G(ω)〉 dµ(ω)
∣∣∣∣

≤ λ1

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ λ2

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣+ γ ‖φ‖.

Then G :�→ X∗ is a cp-frame for X with bounds

A
1− (λ1+ γ /A)

1+ λ2
and B

1+ λ1+ γ /B
1− λ2

,

where A and B are the frame bounds of F.

Proof. Let X1 = {x ∈ X : ‖x‖ = 1} be the unit sphere of X . We first prove that G
is a cp-Bessel mapping for X . By assumption, for all x ∈ X and φ ∈ Lq(�,µ),∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣

≤

∣∣∣∣∫
�

φ(ω)〈x, F(ω)−G(ω)〉 dµ(ω)
∣∣∣∣+ ∣∣∣∣∫

�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣

≤ (1+ λ1)

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ λ2

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣+ γ ‖φ‖,

which implies that∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣≤ 1+ λ1

1− λ2

∣∣∣∣∫
�

φ(ω)〈x, F(ω)〉 dµ(ω)
∣∣∣∣+ γ

1− λ2
‖φ‖

≤

(
1+ λ1

1− λ2
B+

γ

1− λ2

)
‖φ‖.

Let K : Lq(�,µ)→ X∗ be defined by

〈x, Kφ〉 =
∫
�

φ(ω)〈x,G(ω)〉 dµ(ω), x ∈ X, φ ∈ Lq(�,µ).
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Then

‖Kφ‖ = sup
‖x‖=1

|〈x, Kφ〉| = sup
‖x‖=1

∣∣∣∣∫
�

φ(ω)〈x,G(ω)〉 dµ(ω)
∣∣∣∣

≤

(
1+ λ1

1− λ2
B+

γ

1− λ2

)
‖φ‖.

Therefore K is well defined and bounded. So by Theorem 2.5, G is a cp-Bessel
mapping for X with upper bound B(1+ λ1+ γ /B)/(1− λ2).

We define V = K (K q)−1T ∗W (3
∗

X )
−1, for which W is the unique cq-dual of F

which is obtained in Theorem 5.8. Then, for all x ∈ X and g ∈ X∗,

〈x, V g〉 = 〈x, K (K q)−1T ∗W (3
∗

X )
−1g〉 =

∫
�

〈g,W (ω)〉〈x,G(ω)〉 dµ(ω)

and

〈x, g〉 =
∫
�

〈x, F(ω)〉〈g,W (ω)〉 dµ(ω).

Let φg :�→C be defined by φg(ω)= 〈g,W (ω)〉. Clearly φg ∈ Lq(�,µ). There-
fore, by assumption, we deduce that for all x ∈ X1 and g ∈ X∗,

|〈x, g− V g〉| ≤ λ1|〈x, g〉| + λ2|〈x, V g〉| + γ ‖φg‖.

Hence

‖g− V g‖ = sup
‖x‖=1

|〈x, g− V g〉| ≤ λ1‖g‖+ λ2‖V g‖+ γ ‖φg‖

≤

(
λ1+

γ

A

)
‖g‖+ λ2‖V g‖.

By Lemma 6.1, V is invertible and

‖V ‖ ≤
1+ λ1+ γ /A

1− λ2
, ‖V−1

‖ ≤
1+ λ2

1− (λ1+ γ /A)
.

Then

〈x, g〉 = 〈x, V V−1g〉 =
∫
�

〈V−1g,W (ω)〉〈x,G(ω)〉 dµ(ω),

and we obtain

‖x‖ = ‖3X x‖ = sup
‖g‖=1

|〈g,3X x〉| = sup
‖g‖=1

|〈x, g〉|

= sup
‖g‖=1

|

∫
�

〈V−1g,W (ω)〉〈x,G(ω)〉 dµ(ω)|

≤ sup
‖g‖=1

(∫
�

|〈V−1g,W (ω)〉|qdµ(ω)
)1/q(∫

�

|〈x,G(ω)〉|pdµ(ω)
)1/p

.
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Therefore, for each x ∈ X ,

A
1− (λ1+ γ /A)

1+ λ2
‖x‖ ≤

(∫
�

|〈x,G(ω)〉|pdµ(ω)
)1/p

. �
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