\bullet
 involve

 a journal of mathematicsThe Gauss-Bonnet formula on surfaces with densities Ivan Corwin and Frank Morgan

The Gauss-Bonnet formula on surfaces with densities

Ivan Corwin and Frank Morgan
(Communicated by Michael Dorff)

Abstract

The celebrated Gauss-Bonnet formula has a nice generalization to surfaces with densities, in which both arclength and area are weighted by positive functions. Surfaces with densities, especially when arclength and area are weighted by the same factor, appear throughout mathematics, including probability theory and Perelman's recent proof of the Poincaré conjecture.

A classic, if somewhat anthropomorphic, question in mathematics is whether an ant moving on a curve embedded in \mathbb{R}^{3} or in a surface can measure the curvature κ of the curve or say anything about how the curve is embedded in space. The answer, no, stems from the fact that the ant can only measure distance along the curve and has no way to determine changes in direction. Curvature is extrinsic to a curve and must be measured from outside the curve.

Following this one might then ask whether a person moving in a surface embedded in \mathbb{R}^{3} has any chance of saying something about the surface's curvature in \mathbb{R}^{3}. Whereas the ant could only measure distance along the curve, a person on a surface has the ability to measure both length and area on the surface. Does this change things?

The answer is yes. Gauss's Theorem Egregium declares that a certain measure of surface curvature now known as the Gauss curvature G turns out to be an intrinsic quantity, measurable from within the surface. This is not at all apparent from its definition. G is defined as the product of the principal curvatures κ_{1}, κ_{2}, the largest and smallest (or most positive and most negative) curvatures of one-dimensional slices by planes orthogonal to the surface. For a plane, $G=0$. For a sphere of radius a, we have $G=1 / a^{2}$. For the hyperbolic paraboloid $\left\{z=\frac{1}{2}\left(x^{2}-y^{2}\right)\right\}$, at the origin G equals -1 : negative because the surface is curving up in one direction and

[^0]down in the other direction; as you move farther out in the surface, G approaches 0 as the surface flattens out.

The fact that the Gauss curvature is actually intrinsic is a consequence of the celebrated Gauss-Bonnet formula (for a general reference see [do Carmo 1976; Morgan 1998]). Gauss-Bonnet relates the integral of the Gauss curvature over a smooth topological disc D in a surface to the integral over the boundary ∂D of the curvature κ of the boundary:

$$
\int_{\partial D} \kappa+\int_{D} G=2 \pi .
$$

For example, for a smooth closed curve C in the plane, where $G=0$,

$$
\int_{C} \kappa=2 \pi
$$

that is, the total curvature of an embedded planar curve is 2π. For a smooth closed curve C enclosing area A on the unit sphere, where $G=1$,

$$
\int_{C} \kappa+A=2 \pi
$$

For example, the equator, with curvature $\kappa=0$, encloses area 2π. Note that we are using the intrinsic or "geodesic" curvature κ, not the curvature of the curve in \mathbb{R}^{3} if the surface is embedded in \mathbb{R}^{3}.

Gauss-Bonnet has extensive applications throughout geometry and topology. It can be used to classify two-dimensional surfaces by genus and to solve isoperimetric problems [Howards et al. 1999; Morgan 1998, Section 9.12]. The GaussBonnet formula provides an intrinsic definition of the Gauss curvature G of a surface at a point p by considering ϵ-balls B_{ϵ} of area A about p and taking a limit as ϵ approaches 0 :

$$
G(p)=\frac{1}{A} \int_{B_{\epsilon}} G=\lim \frac{1}{A}\left(2 \pi-\int_{\partial B_{\epsilon}} \kappa\right) .
$$

This article considers what happens to the Gauss-Bonnet formula under some simple intrinsic alterations of the surface. The most common alteration, called a conformal change of metric, scales distance by a variable factor λ, so that $d s=$ $\lambda d s_{0}$ and $d A=\lambda^{2} d A_{0}$; that is, arc length is weighted by λ and area is weighted by λ^{2}. More generally, one can weight arc length and area by unrelated densities:

$$
d s=\delta_{1} d s_{0}, \quad d A=\delta_{2} d A_{0}
$$

If the two densities are equal, $\delta_{1}=\delta_{2}=\Psi$, the result is simply called a surface with density Ψ. Surfaces with density appear throughout mathematics, including probability theory and Perelman's recent proof of the Poincaré conjecture [Morgan

2009, Chapter 18]. Important examples include quotients of Riemannian manifolds by symmetries and Gauss space, defined as \mathbb{R}^{n} with Gaussian density $c \exp \left(-r^{2}\right)$.

Perelman's paper and many other applications require generalizations of curvature to general dimensional surfaces with densities. In higher dimensions, the important intrinsic curvature is the so-called Ricci curvature, for which many generalizations have been proposed, each for its own purpose, one particular choice employed by Perelman (see [Morgan 2009, Section 18.3] and references therein). Corwin et al. [2006, Section 5] proposed a generalization of Gauss curvature and the Gauss-Bonnet formula to surfaces with density Ψ. In principle, their definition generalizes to surfaces with length density δ_{1} and area density δ_{2} by a conformal change of metric. The following proposition gives a simple, direct presentation of that generalization. The generalized Gauss curvature G^{\prime} is given by

$$
G^{\prime}=G-\Delta \log \delta_{1} .
$$

An intriguing feature is that G^{\prime} depends only on the length density δ_{1}, not on the area density δ_{2}. For a conformal change of metric ($\delta_{1}=\lambda, \delta_{2}=\lambda^{2}$), (1) below agrees with the standard Gauss-Bonnet formula (and gives an easy proof): the first integrand becomes $\kappa \lambda d s_{0}=\kappa d s$ and the second integrand becomes the new Gauss curvature $G^{\prime} \lambda^{2} d A_{0}=G^{\prime} d A$ because $G^{\prime}=(G-\Delta \log \lambda) / \lambda^{2}$ [Dubrovin et al. 1992, Theorem 13.1.3].

For a disc with density (the case $\delta_{2}=\delta_{1}$), (1) agrees with the formula in [Corwin et al. 2006, Proposition 5.2]. For a disc with area density (the case $\delta_{1}=1$), (1) agrees with the formula in [Carroll et al. 2008, Proposition 3.3].

There are other possible generalizations of Gauss curvature to surfaces with density, for example, coming from the power series expansions for the area and perimeter of geodesic balls [Corwin et al. 2006, Propositions 5.8 and 5.9].
Proposition. Consider a smooth Riemannian disc D with Gauss curvature G, length density δ_{1}, area density δ_{2}, classical boundary curvature κ_{0} (inward normal), and hence generalized boundary curvature

$$
\kappa=\left(\delta_{1} / \delta_{2}\right) \kappa_{0}-\left(1 / \delta_{2}\right) \partial \delta_{1} / \partial n .
$$

Then

$$
\begin{equation*}
\int_{\delta_{D}}\left(\delta_{2} / \delta_{1}\right) \kappa d s_{0}+\int_{D}\left(G-\Delta \log \delta_{1}\right) d A_{0}=2 \pi \tag{1}
\end{equation*}
$$

Proof. We begin by explaining the formula for κ. The geometric interpretation of curvature is minus the rate of change of length per change in enclosed area as you deform the curve normal to itself [Corwin et al. 2006, Proposition 3.2]. First of all, the densities weight this effect by δ_{1} / δ_{2}. There is a second effect due to the rate of change $\partial \delta_{1} / \partial n$ of the length density in the normal direction, divided again by the area density δ_{2}.

To prove (1), first consider the conformal metric $d s=\delta_{1} d s_{0}$, with area density δ_{1}^{2} and curvature

$$
\kappa^{\prime}=\left(1 / \delta_{1}\right) \kappa_{0}-\left(1 / \delta_{1}^{2}\right) \partial \delta_{1} / \partial n .
$$

Multiplying the area density by $\mu=\delta_{2} / \delta_{1}^{2}$ multiplies the curvature by $1 / \mu=\delta_{1}^{2} / \delta_{2}$:

$$
\kappa=\left(\delta_{1} / \delta_{2}\right) \kappa_{0}-\left(1 / \delta_{2}\right) \partial \delta_{1} / \partial n .
$$

Hence by substitution, by the classical Gauss-Bonnet Theorem and the divergence theorem, and by trivial algebra,

$$
\begin{aligned}
\int_{\partial D}\left(\delta_{2} / \delta_{1}\right) \kappa d s_{0} & =\int_{\partial D} \kappa_{0} d s_{0}-\int_{\partial D} \partial \log \delta_{1} / \partial n d s_{0} \\
& =2 \pi-\int_{D} G d A_{0}+\int_{D} \Delta \log \delta_{1} d A_{0} \\
& =2 \pi-\int_{D}\left(G-\Delta \log \delta_{1}\right) d A_{0},
\end{aligned}
$$

as desired.

References

[do Carmo 1976] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, N.J., 1976. MR 52 \#15253 Zbl 0326.53001
[Carroll et al. 2008] C. Carroll, A. Jacob, C. Quinn, and R. Walters, "The isoperimetric problem on planes with density", Bull. Aust. Math. Soc. 78:2 (2008), 177-197. MR 2009i:53051 Zbl 1161.53049
[Corwin et al. 2006] I. Corwin, N. Hoffman, S. Hurder, V. Sesum, and Y. Xu, "Differential geometry of manifolds with density", Rose-Hulman Und. Math. J. 7:1 (2006), article 2.
[Dubrovin et al. 1992] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry: methods and applications, I, 2nd ed., Grad. Texts in Math. 93, Springer, New York, 1992. MR 92h:53001 Zbl 0751.53001
[Howards et al. 1999] H. Howards, M. Hutchings, and F. Morgan, "The isoperimetric problem on surfaces", Amer. Math. Monthly 106:5 (1999), 430-439. MR 2000i:52027 Zbl 1003.52011
[Morgan 1998] F. Morgan, Riemannian geometry: a beginner's guide, 2nd ed., A. K. Peters, Wellesley, MA, 1998. MR 98i:53001 Zbl 0911.53001
[Morgan 2009] F. Morgan, Geometric measure theory: a beginner's guide, 4th ed., Elsevier/Academic Press, Amsterdam, 2009. MR 2009i:49001 Zbl 1179.49050

Received: 2011-06-30 Revised: 2011-07-11 Accepted: 2011-07-11
ivan.corwin@gmail.com Courant Institute of Mathematics, New York University, 251 Mercer Street, New York, NY 10012, United States

Frank.Morgan@williams.edu Department of Mathematics and Statistics, Williams College, 18 Hoxsey Street, Williamstown, MA 01267, United States

involve

pjm.math.berkeley.edu/involve
EDITORS
Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu
Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@ dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100$ /year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA $94720-3840$ is published continuously online. Periodical rate postage paid at Berkeley, CA 94704 , and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://msp.org/
A NON-PROFIT CORPORATION
Typeset in LATEX
The visual boundary of \mathbb{Z}^{2} 103Kyle Kitzmiller and Matt Rathbun
An observation on generating functions with an application to a sum 117
of secant powersJeffrey Mudrock
Clique-relaxed graph coloring 127
Charles Lundon, Jennifer Firkins Nordstrom,Cassandra Naymie, Erin Pitney, William Sehornand Charlie Suer
Cost-conscious voters in referendum elections 139
Kyle Golenbiewski, Jonathan K. Hodge and Lisa Moats
On the size of the resonant set for the products of 2×2 matrices 157
Jeffrey Allen, Benjamin Seeger and Deborah Unger
Continuous p-Bessel mappings and continuous p-frames in Banach 167
spaces
Mohammad Hasan Faroughi and Elnaz Osgooei
The multidimensional Frobenius problem 187
Jeffrey Amos, Iuliana Pascu, Vadim Ponomarenko, Enrique Treviño and Yan Zhang
The Gauss-Bonnet formula on surfaces with densities 199
Ivan Corwin and Frank Morgan

[^0]: MSC2010: 53B20.
 Keywords: Gauss-Bonnet, density.
 The authors acknowledge partial support by the National Science Foundation (research grant and graduate research fellowship).

