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An implementation of scatter search to train neural
networks for brain lesion recognition

Jeffrey Larson and Francis Newman

(Communicated by Kenneth S. Berenhaut)

In recent years, the use of computer aided diagnosis (CAD) has achieved accep-
tance in mammography and other areas. To facilitate automated detection of brain
abnormalities, we propose a novel method for quickly training neural networks
to classify brain images. Our method outperforms traditional neural network
training methods by achieving a better balance between classification accuracy
and training time.

1. Introduction

A variety of techniques have been implemented for lesion detection, including
image filtering methods [Kotropoulos and Pitas 1992], support vector machines
[Bilello et al. 2004], Markov random fields [Van Leemput et al. 2001], and a variety
of artificial neural networks (ANNs) [Raff and Newman 1992; Wu et al. 1993;
Yu and Guan 2000]. Nevertheless, automated pathology or lesion detection in
most medical images has become somewhat dormant in recent years. Even in
mammography, where computer-aided detection (CAD) has the greatest acceptance,
the sensitivity (percentage of abnormal pathologies identified as “abnormal”) is
high, but the specificity (percentage of normal images where no abnormality is
found) is poor. There are further difficulties for practical or commercial acceptance
of CAD outside of mammography. These are often a combination of algorithmic
and technical limitations. For example, when ANNs are used, backpropagation is
frequently the method of choice for training. Backpropagation employs a multilayer
feed forward architecture where error minimization is achieved via some form of
gradient descent. Backpropagation (and its variants) can be slow to train, but a
bigger problem for medical image diagnosis is the fact that the algorithm is likely
to settle on an unsatisfactory local minimum [Gori and Tesi 1992; Sontag and
Sussmann 1989].

MSC2000: primary 90C59, 92B20; secondary 90C90, 92C50.
Keywords: computer-aided diagnosis, scatter search, artificial neural networks, health care, diagnosis.
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204 JEFFREY LARSON AND FRANCIS NEWMAN

Though the problem is difficult, correct classification of pathology and lesions
in medical images could offer great benefits in reducing diagnostic errors and labor
costs. It is estimated that 10-30% of breast cancers that are retrospectively visible
are missed by radiologists upon initial reading [Brake et al. 1998], and 17-21%
of polyps in computed tomography (CT) colonography are given false negative
diagnoses due to human perception errors [Fletcher et al. 2000]. Missed tumors in
lung CTs are disturbingly common [White et al. 1996], and brain tumors especially
are frequently misdiagnosed [Wang et al. 2003]. Recent studies have found that
physicians’ clinical diagnoses are proven wrong 10-15% of the time by autopsy
findings [Shojania et al. 2003; Roulson et al. 2005]. In an effort to reduce the number
of misdiagnoses, researchers in the radiological sciences have been pursuing CAD
since the early ascendancy of the computer [Schwartz 1970; Raff and Newman
1992; Chan et al. 1987]. Nevertheless, CAD has had limited impact in the field of
human radiology, aside from some impact in mammography, where commercial
systems have been available since 1998 [Vyborny et al. 2000].

In this effort we pursue a novel method to minimize the classification error for a
feed-forward ANN in the medical image diagnosis problem using a scatter search
meta-heuristic. The method, which is trained on a small subset of images and then
validated on a larger set of images, greatly outperforms traditional classification
methods.

2. Background

Scatter search [Glover 1999; Glover et al. 2000] is a population-based meta-heuristic
that uses a local search algorithm to find an optimum. In this application, the
population to be optimized is a set of random weights. Diverse individuals from the
ANN population are then combined to form a “best” set according to some metric.
This best set is then incorporated into the next population to be evaluated. The
implementation of scatter search discussed here permits comparative evaluation of
various feature vectors extracted from medical images.

For ease of reference, we define the terms to be used in this paper. An artificial
neural network (ANN) is a mathematical model that simulates the structure of
biological neural networks. It consists of interconnected nodes, each of which is
a functional that acts on a linear combination of its inputs. Supervised ANNs are
adaptive models that adjust the weights on the network arcs during a training phase
in order to match each individual input to its target.

For example, a person might wish to construct a neural network to determine
whether individuals should be diagnosed with colon cancer after their first screening.
One might train the model using data (age, weight, height, . . . , race, etc.) collected
for 100 patients, as well as an indicator of whether or not they were diagnosed with
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Figure 1. An example of an ANN.

colon cancer. To train the network, the weights on the arcs need to be adjusted
until an acceptable percentage of the training set has the correct output (perhaps a
network output of +1 for people who are diagnosed with cancer and −1 for those
who are not). An example of such a three-layer network with m inputs and n hidden
nodes is shown in Figure 1.

Our method employs a population of feed forward neural network architectures.
According to the literature, three-layer networks are suitable for most problems,
but the number of hidden nodes is frequently chosen by trial and error [Fausett
1994; Hassoun 1995, pp. 318–322]. It is important to note that our population
consists of networks with identical three-layer architectures. Our process finds the
network in the population that has the best weights and then uses these weights in an
ANN to classify brain images. Though each network in our population has a fixed
architecture with the same number of nodes, the method described in this paper
permits easy and fast comparison of different hidden node architectures. Training a
feed-forward ANN usually involves thousands of iterations (also known as epochs)
to update the weights between layers in an effort to minimize the mean squared
error. For a good treatment of neural networks, see [Fausett 1994; Hassoun 1995].

For a fixed architecture, training a neural network is a task in optimization.
If a network has n different weights, training involves finding n weights that
minimize the total error between the network output and the target values. Since
backpropagation is a gradient descent method, its performance depends on initial
network weights; if weights aren’t well-initialized, backpropagation might perform
poorly. Therefore, using a heuristic to find weights might yield a better neural
network than backpropagation, in less time. Various heuristics have been proposed
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to solve the problem of training neural networks [Kelly et al. 1996; Ye et al. 2007].
A heuristic such as scatter search, which explores many basins of attraction, could
drastically outperform backpropagation.

Since this ANN is a supervised learning scheme, the a priori target values are
available, and the algorithm seeks to minimize the error between the targets and the
outputs for the training set. When the training returns an error below a particular
threshold, the training is halted and a validation set is used for testing. (The threshold
for the error term is problem and user-dependent.)

3. Implementation

3.1. General scatter search implementation. Scatter search is a population-based
meta-heuristic, where a collection of preferred solutions are maintained and re-
combined in order to generate new solutions. If the new solutions are preferred
enough, they enter the population for the next iteration. For any given problem,
the scatter search population has two subsets, good solutions and diverse solutions.
The general framework for the algorithm is this:

(1) Generate a starting population.

(2) Perform a local search on every member of the population.

(3) Form a reference set of good solutions and diverse solutions using an appro-
priate metric.

(4) Form appropriate subsets from elements in the reference set.

(5) For each subset, generate new member(s) of the population.

(6) Return to step 2 and repeat until a satisfactory solution is found, or time runs
out.

3.2. Our implementation. We attempt to find optimal weights for a neural network
of fixed architecture; each instance is a fixed number of hidden nodes in a single layer.
Each node in every implementation is a hyperbolic tangent activation function, which
has been recommended as the best activation function for classification problems
[Kalman and Kwasny 1992]. As with many meta-heuristics, any implementation
allows for many degrees of freedom. For the purpose of classifying brain images
as normal or abnormal, we adapted the scatter search algorithm as follows:

(1) Starting population: Generate 105 three layer networks with the same architec-
ture. The weights (including biases) in each network are random numbers between
−1 and 1.

(2) Local search: Perform a local search on the error function for each network
using the Nelder–Mead method. From our initial weights, we are looking for a



SCATTER-SEARCH APPROACH TO BRAIN LESION RECOGNITION 207

local minimum of the total difference between the target output and the network
output (for all training vectors).

(3) Form reference set: Select the 5 networks with the lowest total error to form
the “good set”. With this set fixed, we now create the “diverse set” by selecting
networks that vary significantly from the good solutions. Select the network with
the largest minimum Euclidean distance between its weights and the weights of
the networks already in the reference set. Add this network to the reference set,
and recalculate the minimum distance to the reference set for each network in
the remaining population. Repeat this process until the reference set contains 10
networks: 5 good and 5 diverse.

(4) Form subsets of the reference set: For the 10 elements of the reference set,
generate all possible unique pairs of networks. This creates

(10
2

)= 45 subsets.

(5) Generate new population: For each subset {x, y}, we generate three new
elements of the population:

x1 = x − v, x2 = x + v, x3 = y+ v,

where v = r(x − y)/2 and r is a random number between 0 and 1. Thus, for each
{x, y} pair, we are create 3 points on the line through x and y. These 135 networks,
along with 10 random networks to ensure diversity, form our new population. Also,
the previous reference set is included in the population, though no local search
needs to be performed on these networks.

4. Results

Normal and abnormal magnetic resonance images (MRIs) of the brain are used in this
study (see Figure 2 for examples). Even with high-resolution images, representing
individual images in a structure suitable for analysis is itself a considerable task.
Though input of the entire image is desirable, the amount of data contained in a
256× 256 gray-scale matrix is large. One widely used way to represent the data is
to select regions of interest (ROIs) from an image; such an approach is widely used.
Regions of interest are selected manually from each image and a single feature
vector is generated for each region.

We examined a total of 250 normal images and 100 abnormal images. The neural
network was trained on 10 of each type, while the remaining 330 were used as a
validations set. To transform the images, we used the Haralick transform (a texture
transform composed of second-order statistics) to generate feature vectors for each
ROI. This transform uses the gray level co-occurrence matrix to uncover how often
image pixel values appear adjacent to one another. If then computes quantities such
as energy, correlation and homogeneity from that gray level co-occurrence matrix.
For a complete discussion of the Haralick transform, see [Haralick et al. 1973].
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Figure 2. Normal (left) and abnormal (right) brain images.

Our training algorithm was used to classify 10 randomly selected normal images
and 10 randomly selected abnormal images. Each network in the population
consisted of 10 hidden nodes and 1 output node. With targets of −1 for normals
and +1 for abnormals, a classification is considered successful when a given output
is within 0.5 of the target. (Rounding is required since the output transfer function
is a hyperbolic tangent function, and therefore ±1 is only reached at infinity.)

For comparison, we used the same training vectors to train an identical neural
network architecture 10,000 times using back propagation (from 10,000 different
random starting weights). With the various random starting points, different net-
works converged to a variety of weights. The “best” network (the one that best
classified the training vectors) was validated using the remaining vectors. These
results are summarized in Table 1.

training
set

training
error

normals
classified

abnormals
classified

our
classification

rate

best back-
propagation
classification

rate

random 10(a) 8.23× 10−5 199 56 77.27% 67.58%
random 10(b) 2.48 185 48 70.61% 59.39%
random 10(c) 0.49 209 56 80.06% 51.96%
random 10(d) 4.32 206 53 78.48% 55.76%
random 10(e) 3.50 210 57 80.91% 66.36%
random 10(f) 0.93 178 83 79.09% 62.12%

Table 1. Comparison of classification results between our train-
ing method and the best network (out of 10,000) trained using
backpropagation for 6 different randomly selected training sets.
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5. Discussion

The results reflect a dramatic improvement in the classification rate compared to
that of backpropagation. This improvement is surprising given that the local search
for our implementation is rudimentary. One would expect a rigorous local search,
similar to what is used in backpropagation, to outperform Nelder–Mead. While
there may not be a logical explanation for why taking a linear combination of the
weights from two decent networks results in a worthwhile network, generating our
population in the manner prescribed certainly allows us to identify many different
basins of attraction. The fact that these results were achieved with only 20 training
vectors is even more surprising since the number of training vectors usually used
for the medical image recognition problem is orders of magnitude greater than 20
[Baum and Haussler 1989]. Expanding the training set would likely improve the
classification rate.

The proposed method has many strengths. For example, the error function can
easily be varied for different applications. In this implementation, false positives
and false negatives were weighted equally. If sensitivity is more important than
specificity, for example, it might be preferential to weight the error corresponding to
missed abnormals higher than misclassified normals. Also, this training method has
an ease of implementability. Although different network architectures (number of
hidden nodes, layers, activation functions, etc.) might be better suited for different
problem classes, this algorithm allows for quick testing of different networks.
Changing any network parameter is simple, and training these different networks
can be accomplished in a few minutes. Interested parties can receive the MATLAB
code used in our implementation by emailing the corresponding author.

This success opens a number of avenues for further exploration. For example,
the number of hidden nodes can be varied to determine whether a larger or smaller
network better suits a given problem. A desire for the ability to meaningfully
compare different feature vectors has been expressed in the literature [Duda et al.
2001; Egmont-Petersen et al. 2002], and the proposed network training algorithm
can facilitate this well. Aside from feature vectors, different sizes of networks,
different activation functions, and different network architectures can all easily be
tested and compared with this algorithm.

6. Conclusion

In this paper, we propose a novel method for training neural networks for the
specific task of classifying medical images as normal or abnormal. Our proposed
method shows great promise for this task, but also has an ease of implementation
that allows for quick training of neural networks for general classification problem.
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P1 subalgebras of Mn(C)

Stephen Rowe, Junsheng Fang and David R. Larson
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A linear subspace B of L(H) has the property P1 if every element of its pre-
dual B∗ has the form x + B⊥ with rank(x) ≤ 1. We prove that if dim H ≤ 4
and B is a unital operator subalgebra of L(H) which has the property P1, then
dim B ≤ dim H . We consider whether this is true for arbitrary H .

1. Introduction

The duality between the full algebra L(H) of bounded linear operators on a Hilbert
space H and its ideal L∗ of trace class operators plays an important role in invariant
subspace theory. Indeed, it is easy to use rank one operators in the preannihilator
of an operator algebra B to construct nontrivial invariant subspaces for B and con-
versely (see [Larson 1982]). In his proof that subnormal operators are intransitive,
S. Brown [1978] focused attention on a more subtle connection between rank one
operators and invariant subspaces. He showed that certain linear subspaces B of
L(H) have the following property: every element of its predual B∗ has the form
x + B⊥ with rank(x) ≤ 1, where B⊥ = {a ∈ L∗ : Tr(ba)= 0, for all b ∈ B} is the
preannihilator of B. This was called the P1 property in [Larson 1982]. D. Hadwin
and E. Nordgren [1982], and independently the third author, observed the connec-
tion between this property and reflexivity. Although neither property implies the
other, if an algebra B has property P1 and is also reflexive (B = AlgLat(B)) then
so are all of its ultra-weakly closed subalgebras.

Azoff obtained many results about linear subspaces of L(H) which have the
property P1. Among them, he proved the following simple, but beautiful, result
by using ideas from algebraic geometry. If dim H = n ∈ N and a linear space
S ⊂ L(H)≡ Mn(C) has the property P1, then the dimension of S is no larger than
2n−1. Furthermore, there exists a subspace S⊂Mn(C) which has the property P1

and dim S= 2n−1. For an expository account of these and related results, we refer

MSC2000: primary 47L05, 47L75; secondary 47A15.
Keywords: property P1, 2-reflexive.
The first author was a participant in an NSF-funded REU at Texas A&M University in the summer
of 2009 in which the other authors were mentors.
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to [Azoff 1986], where linear spaces with the property P1 are called elementary
spaces. For this article the original term P1 seemed more suitable because we want
to work with the more general property Pk in the same context.

In this paper we consider the analogue of Azoff’s result for the subcase of unital
operator subalgebras in L(H)≡Mn(C) (an operator algebra is unital if it contains
the identity operator of L(H)). If B is the diagonal subalgebra of L(H), it is easy
to show that B has property P1 and dim B = n. In Section 5 we show that if n ≤ 4
and B ⊂ Mn(C) is a unital subalgebra which has property P1, then dim B ≤ n. It
is natural to conjecture that this is also true for arbitrary n. We make this formal:

Question 1. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1. Must dim B ≤ n?

Note that if the above conjecture is true, then we can deduce Azoff’s result as a
corollary. Indeed, if S ⊂ L(H)≡ Mn(C) is a linear space with property P1, then

B =
{(
λ s
0 λ

)
: λ ∈ C, s ∈ S

}
⊂ L(H (2))≡ M2n(C)

is a unital operator algebra with property P1 [Kraus and Larson 1986; 1985; Azoff
1986]. So dim B ≤ 2n implies dim S ≤ 2n− 1.

An algebra B ⊂ L(H) is called a P1 algebra if A has property P1. An algebra
B ⊂ L(H) is called a maximal P1 algebra if whenever A is a subalgebra of L(H)
having property P1 and A⊃ B, then A= B. We consider a subquestion of Question
1.

Question 2. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra. If B has property P1 and dim B = n, is B a maximal P1 algebra?

In Section 3 and Section 4, we prove that if a unital P1 subalgebra B ⊂ Mn(C)

is semisimple or singly generated and dim B = n, then B is a maximal P1 algebra.
In [Larson 1982], the third author showed that if a weakly closed operator

algebra B has property P1, then B is 3-reflexive [Azoff 1973], that is, its three-
fold ampliation B(3) is reflexive. (This result also holds for linear subspaces with
the same proof). He raised the following problem: Suppose dim H = n ∈ N and
B⊂ L(H)≡Mn(C) is a unital operator algebra with property P1. Is B 2-reflexive?
Note that this question also makes sense for linear subspaces. Azoff [1986] showed
that the answer to the above question is affirmative for n=3 (for all linear subspaces
of M3(C) with property P1). Very little additional progress has been made on this
problem since the mid 1980’s. The purpose of the research project resulting in this
article was to push further on this problem. In Section 6 of this paper, we will
show that the answer to the above question for unital algebras is also affirmative
for n = 4. The proof requires a detailed analysis of several subcases undertaken in
the preceding sections.
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We would like to pose the following subquestion.

Question 3. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1 and dim B = n. Is B 2-reflexive?

Throughout this paper, we will use the following notation. If H is a Hilbert
space and n is a positive integer, then H (n) denotes the direct sum of n copies of
H , that is, the Hilbert space H⊕· · ·⊕H . If a is an operator on H , then a(n) denotes
the direct sum of n copies of a (regarded as an operator on H (n)). However, we
will use In instead of I (n) to denote the identity operator on H (n). If B is a set of
operators on H , then B(n) = {b(n) : b ∈ B}.

This paper focuses on problems concerning operator algebras and linear sub-
spaces of operators in finite dimensions. All of our results and proofs are given for
finite dimensions. However, many of the definitions are given in the mathematics
literature for infinite (as well as finite) dimensions, where the Hilbert space is
assumed to be separable. The Hahn–Banach theorem and the Riesz representation
theorem, the definitions of reflexive algebras and subspaces, the properties P1 and
Pk , are all given in the literature for infinite dimensions, but we will only use them
here in the context of finite dimensions. In cases where proofs of known results
are given for the sake of exposition, we will usually just give the proofs for finite
dimensions. However, we will adopt the convention that if the statement of a result
or definition in this article does not specify finite dimensions, then the reference
we cite actually gives the infinite dimensional proof, or, if no reference is cited,
then the proof we provide is in fact valid for infinite dimensions.

We will use some standard notation: If A ∈ L(H), it is common to use Alg(A)
to denote the algebra generated by A and I and Alg0(A) to denote the algebra
generated by A alone. If L is a lattice of subspaces, then it is also common to use
Alg(L) to denote the algebra of operators that holds each element of L invariant.
The meaning of the use of Alg(·) will be clear from context so there will be no
ambiguity.

2. Preliminaries

Let H be a Hilbert space with dim H = n. Then L(H) ≡ Mn(C). Let {ei }
n
i=1 be

an orthonormal basis of H . If a ∈ L(H)≡Mn(C) is an arbitrary operator, then the
trace of a is defined as

Tr(a)=
n∑

i=1

〈aei , ei 〉.

It is easy to show that Tr(a) does not depend on the choice of {ei }
n
i=1. Moreover, the

trace has the important property that Tr(ab)=Tr(ba) for all a, b∈ L(H)≡Mn(C).
In this case, the space of trace class operators on H , denoted L∗, can be identified
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algebraically with Mn(C), and is equipped with the trace class norm

‖a‖1 = Tr((a∗a)1/2).

Recall that the dual of a linear space is the space of all (continuous) linear func-
tionals on the space. In the case of L∗ = Mn(C), every linear functional on L∗ has
the form a→ Tr(ab) for some b ∈ L(H)≡ Mn(C). In this way, L(H) is identified
as the dual space of L∗, and L∗ is called the predual of L(H). If S ⊂ L(H) is a
linear subspace, then as a linear space itself S can be identified as the dual of the
quotient linear space L∗/S⊥, where S⊥ = {a ∈ L∗|Tr(ba) = 0 for all b ∈ S} is the
preannihilator of S. Here, as usual, the quotient space L∗/S⊥ means the set of all
cosets of L∗, {x+ S⊥|x ∈ L∗}. We also write x+ S⊥ as [x]. We write S∗= L∗/S⊥.
The duality between S and S∗ is that if [x] ∈ S∗ for some x ∈ L∗, and associate the
linear functional on S given by

b→ Tr(bx), for all b ∈ S.

This is well defined by the definition of S⊥. In order to obtain S as exactly the
dual of the space S∗, one needs to apply a version of the Hahn–Banach theorem
[Han et al. 2007]. We say a linear subspace S of L(H) ≡ Mn(C) has property P1

if every element of its predual B∗ has the form x + B⊥ with rank(x)≤ 1.
Let B ⊂ L(H) ≡ Mn(C) be a unital operator subalgebra. If z ∈ L(H) is

an invertible operator, elementary computations yield (zBz−1)⊥ = z−1 B⊥z and
(zBz−1)∗ = z−1 B∗z, where the multiplication action of z on the quotient space B∗
is given by

z−1(x + B⊥)z = z−1xz+ z−1 B⊥z = z−1xz+ (zBz−1)∗.

From this it is easy to see that if B has property P1, then so does zBz−1. It is also
true that B has property P1 if and only if its adjoint algebra B∗ = {b∗|b ∈ B} has
property P1.

Lemma 2.1 [Larson 1982]. An algebra B has property P1 if and only if every
element b∗ ∈ B∗ has the form x + B⊥ with rank(x)≤ 1.

Proof. Only if is trivial. Suppose every element b∗ ∈ B∗ has the form x + B⊥ with
rank(x)≤ 1. Note that for each b∈ B and each b⊥ ∈ B⊥, Tr(bb⊥)= 0. This implies
that L(H) = B∗⊕ B⊥ with respect to the inner product 〈x, y〉 = Tr(y∗x). So for
each a ∈ L(H), a= b∗+b⊥ for some b∗ ∈ B∗ and b⊥ ∈ B⊥. Therefore, a= x+B⊥
with rank(x)≤ 1 by the assumption of the lemma. �

Lemma 2.2. Let B be a subalgebra of L(H). If B has property P1 and p ∈ B is a
projection, then pBp ⊂ L(pH) also has property P1.

Proof. Suppose z ∈ B⊥ and b ∈ B. Then Tr(pbppzp) = Tr(pbpz) = 0. So
pzp ∈ (pBp)⊥. For each a ∈ L(H), there exists a b⊥ ∈ B⊥ such that the rank of
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a+ b⊥ is at most 1. So the rank of pap+ pb⊥ p = p(a+ b⊥)p is at most 1. This
proves the lemma. �

Recall that a vector ξ ∈H is a separating vector of B if bξ = 0 for some b ∈ B
then b = 0. We say that B has the separating vector property if it has a separating
vector. A direct sum of subspaces with the separating vector property has the
separating vector property (take the direct sum of the separating vectors). If B is
similar to a subspace with a separating vector, then B has a separating vector. (If
B = T CT−1, and x separates C , then T x separates B).

Lemma 2.3. If Alg(A, I ) is a singly generated unital subalgebra of L(H) with H
finite dimensional, then B has a separating vector.

Consider a Jordan block B. The vector
0
...

0
1


separates B. Since any matrix is similar to a finite direct sum of Jordan blocks,
and each Jordan block has a separating vector, the result follows.

The following result is the finite-dimensional special case of Proposition 1.2 of
[Herrero et al. 1991].

Theorem 2.4. If B is a subalgebra of L(H), with H finite dimensional, such that
either B or B∗ has a separating vector, then B has property P1.

Property Pk , a generalization of property P1, was also introduced by the third
author in [Larson 1982]. Recall that an algebra B has property Pk if every element
of its predual B∗ has the form x + B⊥ with rank(x)≤ k.

Lemma 2.5 [Larson 1982]. Let B be a subalgebra of L(H). Then B has property
Pk if and only if B(k) = {b(k)|b ∈ B} ⊂ L(H (k)) has property P1.

Proof. “⇒”. By Lemma 2.1, we need to show that each operator (b∗)(k), b ∈ B,
can be written as f + B⊥ with rank( f )≤ 1. Note that

B(k)
⊥
=
{
(xi j )k×k |x11+ · · ·+ xkk ∈ B⊥

}
⊃
{
(xi j )k×k |x11 · · · , xkk ∈ B⊥

}
.

By the assumption, B has property Pk . So there exists a b⊥ ∈ B⊥ such that the
rank of b∗ + b⊥ is at most k. We can write b∗ + b⊥ = ξ1 ⊗ η1 + · · · + ξk ⊗ ηk ,
where ξi ⊗ ηi is the rank one operator defined by ξi ⊗ ηi (ξ) = 〈ξ, ηi 〉ξi . Let
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zi i = kξi ⊗ ηi −
∑

1≤r≤k ξr ⊗ ηr , 1≤ i ≤ k, and let

z =


z11 kξ2⊗ η2 · · · kξk ⊗ ηk

kξ1⊗ η1 z22 · · · kξk ⊗ ηk

· · · · · · · · · · · ·

kξ1⊗ η1 kξ2⊗ η2 · · · zkk

 .
Then z ∈ B(k)

⊥
and

(b∗)(k)+ (b⊥)(k)+ z = k


ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

· · · · · · · · · · · ·

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk


is a rank 1 matrix.

“⇒”. By the assumption, for each a ∈ L(H) there exists z ∈ B(n)
⊥

such that the
rank of a(n) + z is at most 1. Write z = (zi j )k×k . Then z11 + · · · + zkk ∈ B⊥ and
the rank of a+ zi i is at most 1. So the rank of

a+
1
k
(z11+ · · ·+ zkk)=

1
k
((a+ z11)+ · · ·+ (a+ zkk))

is at most k. �

Corollary 2.6. If B is a subalgebra of L(H) and dim H = k, then B(k) ⊂ L(H (k))

has property P1.

3. Semi-simple maximal P1 algebras

Suppose B is a subalgebra of Mn(C) which has property P1. Recall that B is
a maximal P1 algebra of Mn(C) if whenever A is a subalgebra of Mn(C) having
property P1 and A⊇ B, then A= B. The main result of this section is the following
theorem.

Theorem 3.1. Let B ⊆ Mn(C) be a unital semisimple algebra. If B has property
P1, then dim B ≤ n. Furthermore, if dim B = n, then B is a maximal P1 algebra.

To prove this theorem, we will need the following lemmas:

Lemma 3.2. Let B ⊆ L(H)= Mn(C) be a semisimple algebra. If B has property
P1, then dim B ≤ n.

Proof. We will use induction on n. The case n = 1 is clear. Suppose this is
true for n ≤ k and let B ⊂ Mk+1(C) be a semisimple algebra. We need to show
dim B ≤ k+1. Suppose B has a nontrivial central projection, p, 0< p< 1. Then,
B = pBp⊕ (1− p)B(1− p). By Lemma 2.1,

pBp ⊂ L(pH) and (1− p)B(1− p)⊂ L((1− p)H),
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are both semisimple algebras with property P1. By the assumption of induction
dim pBp ≤ dim(pH) and dim(1− p)B(1− p)≤ dim(1− p)H . Therefore,

dim B = dim(pBp)+ dim((1− p)B(1− p))

≤ dim pH + dim(1− p)H

= dim H = k+ 1.

Suppose B does not have a nontrivial central projection. Then, B ∼= Mr (C). Since
B has property P1, r2

≤ n+ 1 by Lemma 2.5. So r ≤ n+ 1. �

Lemma 3.3. Suppose 0 6= a ∈ Mn(C). Then there exists a finite set of operators
b1, . . . , bk, c1, . . . , ck , such that

∑k
i=1 bi aci = In .

Proof. Note that Mn(C)aMn(C) is a two sided ideal of Mn(C) and

Mn(C)aMn(C) 6= 0.

Since Mn(C) is a simple algebra, Mn(C)aMn(C) = Mn(C), which implies the
lemma. �

The following well known lemma will be very helpful.

Lemma 3.4. There are finitely many unitary matrices u1, u2, . . . , uk ∈Mn(C) such
that 1

k

∑k
i=1 ui au∗i = (Tr(a)/n)In for all a ∈ Mn(C).

The following lemma is a special case of Lemma 3.6. However, we include its
proof to illustrate our idea.

Lemma 3.5. Suppose B is a unital subalgebra of M4(C) and B ∼= M2(C), then B
is a maximal P1 algebra.

Proof. We may write M4(C) as M2(C)⊗M2(C) and assume B=M2(C)⊗ I2. Note
that with respect to the matrix units of I2⊗M2(C), each element of B=M2(C)⊗ I2

has the following form
(

a 0
0 a

)
, a ∈ M2(C). By Corollary 2.6, B has property P1.

Assume B ( R ⊆ M4(C) and R is an algebra with property P1. We can write
R = R1 + J , where R1 ⊃ B is the semisimple part and J is the radical of R.
Since R has property P1, R1 has property P1. By Lemma 3.2, dim R1 ≤ 4. Since
dim B = 4, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤2 ∈ J with respect to the matrix units I2⊗M2(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are sets
of operators b1, . . . , bk, c1, . . . , ck ∈ M2(C), such that

k∑
i=1

bi x11ci = I2. (1)
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Let y = (yi j )1≤i, j≤2 =
∑k

i=1(bi ⊗ I2)x(ci ⊗ I2) ∈ J . By (1), we have y11 = I2.
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ I2)y(u∗i ⊗ I2) ∈ J.

Then, z11 = I2 and zi j = λi j I2 for some λi j ∈ C, 1≤ i, j ≤ 2. So, z ∈ I2⊗M2(C).
Since z∈ J , z2

=0, as elements in the radical are nilpotent. By the Jordan canonical
theorem, there exists an invertible matrix w ∈ I2⊗M2(C) such that

wzw−1
= I2⊗

(
0 1
0 0

)
.

Replacing R by wRw−1, we may assume that R contains B and I2 ⊗
(

0 1
0 0

)
.

Furthermore, we may assume that R is the algebra generated by M2(C)⊗ I2 and
I2⊗

(
0 1
0 0

)
. Then

R =
{(

a b
0 a

)
: a, b ∈ M2(C)

}
.

Simple computation shows that R does not have property P1. This is a contradic-
tion. Therefore J = 0 and R = B. �

Lemma 3.6. Let B be a unital subalgebra of Mn2(C) such that B ∼= Mn(C). Then
B is a maximal P1 algebra.

Proof. We may write Mn2(C) as Mn(C)⊗Mn(C) and assume B=Mn(C)⊗In . Note
that with respect to the matrix units of In⊗Mn(C), each element of B=Mn(C)⊗ In

has the form 
a 0 · · · 0
0 a · · · 0
...
...
. . .

...

0 0 · · · a

 , a ∈ Mn(C).

By Corollary 2.6, B has property P1. Assume B ( R⊆Mn2(C) and R is an algebra
with property P1. We can write R = R1+ J , where R1 ⊃ B is the semisimple part
and J is the radical of R. Since R has property P1, R1 has property P1. By
Lemma 3.2, dim R1 ≤ n2. Since dim B = n2, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤n ∈ J with respect to the matrix units In ⊗Mn(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are finite
sets of operators b1, . . . , bk, c1, . . . , ck ∈ Mn(C), such that

k∑
i=1

bi x11ci = In. (2)
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Let y = (yi j )1≤i, j≤n =
∑k

i=1(bi ⊗ In)x(ci ⊗ In) ∈ J . By (2), we have y11 = In .
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ In)y(u∗i ⊗ In) ∈ J.

Then, z11 = In and zi j = λi j In for some λi j ∈C, 1≤ i, j ≤ n. So, z ∈ In⊗Mn(C).
Since z ∈ J , zn

= 0, as elements in the radical are nilpotent. By the Jordan
Canonical theorem, there exists an invertible matrix w ∈ In ⊗ Mn(C) such that
0 6=wzw−1

=
⊕k

i=1 zi ∈ In⊗Mn(C) and each zi is a Jordan block with diagonal 0.
Replacing R by wRw−1, we may assume R contains B and wzw−1

∈ In⊗Mn(C).
Suppose r =max{rankzi :1≤ i,≤ k}. We may assume rankz1=· · ·= rankzs = r

and rank zi < r for all s < i ≤ k. Then zr−1
= In ⊗

((⊕s
i=1 zr−1

)
⊕ 0

)
. Note that

zr−1
i =



0 · · · 0 1
0 · · · 0 0
.

.

.

0 · · · 0 0


.

We may assume R is the algebra generated by Mn(C)⊗ In and zr−1.
Without loss of generality, we assume r = 2, and s = n/2. The general case can

be proved similarly. Then

R =





(
a b
0 a

)
0

. . .

0
(

a b
0 a

)


s×s

: a, b ∈ Mn(C)


.

Simple computations show that

R⊥=





(
x1 ∗

y1 x2

)
∗

. . .

∗

(
xn−1 ∗

ys xn

)


s×s

: xi , yi ∈ Mn(C),

n∑
i=1

xi =

s∑
i=1

yi = 0


.

Let

m =
(

0n 0n

In 0n

)
.
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Since R has property P1, we can write m(s)
= x + R⊥ such that the rank of x is

at most 1. This implies that In + y1, In + y2, . . . , In + ys are all rank-1 matrices
for some y1, . . . , ys ∈ Mn(C) with y1 + · · · + ys = 0. Therefore, the rank of
In+ y1+ In+ y2+· · ·+ In+ ys = s In is at most s = n

2 < n. This is a contradiction.
So J = 0 and R = B. �

The following is a key lemma to prove Theorem 3.1, which has an independent
interest.

Lemma 3.7. Let λ 6= 0 be a complex number, and let y1, y2, . . . , yn ∈ Mn(C)

satisfy y1+ y2+· · ·+ yn = 0. Suppose η1, η2, . . . , ηn ∈ Cn are linearly dependent
vectors, and

t =


λ ∗ ∗ ∗ · · · ∗

η1 In + y1 ∗ ∗ · · · ∗

η2 ∗ In + y2 ∗ · · · ∗

...
...

...
...
. . .

...

ηn ∗ ∗ ∗ · · · In + yn

 .
Then rank t > 1.

Proof. We may assume that η1, . . . , ηk−1, k ≤ n, are linearly independent vectors,
and each η j , k ≤ j ≤ n, can be written as a linear combination of η1, . . . , ηk−1.
Write

ηi =

σi1
...

σin

 .
We may assume that the (k − 1)× (k − 1) matrix (σi, j )(k−1)×(k−1) is invertible.
Using row reduction, we can transform t to a new matrix

λ ∗ ∗ ∗ · · · ∗

η′1 In + y′1 ∗ ∗ · · · ∗

η′2 ∗ In + y′2 ∗ · · · ∗

...
...

...
...
. . .

...

η′n ∗ ∗ ∗ · · · In + y′n


such that the k-th row of each η′j is 0 for 1≤ j ≤ n, and y′1+ · · ·+ y′n = 0. So the
( jk+ 1, 1)-th entry of t ′ is zero for all 1≤ j ≤ n.

Suppose t is a rank 1 matrix. Then t ′ is also a rank 1 matrix. By the assumption,
λ 6= 0. This implies that each entry of the ( jk + 1)-th row of t ′ is zero for all
1 ≤ j ≤ n. In particular, the (k, k)-th entry of In + y′j is 0 for all 1 ≤ j ≤ n.
Therefore, the (k, k)-th of In + y′1+ In + y′2+ · · · + In + y′n = nIn is zero. This is
a contradiction. So rank t > 1. �
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The following lemma is a special case of Lemma 3.10. However, we include its
proof to illustrate our idea.

Lemma 3.8. Suppose dim H = 5 and

B =


λ 0 0

0 a 0
0 0 a

 : λ ∈ C, a ∈ M2(C)

⊂ L(H)= M5(C).

Then, B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊂ R ⊆ M5(C) and R has property P1. We can write R = R1+ J , where R1 ⊃ B
is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let

p =

1 0 0
0 0 0
0 0 0

 and q =

0 0 0
0 I2 02

0 02 I2

 .
Then q Bq ⊆ q Rq ⊂ B(P H)=M4(C). By Lemma 3.5, q Bq = q Rq . This implies
that we may assume

0 6= x =

0 ξ T ηT

0 02 02

0 02 02

 , where ξ, η ∈ C2.

Case 1. ξ and η are linearly independent vectors. Note that

x ·

0 0 0
0 a 0
0 0 a

=
0 ξ T a ηT a

0 0 0
0 0 0

 ∈ R.

Since ξ and η are linearly independent, and a ∈ M2(C) is arbitrary, this implies
that

R ⊇


λ ξ T ηT

0 a 0
0 0 a

 : λ ∈ C, ξ, η ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊆


0 ∗ ∗

0 y1 ∗

0 ∗ y2

 : y1, y2 ∈ M2(C), y1+ y2 = 0

 .
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Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

1 ∗ ∗

0 y1+ I2 ∗

0 ∗ y2+ I2

 , where y1+ y2 = 0.

This contradicts Lemma 3.7.

Case 2. ξ and η are linearly dependent. Without loss of generality, assume η= tξ .
So

x =

0 ξ T tξ T

0 02 02

0 02 02

 and x

0 0 0
0 a 0
0 0 a

=
0 ξ T a tξ T a

0 0 0
0 0 0

 .
Since ξ 6= 0, and a ∈ M2(C) is arbitrary, this implies that

R ⊃


λ ξ T tξ T

0 a 0
0 0 a

 : λ ∈ C, ξ ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊂
{( 0 ∗ ∗

η1 y1 ∗
η2 ∗ y2

)
y1, y2 ∈ M2(C) : y1+ y2 = 0, η1, η2 ∈ C2, η1+ tη2 = 0

}
. (3)

Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

 1 ∗ ∗

η1 y1+ I2 ∗

η2 ∗ y2+ I2

 ,
where η1+ tη2 = 0 and y1+ y2 = 0. This contradicts Lemma 3.7. �

Lemma 3.9. Suppose {zi j }1≤i≤s,1≤ j≤r ⊆ Msr (C) and {c j i }1≤i≤s,1≤ j≤r ⊆ Mrs(C)

such that
s∑

i=1

r∑
j=1

zi j ac j i b = 0, for all a ∈ Mr (C), for all b ∈ Ms(C).

If c j i 6= 0 for some 1≤ i ≤ s, 1≤ j ≤ r , then zi j are linearly dependent.

Proof. We may assume c11 6= 0 and the (1, 1) entry of c11 is 1. Replacing c j i by
1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 c j i


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 ,
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we may assume

c j i = λi j


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 , where λ11 = 1.

Let zk
i j be the k-th column of zi j . Simple computation shows that

s∑
i=1

r∑
j=1

zi j c j i = 0

is equivalent to
∑s

i=1
∑r

j=1 λi j z1
i j = 0. Let

a =


0 0 · · · 0
1 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 .
Simple computation shows that

∑s
i=1

∑r
j=1 zi j ac j i = 0 is equivalent to

s∑
i=1

r∑
j=1

λi j z2
i j = 0.

Choosing a appropriately, we have
∑s

i=1
∑r

j=1 λi j zk
i j = 0 for all 1 ≤ k ≤ n. This

implies
∑s

i=1
∑r

j=1 λi j zi j = 0. �

Lemma 3.10. Suppose dim H = (r2
+ s2) and

B = {a(r)⊕ b(s) : a ∈ Mr (C), b ∈ Ms(C)} ⊂ L(H)= M(r2+s2)(C).

Then B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊆ R ⊆ M(r2+s2)(C) and R has property P1. We can write R = R1 + J , where
R1 ⊃ B is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let p= I (r)r ⊕0 and q=0⊕I (s)s . Then, pBp⊆ pRp⊆ B(pH)
and pRp has property P1. By Lemma 3.6, pRp = pBp. Similarly, q Rq = q Bq .
So we may assume

0 6= x =

(
0(r)r c
0 0(s)s

)
.

Write c = (ci j )1≤i≤r,1≤ j≤s . Note that c 6= 0.
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Suppose

z =



x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · xr ∗ ∗ · · · ∗

z11 z12 · · · z1r y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · ys


∈ R⊥.

Since R⊥ ⊂ B⊥, x1+ x2+ · · ·+ xr = 0r and y1+ y2+ · · ·+ ys = 0s . Note that

x(a(r)⊕ b(s))=

(
0(r)r cb(s)

0 0(s)s

)
.

Since x ∈ R⊥ and x(a(r)⊕ b(s)) ∈ R, we have

Tr


z11 . . . z1r
...

zs1 . . . zsr


c11 . . . c1s
...

cr1 . . . crs


b

. . .

b


= 0.

Simple computation shows that Tr(
∑s

i=1
∑r

j=1 zi j c j i b) = 0. Since b ∈ Ms(C)

is an arbitrary matrix,
∑s

i=1
∑r

j=1 zi j c j i = 0.
Note that

(a(r)⊕ 0)x(0⊕ b(s))=

(
0(r)r a(r)cb(s)

0 0(s)s

)
=

(
0(r)r (aci j b)1≤i≤r,1≤ j≤s

0 0(s)s

)
.

By similar arguments as above, we have
∑s

i=1
∑r

j=1 zi j ac j i b=0 for all a∈Mr (C)

and b ∈ Ms(C). By Lemma 3.9, this implies that {zi j }1≤i≤s,1≤ j≤r are linearly
dependent matrices.

Since R has property P1, Ir2+s2 = x + R⊥ for some x such that the rank of x is
at most 1. So x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

z11 z12 · · · z1r Is + y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ Is + y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · Is + ys


.
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Since x is a rank 1 matrix, (zi j )1≤i≤s,1≤ j≤r are rank 1 matrices. So there are
ξ1, . . . , ξs ∈Cs, η1, . . . , ηr ∈Cr such that zi j = ξi⊗η j for 1≤ i ≤ s and 1≤ j ≤ r .
Since {zi j }1≤i≤s,1≤ j≤r are linearly dependent matrices, either {ξi }

s
i=1 are linearly

dependent or {η j }
r
j=1 are linearly dependent. Without loss of generality, assume

{ξi }
s
i=1 are linearly dependent. Now, x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

ξ1⊗ η1 ξ1⊗ η2 · · · ξ1⊗ ηr Is + y1 ∗ · · · ∗

ξ2⊗ η1 ξ2⊗ η2 · · · ξ2⊗ ηr ∗ Is + y2 · · · ∗

. . .
. . .

ξs ⊗ η1 ξs ⊗ η1 · · · ξs ⊗ ηr ∗ ∗ · · · Is + ys


.

Since x1 + · · · + xr = 0, one entry of Ir + xi is not zero for some 1 ≤ i ≤ r . We
may assume the (1, 1) entry of Ir + x1 is λ 6= 0. Let

η1 =


α1

α2
...

αr

 .
Then the matrix 

λ ∗ · · · ∗

α1ξ1 Is + y1 · · · ∗

...
. . .

α1ξs ∗ · · · Is + ys


has rank 1 since it is a submatrix of x . This contradicts Lemma 3.7. So R = B. �

Proof of Theorem 3.1. By Lemma 3.2, if B has P1, then dim B ≤ n. Assume B has
property P1, and dim B= n. We claim B=

⊕r
i=1 Mni (C)

(ni ) and n=
∑r

i=1 n2
i . We

will proceed by induction on n. If n= 1, this is clear. Assume our claim is true for
n≤ k. Let B⊆Mk+1(C) be a semisimple P1 algebra and dim B= k+1. Suppose B
has a nontrivial central projection p, 0< p< 1. Then, B= pBp⊕(1− p)B(1− p).
By Lemma 2.1, pBp ⊆ B(pH) and (1− p)B(1− p) ⊆ B((1− p)H) are both
semisimple algebras with property P1. By Lemma 3.2, dim(pBp)= dim(pH) and
dim((1− p)B(1− p))= dim((1− p)H). By induction, pBp =

⊕r1
i=1 Mni (C)

(ni ),
(1− p)B(1− p)=

⊕r2
i=1 Mmi (C)

(mi ), and
∑r1

i=1 n2
i +

∑r2
i=1 m2

i = k+ 1. Suppose
B does not have a nontrivial central projection. Then B = Mr (C)⊆ Mn+1(C) and
dim B = r2

= n+ 1 by Lemma 2.5.
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Suppose B ( R ⊆ Mk(C) ∈ L(H) and R is an algebra with property P1. Let
0 6= x ∈ R \ B. Note that B =

⊕r
i=1 Mni (C)

(ni ). Let pi be the projection of B that
corresponds to the summand Mni (C)

(ni ). Then, we have pi Bpi ⊆ pi Rpi ⊆ L(pi H)
and pi Rpi has property P1. By Lemma 3.6, pi Rpi = pi Bpi . So we may assume

0 6= x =


0(n1)

n1 x12 x13 · · · x1nr

0(n2)
n2 x23 · · · x2nr

. . .
...

0(nr−1)
nr−1 xr−1r

0 0(nr )
nr

 .

We may assume that x12 6= 0. Then

(p1+ p2)x(p1+ p2) ∈ (p1+ p2)R(p1+ p2) \ (p1+ p2)B(p1+ p2).

By Lemma 2.1, (p1+ p2)R(p1+ p2) has property P1. By Lemma 3.10,

(p1+ p2)B(p1+ p2)= Mn1(C)
(n1)⊕Mn2(C)

(n2)

is a maximal P1 algebra. This is a contradiction. So B is a maximal P1 algebra. �

4. Singly generated maximal P1 algebras

In this section, we prove the following result.

Theorem 4.1. Suppose B is a singly generated unital subalgebra of Mn(C) and
dim B = n. Then B is a maximal P1 algebra.

To prove Theorem 4.1, we need several lemmas. Let Jn be the n × n Jordan
block.

Lemma 4.2. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . If N ⊃ B is a subalgebra of the upper-triangular algebra of Mn(C) and
N has property P1, then N = B.

Proof. Suppose N ) B is a subalgebra of the upper-triangular algebra and N has
property P1. Note that

B =

{
n−1∑
k=0

λk(Jn)
k
: λ0, . . . , λn−1 ∈ C

}
.
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A special case. Suppose N contains an operator x of the following form

x =


0 · · · 0 λ 0

0 · · · 0 η

0 · · · 0
. . .

...

0

 , (4)

where λ 6= η. Then N contains the algebra generated by B and x . Therefore,

N ⊃




λ1 · · · λn−2 α γ

λ1 · · · λn−2 β

λ1 · · · λn−2
. . .

...

λ1

 : λ1, . . . , λn−2, α, β, γ ∈ C


.

Simple computation shows that

N⊥ ⊂




∗ · · · ∗ 0 0
∗ · · · ∗ 0
∗ · · · ∗

. . .
...

∗




.

It is easy to see that the operator (Jn)
n−2 can not be written as a sum of a rank

one operator and an operator in N⊥. This contradicts the assumption that N has
property P1.

The general case. Suppose z ∈ N \ B. By the assumption of the lemma, z =
(zi, j )n×n is an upper-triangular matrix. Since z /∈ B, we may assume that

z j, j+k−1 6= z j+r, j+r+k−1

for some positive integers j, k, r , and zs,t = 0 for t < s + k − 1. Without loss of
generality, we assume that z1,k 6= z2,1+k and 1≤ k ≤ n− 1. If k = n− 1, then this
implies that N contains an x as in (4). If k < n − 2, then (Jn)

k+1z (or consider
z(Jn)

k+1 if zn−1,n−1 6= zn,n) is a matrix in N . If we write

(Jn)
k+1z = (yi j )n×n.

Then y1,k+1 6= y2,k+2 and ys,t = 0 for t < s + k. Repeating the above arguments,
we can see that N contains an x as in (4). This completes the proof. �

Lemma 4.3. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . Then B is a maximal P1 algebra.
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Proof. Suppose N ⊃ B is a subalgebra of Mn(C) and N has property P1. By
Wedderburn’s theorem,

N = Mn1(C)⊕ · · ·Mns (C)⊕ J,

where J is the radical of N .

Case 1. n1 = · · · = ns = 1. Then N is triangularizable, that is, there exists a
unitary matrix u ∈ Mn(C) such that uNu∗ is contained in the algebra of upper-
triangular matrices (see [Christensen 1999, Proposition 2.5]). Since Jn ∈ B ⊂ N ,
u Jnu∗ is a strictly upper-triangular matrix. Simple computation shows that u has
to be a diagonal matrix. Therefore, N = u∗(uNu∗)u is contained in the algebra of
upper-triangular matrices. Since N has property P1, N = B by Lemma 4.2.

Case 2. Suppose ni ≥ 2 for some i , 1≤ i ≤ s. Choose a nonzero partial isometry
v ∈Mni (C) such that v2

= 0. Then either v /∈ B or v∗ /∈ B since B does not contain
any nontrivial projections. We may assume that v /∈ B. Consider the subalgebra Ñ
generated by v and B. An element of Ñ can be written as b1vb2v · · · vbn , where
bi ∈ J for 2 ≤ i ≤ n − 1, b1 = 1 or b1 ∈ J , bn = 1 or bn ∈ J . By Lemma 2.1
of [Christensen 1999], Ñ = C1⊕ J̃ , where J̃ is the radical part of Ñ such that
v ∈ J̃ . Note that Ñ also has property P1. By Case 1, Ñ = B. So v ∈ B. This is a
contradiction. �

Lemma 4.4. Let Bi ⊂ Mni (C) be the unital subalgebra generated by the Jordan
block Jni for i = 1, 2. Then B= B1⊕B2 is a maximal P1 subalgebra of Mn1+n2(C).

Proof. Suppose B ( N ⊂ Mn1+n2(C) and N has property P1. Let pi be the central
projections of B corresponding to Bi . Then B1 ⊂ p1 N p1 ⊂ Mn1(C) and p1 N p1

has property P1. By Lemma 4.3, p1 N p1 = B1. Similarly, p2 N p2 = B2. Suppose
x ∈ N \ B. Then we may assume that 0 6= x = p1xp2. With respect to matrix units
of Mn1(C) and Mn2(C), we can write x as

x =
(

0 (xi j )n1×n2

0 0

)
,

where (xi j )n1×n2 is a nonzero matrix. Multiplying on the left by a suitable matrix
of B, we may assume that xi j = 0 for all i ≥ 2 (which can be easily seen for the
case n2 = 1, other cases are similar). Multiplying on the right by another suitable
matrix of B, we may further assume that x1,n2 = 1 and x1, j = 0 for 1≤ j ≤ n2−1.
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So we may assume that

x =


0n1×n1


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0 0n2×n2

 .

Let Ñ be the algebra generated by B and x above. Then

Ñ =





λ1 · · · λn1

. . .
...

0 λ1




0 · · · α

0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0

η1 · · · ηn2

. . .
...

0 η1




: λi , η j , α ∈ C


.

Simple computation shows that

Ñ⊥ ⊂





∗ · · · 0
. . .

...

∗ ∗



∗ · · · 0
∗ · · · ∗

· · · · · · · · ·

∗ · · · ∗


∗

∗ · · · 0
. . .

...

∗ ∗






.

Let

y =




0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0

 0n1×n2

0


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0




.

It is easy to see that the operator y cannot be written as a sum of a rank one operator
and an operator in Ñ⊥. This contradicts the fact that Ñ has property P1. �

Proof of Theorem 4.1. Suppose B is generated by a matrix T . By the Jordan
canonical form theorem, we may assume that T =

⊕r
i=1(λi + Jni ) and

∑r
i=1 ni =

n. Note that dim(B) = n if and only if λi 6= λ j for i 6= j , and if and only if



232 STEPHEN ROWE, JUNSHENG FANG AND DAVID R. LARSON

B =
⊕r

i=1 Bi , where each Bi is the subalgebra of Mni (C) generated by the Jordan
block Jni .

Suppose B ( N ⊂Mn(C) and N has property P1. Let pi be the central projection
of B corresponding to Bi . Then Bi ⊂ pi N pi ⊂ Mni (C) and pi N pi has property
P1. By Lemma 4.3, Bi = pi N pi . Since B 6= N , there is an element 0 6= x ∈ N
such that x = pi xp j for some i 6= j . Without loss of generality, we may assume
that 0 6= x = p1xp2. Now we have B1⊕ B2 ( (p1+ p2)N (p1+ p2)⊆ Mn1+n2(C)

and (p1+ p2)N (p1+ p2) also has property P1. On the other hand, by Lemma 4.4,
B1⊕ B2 = (p1+ p2)N (p1+ p2). This is a contradiction. �

5. P1 algebras in Mn(C), n ≤ 4

Let B be a subalgebra of Mn(C). Then B = Mn1(C)⊕· · ·⊕Mns (C)⊕ J , where J
is the radical part of B. If n1, . . . , ns = 1, then B is upper-triangularizable, that is,
there exists a unitary matrix u such that u Bu∗ is a subalgebra of the upper-triangular
algebra of Mn(C) (see [Christensen 1999, Proposition 2.5] or [Humphreys 1972,
Corollary A, page 17]). The following lemma will be useful.

Lemma 5.1. [Azoff] Let S be a subspace of L(H) and consider the subalgebras
of L(H (2)) defined by

B =
{(
λe a
0 λe

)
: λ ∈ C, a ∈ S

}
, C =

{(
λe a
0 µe

)
: λ,µ ∈ C, a ∈ S

}
.

(1) B has property P1 if and only if S has property P1.

(2) C has property P1 if and only if S has property P1 and is intransitive.

Proposition 5.2. Let B be a unital subalgebra of M2(C) with property P1. Then B
is unitarily equivalent to one of the following three subalgebras:{(

λ 0
0 λ

)
: λ ∈ C

}
,

{(
λ 0
0 η

)
: λ, η ∈ C

}
,

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

Proof. It is easy to verify that the above algebras have property P1. Suppose B
has property P1. Then the semisimple part of B must be abelian. Conjugating by
a unitary matrix, we may assume that B is a subalgebra of the algebra of upper-
triangluar matrices. Note that the algebra of upper-triangular matrices does not
have property P1. So B must be one of the algebras listed in the lemma. �

Proposition 5.3. Let B be a unital subalgebra of M3(C) with property P1. Then
either B or B∗ has a separating vector. Therefore, dim B ≤ 3. Furthermore, if
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dim B = 3, then B is similarly conjugate to one of the following algebras

A1 =


λ1 0 0

0 λ2 0
0 0 λ3

 : λ1, λ2, λ3 ∈ C

, A2 =


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

,
A3 =


λ1 λ3 0

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

, A4 =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C

,
A5 =


λ1 λ2 λ3

0 λ1 0
0 0 λ1

 : λ1, λ2, λ3 ∈ C

, A6 =


λ1 0 λ2

0 λ1 λ3

0 0 λ1

 : λ1, λ2, λ3 ∈ C

.
Proof. Suppose B has property P1. Then the semisimple part of B must be abelian.
Conjugating by a unitary matrix, we may assume that B is a subalgebra of the
algebra of upper-triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C ⊕ C ⊕ C. Then B = A1 by
Theorem 3.1.

Case 2. Suppose the semisimple part of B is C ⊕ C. We may assume that the
semisimple part of B consists of matricesλ1 0 0

0 λ1 0
0 0 λ2

 .
We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

B1 =


λ1 0 λ3

0 λ1 λ4

0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B1 does not have property P1 (the identity matrix
can not be written as x + (B1)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B1. This implies that there exist α, β such that

B1 =


λ1 0 λ3α

0 λ1 λ3β

0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
If α 6= 0, let

s =

α 0 0
β 1 0
0 0 1

 .



234 STEPHEN ROWE, JUNSHENG FANG AND DAVID R. LARSON

Simple computation shows that s A2s−1
= B, that is, s−1 Bs = A2. If α= 0, β 6= 0,

let

s =

0 1 0
β 0 0
0 0 1

 .
Then s A2s−1

= B, that is, s−1 Bs = A2. If α = β = 0, then clearly B has a
separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
A3. It is easy to see that A3 is the algebra generated by the matrix0 1 0

0 0 0
0 0 1


and dim A3 = 3. So B = A3 by Theorem 4.1.

Case 3. Suppose the semisimple part of B is C. Then B is contained in the fol-
lowing algebra

B3 =


λ1 λ2 λ3

0 λ1 λ4

0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 does not have property P1. So B is a proper subalgebra of
B3. We consider the following subcases.

Subcase 3.1. Suppose B contains an element

b =

0 α γ

0 0 β

0 0 0

 ,
such that α 6= 0 and β 6= 0. Conjugating by an invertible upper-triangular matrix,
we may assume that b= J3 is the Jordan block. So B contains A4. By Theorem 4.1,
B = A4.

Subcase 3.2. Suppose B does not contain an element b as in subcase 3.2. Then
B ⊆ A5 or B ⊆ A6. Note that A∗5 has a separating vector and A6 has a separating
vector. So both A5 and A6 have property P1. �

Lemma 5.4. Let

B =



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

⊂ M4(C).
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Then B is a maximal P1 algebra.

Proof. Note that B∗ has a separating vector. So B has property P1. Suppose A ) B
is a P1 algebra. Suppose A contains a matrix

a1 =


0 α ∗ ∗

0 0 β ∗

0 0 λ1 γ

0 0 0 λ1

 ,
such that γ 6= 0. Since B ⊂ A, we may assume that α 6= 0 and β 6= 0. Conjugating
by an upper-triangular invertible matrix, we may assume that A contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So A is the algebra generated by the Jordan block by Theorem 4.1 and dim A= 4.
However, dim B = 4 and B ( A. This is a contradiction.

Therefore, A is contained in

λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 .
Since A is an algebra containing B and A 6= B, we may assume that A contains a
matrix of the following form

a2 =


0 0 0 0
0 0 s t
0 0 0 0
0 0 0 λ1

 ,
where either s 6= 0 or t 6= 0. Furthermore, we can assume that s = 1 and t 6= 0. Let
A1 be the algebra generated by B and a2. Then

A1 =



λ1 λ2 λ3 λ4

0 λ1 λ2+ λ5 tλ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that the predual space of A1 is

η1 ∗ ∗ ∗

tη5 η2 ∗ ∗

0 −tη5 η3 0
0 η5 0 η4

 : η1, . . . , η4 ∈ C, η1+ η2+ η3+ η4 = 0

 .
It is easy to show that the matrix 

0 0 0 0
0 0 0 0
−t 0 0 0
1 1 0 0


cannot be written as x + (A1)⊥ such that the rank of x is at most 1. This is a
contradiction. So B is a maximal P1 algebra. �

Proposition 5.5. Let B be a unital subalgebra of M4(C) with property P1. Then B
satisfies one of the following conditions:

(i) B has a separating vector.

(ii) B∗ has a separating vector.

(iii) B is similarly conjugate to an algebra of the form{(
λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension 2.

In particular, dim B ≤ 4.

Proof. Suppose B has property P1. Then the semisimple part of B must be
M2(C) or abelian. If the semisimple part of B is M2(C), then B = M2(C)

(2)

by Theorem 3.1. So B has a separating vector. Suppose the semisimple part of B
is abelian. Conjugating by a unitary matrix, we may assume that B is a subalgebra
of the algebra of upper triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C⊕C⊕C⊕C. Then

B =



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 : λ1, . . . , λ4 ∈ C


by Theorem 3.1. So B has a separating vector.
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Case 2. Suppose the semisimple part of B is C⊕C⊕C. We may assume that the
semisimple part of B consists of matrices

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 .
Let

e1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , e2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , e3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .
By Lemma 2.1, (e2 + e3)B(e2 + e3) ⊂ M2(C) has property P1. By Theorem 3.1
and the assumption of Case 2,

(e2+ e3)B(e2+ e3)=

{(
λ2 0
0 λ3

)
: λ2, λ3 ∈ C

}
.

We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

λ1 0 λ4 λ6

0 λ1 λ5 λ7

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ7 ∈ C

 .
By Lemma 2.1, (e1+ e2)B(e1+ e2)⊂ M3(C) has property P1. Note that

(e1+ e2)B(e1+ e2)⊆


λ1 0 λ4

0 λ1 λ5

0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
By the proof of Subcase 2.1 of Proposition 5.3, there exists an invertible matrix

s =

∗ ∗ ∗∗ ∗ ∗

0 0 1

 ,
such that

s−1
[(e1+ e2)B(e1+ e2)]s ⊆


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
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Conjugating by (s ⊕ 1)−1
∈ M4(C), we may assume that B is contained in the

algebra

B1 =



λ1 0 λ4 λ5

0 λ1 0 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
It is easy to see that B1 is similarly conjugate to the algebra


λ1 0 λ5 0
0 λ1 λ6 λ4

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ6 ∈ C

 .
So we may assume that

B1 =



λ1 0 λ4 0
0 λ1 λ5 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
Repeating the above arguments, we may assume that B is contained in the algebra

B2 =



λ1 0 λ4 0
0 λ1 0 λ5

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B2 does not have property P1 (the identity matrix
can not be written as x + (B2)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B2. Therefore, there exist α, β such that

B =



λ1 0 λ4α 0
0 λ1 0 λ4β

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
If α = β = 0, then clearly B has a separating vector.

If α 6= 0 and β 6= 0, let

t =


α−1 0 0 0

0 β−1 0 0
0 0 1 0
0 0 0 1

 .
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Simple computation shows that

t Bt−1
=



λ1 0 λ4 0
0 λ1 0 λ4

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

If α 6= 0, β = 0 or α = 0, β 6= 0, then B is similarly conjugate to the algebra

λ1 0 λ4 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
the algebra

B3 =



λ1 λ4 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 2


and dim B3 = 4. So B = B3 by Theorem 4.1 and B has a separating vector.

Case 3. Suppose the semisimple part of B is C⊕C.

Subcase 3.1. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .
Let

f1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , f2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
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By Lemma 2.1, fi B fi ⊂ M2(C) has property P1. By Proposition 5.2,

fi B fi =

{(
λ 0
0 λ

)
: λ ∈ C

}
or fi B fi =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

We consider the following subsubcases.

Subsubcase 3.1.1. Suppose

f1 B f1 = f2 B f2 =

{(
λ 0
0 λ

)
: λ ∈ C

}
.

This implies that

B ⊂
{(
λI2 ∗

0 ηI2

)
: λ, η ∈ C

}
.

By Lemma 5.1,

B =
{(
λI2 S
0 ηI2

)
: λ, η ∈ C

}
,

where S has property P1 and is intransitive. By [Azoff 1973, Table 5A, page 34],
S is equivalent to one of the following spaces: zero space, or{(

ζ 0
0 0

)
: ζ ∈ C

}
,

{(
ζ 0
0 ζ

)
: ζ ∈ C

}
,

{(
ζ ξ

0 0

)
: ζ, ξ ∈ C

}
,{(

ζ 0
ξ 0

)
: ζ, ξ ∈ C

}
,

{(
ζ 0
0 ξ

)
: ζ, ξ ∈ C

}
,

{(
ζ ξ

0 ζ

)
: ζ, ξ ∈ C

}
.

Note that in the last four cases, neither B nor B∗ has a separating vector.

Subsubcase 3.1.2. Suppose

f1 B f1 = f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

This implies that B contains the following subalgebra

B4 =



λ1 λ2 0 0
0 λ1 0 0
0 0 λ3 λ4

0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B4 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1


and dim B4 = 4. So B = B4 by Theorem 4.1, and B has a separating vector.
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Subsubcase 3.1.3. Suppose

f1 B f1 =

{(
λ 0
0 λ

)
: λ ∈ C

}
and f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

If dim B > 3, then B contains a nonzero matrix

b =
(

02 a
02 02

)
.

Let B5 be the subalgebra generated by f1 B f1, f2 B f2 and b. Then dim B5 = 4 and
B5 is the algebra generated by the matrix02 a

02

(
1 1
0 1

) .
So B = B5 by Theorem 4.1 and

B =


λ1 I2 λ4a

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 ,
where a is a 2× 2 matrix. Let

t =
(

b 0
02 I2

)
.

Then

t Bt−1
=


λ1 I2 λ4ba

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 .
So we can choose b appropriately such that ba = 02, or ba = I2, or

ba =
(

1 0
0 0

)
, or ba =

(
0 1
0 0

)
, or ba =

(
1 1
0 0

)
, or ba =

(
1 0
1 0

)
.

In each case, B has a separating vector.

Subcase 3.2. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ2 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .



242 STEPHEN ROWE, JUNSHENG FANG AND DAVID R. LARSON

Let

p =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
By Lemma 2.1, pBp ⊂ M3(C) has property P1. By Proposition 5.2,

pBp =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C


or

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
We consider the following subsubcases.

Subsubcase 3.2.1. Suppose

pBp =


λ2 λ3 λ4

0 λ2 λ3

0 0 λ2

 : λ2, λ3, λ4 ∈ C

 .
Then B contains the following subalgebra

B6 =



λ1 0 0 0
0 λ2 λ3 λ4

0 0 λ2 λ3

0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B6 is the algebra generated by the matrix

0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


and dim B6 = 4. So B = B6 by Theorem 4.1, and B has a separating vector.

Subsubcase 3.2.2. Suppose

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
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If dim B > 3, then B contains a nonzero matrix

b =
(

0 a
0 03

)
.

Let B7 be the subalgebra generated by (1 − p)B(1 − p), pBp and b. Then
dim B7 = 4 and B7 is the algebra generated the matrix

0 a

0

1 0 1
0 1 0
0 0 1


 .

So B = B7 by Theorem 4.1 and

B =



λ1 λ4a

0

λ2 0 λ3

0 λ2 0
0 0 λ2


 : λ1, . . . , λ4 ∈ C

 .
Conjugating by an appropriate invertible matrix

t =


1 0 0 0
0 λ ∗ ∗

0 0 η ∗

0 0 0 λ

 ,
we have

t Bt−1
=



λ1 λ2 0 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,

t Bt−1
=



λ1 0 λ2 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,
or

t Bt−1
=



λ1 0 0 λ2

0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
In each case, B∗ has a separating vector.
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Case 4. Suppose the semisimple part of B is C. Consider matrices in B with the
form

b =


0 α ∗ ∗

0 0 β ∗

0 0 0 γ

0 0 0 0

 .
Subcase 4.1. B contains a matrix b with α 6= 0, β 6= 0, γ 6= 0. Conjugating by an
upper-triangular invertible matrix, we may assume that B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So B is the algebra generated by the Jordan block by Theorem 4.1. Note that B
has a separating vector.

Subcase 4.2. B does not contain a matrix b as in Subcase 4.1 and B contains a
matrix b with two elements of α, β, γ nonzero. We may assume that α 6= 0 and
β 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and therefore B ⊇



λ1 λ2 λ3 0
0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
By the assumption of Subcase 4.2, we have

B ⊂



λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 . (5)

Subsubcase 4.2.1. Suppose the (2, 4)-entry of every matrix in B is zero. Then B
is contained in the algebra

B8 ⊂



λ1 λ2 λ4 λ5

0 λ1 λ3 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that B8 does not have property P1. So B is a proper
subalgebra of B8. By (5), there exist α, β such that

B =



λ1 λ2 λ3 λ4α

0 λ1 λ2+ λ4β 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
If α = 0 and β 6= 0, then B does not have property P1. So we may assume that
α 6= 0. It is easy to see that B∗ has a separating vector.

Subsubcase 4.2.2. Suppose the (2, 4)-entry of a matrix in B is not zero. By (5),
B contains an element

b =


0 0 0 α

0 0 β γ

0 0 0 0
0 0 0 0

 ,
where γ 6= 0. Since B is an algebra, B contains

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 b =


0 0 β γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
By (5), B contains 

0 0 0 γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
Since B is an algebra, B contains the subalgebra

B9 ⊆



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
By Lemma 5.4, B9 is a maximal P1 algebra. Hence, B= B9 and B∗ has a separating
vector.

Subcase 4.3. B does not contain a matrix b as in subcase 4.1, subcase 4.2, and
B contains a matrix b with one element of α, β, γ nonzero. We may assume that
α 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
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B contains the matrix 
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
By the assumption of subcase 4.3, B is contained in the algebra

B10 =



λ1 λ2 λ3 λ4

0 λ1 0 λ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B10 does not have property P1. So B is a proper
subalgebra of B10. We consider the following subsubcases.

Subsubcase 4.3.1. . If the (1, 3) entry of each element of B is zero, then B is
contained in the algebra

B11 =



λ1 λ2 0 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B11 does not have property P1. So there exist α, β
such that

B =



λ1 λ2 0 λ3α

0 λ1 0 λ3β

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
If β = 0, then B∗ has a separating vector. If β 6= 0, then B has a separating vector.

Subsubcase 4.3.2. If the (2, 4) entry of each element of B is zero, then B is con-
tained in the algebra

B12 =



λ1 λ2 λ3 λ4

0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Note that B∗12 has a separating vector and hence B∗ has a separating vector.
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Subsubcase 4.3.3. Suppose B contains an element

b =


0 0 α β

0 0 0 γ

0 0 0 0
0 0 0 0

 ,
where α 6= 0 and γ 6= 0. Let

t =


1 0 0 0
0 1 0 0
0 0 α−1

−
β

αγ

0 0 0 γ−1

 .
Then

t−1bt =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
Conjugating by t−1 if necessary, we may assume that α = γ = 1 and β = 0. Since
B is a proper subalgebra of B10, B is the algebra,

B =



λ1 λ2 λ3 λ4

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B∗ has a separating vector.

Subcase 4.4. B does not contain a matrix B as in subcase 4.1, subcase 4.2, and
subcase 4.3. Then

B ⊂



λ1 0 λ2 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Combining Lemma 5.1 [Azoff 1973, Table 5A, page 34], and similar arguments
as in Subsubcase 3.1.1,

B =



λ1 λ2 λ3 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
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or

B =



λ1 0 0 λ2

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 λ3

0 λ1 0 λ2

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 0
0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
It is easy to show that in each case either B or B∗ has a separating vector. �

6. 2-reflexivity and property P1

Let H be a Hilbert space. The usual notation Lat(B) will denote the lattice of
invariant subspaces (or projections) for a subset B⊆ L(H), and Alg(L)will denote
the algebra of bounded linear operators leaving invariant every member of a family
L of subspaces (or projections). An algebra B is called reflexive if B=AlgLat(B).
An algebra B is called n-reflexive if the n-fold inflation B(n)={b(n) : b∈ B}, acting
on H(n), is reflexive [Azoff 1986]. In [Larson 1982], the third author proved the
following result: An algebra B is n-reflexive if and only if B⊥, the preannihilator
of B, is the trace class norm closed linear span of operators of rank≤ n. In [Larson
1982], the third author also showed the following connection between n-reflexivity
and the P1 property: If an algebra B has property P1, then B is 3-fold reflexive.
(This result also holds for linear subspaces with the same proof). He raised the
following problem: Suppose dim H = n ∈ N and B ⊂ L(H) ≡ Mn(C) is a unital
operator algebra with property P1. Is B 2-reflexive? Note that this question also
makes sense for linear subspaces. Azoff [1986] showed that the answer to the
above question is affirmative for n = 3 (for all linear subspaces of M3(C) with
property P1). In this section, we prove the following result.

Proposition 6.1. If dim H=4 and B⊂ L(H)≡M4(C) is a unital operator algebra
with property P1, then B is 2-reflexive.



P1 SUBALGEBRAS OF Mn(C) 249

Proof. By Proposition 5.5, either B or B∗ has a separating vector or B is similarly
conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two. If B has a separating vector
or B∗ has a separating vector, then the fact that B is 2-reflexive follows from the
proofs of Corollary 7 of [Larson 1982] and Proposition 1.2 of [Herrero et al. 1991].
If B is similarly conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two, then the fact that B is 2-
reflexive follows from Proposition 1 of [Kraus and Larson 1985]. �
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On three questions concerning groups with perfect
order subsets

Lenny Jones and Kelly Toppin

(Communicated by Kenneth S. Berenhaut)

In a finite group, an order subset is a maximal set of elements of the same order.
We discuss three questions about finite groups G having the property that the
cardinalities of all order subsets of G divide the order of G. We provide a new
proof to one of these questions and evidence to support answers to the other two
questions.

1. Introduction

Let G be a finite group. Carrie E. Finch and the first author [Finch and Jones 2002;
2003] defined the order subset of G determined by x 2G to be the set of elements
in G with the same order as x. They defined G to have perfect order subsets —
in short, to be a POS group — if the number of elements in each order subset of
G divides the order jGj. It is easy to see that any nontrivial POS group has even
order.

The next three theorems, whose proofs are given in [Finch and Jones 2002],
allow us to refine the search for abelian POS groups to a particular class of groups.

Theorem 1.1. Let G' .Zpa/t�M and yG' .ZpaC1/t�M , where M is an abelian
group and p is a prime not dividing jM j. If G is a POS group, then so is yG.

Theorem 1.2. Suppose G ' Zpa1 �Zpa2 � � � ��Zpas�1 � .Zpas /t �M , where M

is an abelian group, p is a prime not dividing jM j, and a1� a2� : : :� as�1 < as .
If G is a POS group, then so is yG ' .Zpas /t �M .

Theorem 1.3. If G is a POS group with G ' .Zpa/t �M , where M is an abelian
group and p is a prime not dividing jM j, then yG' .Zp/t�M is also a POS group.

The previous theorems provide motivation for the following definition.

Definition 1.4. Let G ' .Z2/t �M , where jM j is odd, be a POS group. We say
that G is minimal if .Z2/t � yM is not a POS group for any subgroup yM of M .

MSC2000: primary 20F99, 11Y05; secondary 11A51.
Keywords: perfect order subsets, abelian group, symmetric group.
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Theorem 1.5 [Finch and Jones 2002]. Let G Š .Z2/t �M , where t � 1 and M is
a cyclic group of odd square-free order. If G is a POS group and G Š .Z2/t � yM

is not a POS group for any subgroup yM of M , then G is isomorphic to one of

Z2;

.Z2/2
�Z3;

.Z2/3
�Z3 �Z7;

.Z2/4
�Z3 �Z5;

.Z2/5
�Z3 �Z5 �Z31;

.Z2/8
�Z3 �Z5 �Z17;

.Z2/16
�Z3 �Z5 �Z17 �Z257;

.Z2/17
�Z3 �Z5 �Z17 �Z257 �Z131071;

.Z2/32
�Z3 �Z5 �Z17 �Z257 �Z65537:

Various authors have investigated nonabelian groups in search of POS groups.
For example, certain special linear groups were considered in [Finch and Jones
2003], the dihedral groups in [Libera and Tlucek 2003], and certain semidirect
products and the alternating groups in [Das 2009]. In this article, our focus will be
on the symmetric groups and on certain abelian groups, and specifically on three
questions posed in [Finch and Jones 2002]:

Question 1.6. Is S3 the only symmetric group that is a POS group?

Question 1.7. If G is a POS group and jGj is not a power of 2, then must jGj be
divisible by 3?

Question 1.8. Are there only finitely many minimal POS groups that contain non-
cyclic Sylow p-subgroups of odd order?

Tuan and Hai [2010] answered Question 1.6 in the affirmative. We provide
here an alternative proof that is shorter and more direct. The techniques used in
our proof are similar to those of Tuan and Hai, but whereas they use a theorem of
Chebyshev [1852], we resort to a more refined version of that result [Nagura 1952].

Walter Feit (personal communication; see also [Finch and Jones 2003]) an-
swered Question 1.7 in the negative, by providing counterexamples: if p is a
Fermat prime, the Frobenius group of order p.p�1/, with Frobenius complement
Zp�1 and Frobenius kernel Zp, is a POS group but its order is not divisible by 3.
Other counterexamples to Question 1.7 were constructed in [Das 2009].

All these counterexamples are nonabelian. This leads to a modified version of
the question, for which we will show evidence of an affirmative answer:

Question 1.9 (modified Question 1.7). If G is an abelian POS group and jGj is
not a power of 2, then must jGj be divisible by 3?
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Concerning Question 1.8, the only known abelian POS group with a noncyclic
Sylow p-subgroup is

.Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89; (1-1)

found in [Finch and Jones 2002]. Theorem 4.3 below shows that this is, in fact, the
only such POS group whose order has exactly 5 distinct odd prime divisors and
exactly one odd square prime factor.

To summarize, these are the main results of this paper:

Theorem 1.10. The symmetric group Sn is a POS group if and only if n� 3.

Theorem 1.11. Suppose that G is an abelian POS group and jGj is not a power
of 2. If jGj is not divisible by 3, then jGj > 4:48 � 10457008, and jGj has at least
57097 distinct prime factors.

Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � �< pm are odd primes. If 1�m� 5, then

G ' .Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89:

2. The proof of Theorem 1.10

The proof is based on a result of Nagura, which refines a theorem of Chebyshev
[1852] (also known as Bertrand’s postulate) to the effect that for every integer
x � 4, there exists a prime p such that x < p < 2x� 2.

Theorem 2.1 [Nagura 1952]. If x � 25, then there exists a prime p such that

x < p < 6
5
x:

Proof of Theorem 1.10. It is easy to verify that Sn is a POS group when n � 3.
Suppose that n� 60. By Theorem 2.1, there exists a prime p such that 5

12
n < p <

1
2
n. Note that n� 60 and p > 5

12
n imply that p� 29. Also, since 5

12
n < p < 1

2
n, it

follows that 2p < n < 3p, so an element of order p in Sn is either a p-cycle or the
product of 2 disjoint p-cycles. Thus, the number of elements of order p in Sn is

C WD

n.n�1/.n�2/ � � � .n�pC1/

p
C

n.n�1/.n�2/���.n�pC1/
p

�
.n�p/.n�p�1/���.n�2pC1/

p

2
:

Then
n!

C
D

2p2.n�p/!

2pC .n�p/ � � � .n� 2pC 1/
:
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Define

A WD 2p2.n�p/! and B WD 2pC .n�p/ � � � .n� 2pC 1/:

We show that B does not divide A. Let q be a prime divisor of B. We consider
four ranges for q:

Case 1: q�p. Since B�2p is a product of p� q consecutive integers, at least one
of its factors is divisible by q. Thus, q divides B�.B�2p/D2p, so that qD2 or p.

Case 2: p < q < n�2pC1. Impossible, since n < 3p implies .n�2pC1/�p < 1.

Case 3: n� 2pC 1� q � n�p. Then q appears as a factor in B � 2p. So again,
q D 2 or p.

Case 4: n�p < q. Clearly q does not divide AD 2p2.n�p/! . Thus, B D 2kpm.
Observe that B is divisible by 2, but not by 4. Also, since p < n� p < 2p, we
have that p3 is the exact power of p that divides A. Hence, k D 1 and m � 3.
Therefore, B � 2p3. It follows that

2p.p� 1/.pC 1/D 2p3
� 2p � B � 2p D .n�p/.n�p� 1/ � � � .n� 2pC 1/

> p.p� 1/.p� 2/.p� 3/ � � � 3 � 2;

since n > 2p. But this is impossible since p � 29.

Finally, to complete the proof, we need the number an of elements of order 2 in
Sn, for 4 � n � 59. By a result of Chowla, Herstein and Moore [Chowla et al.
1951], this number satisfies (for any n) the recurrence relation

an D an�1C .an�2C 1/.n� 1/:

All that remains is to verify with a computer that n! is never divisible by an for
these values of n. �

3. The Proof of Theorem 1.11

In light of Theorems 1.2 and 1.3, it is enough to focus on groups all of whose
Sylow subgroups are elementary abelian. Thus, throughout this section, we let

G ' .Z2/t
� .Zp1

/t1 � � � � � .Zpm
/tm ;

where p1 < p2 < � � �< pm are odd primes, and m� 1. Let

nD jGj D 2t
mY

iD1

p
ti

i and f .n/D .2t
� 1/

mY
iD1

.p
ti

i � 1/:

The following lemma is a direct consequence of the definition of a POS group.

Lemma 3.1. The group G is a POS group if and only if n=f .n/ is an integer.
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Lemma 3.2. If mD 1 and G is a POS group then p1 D 3.

Proof. Since mD 1, we have that nD 2tp
t1

1
and f .n/D .2t � 1/.p

t1

1
� 1/. Then,

since G is a POS group, n=f .n/ is an integer by Lemma 3.1. Thus, there exist
positive integers a and b such that

a.2t
� 1/D p

t1

1
and b.p

t1

1
� 1/D 2t : (3-1)

Hence,
p

t1

1
� 2� 2t

� 1� p
t1

1
:

Thus, there are two cases to consider:

Case 1: 2t � 1D p
t1

1
� 2. Then p

t1

1
D 2t C 1, and so from (3-1) we conclude that

aD 1C2=.2t �1/. Hence, t D 1, since a is an integer, which implies that p1D 3.

Case 2: 2t � 1D p
t1

1
. We deduce from (3-1) that p

t1

1
C 1D 2t and p

t1

1
� 1D 2c ,

for some c < t . Subtracting one equation from the other gives 2c.2t�c � 1/ D 2,
which implies that c D 1 and p1 D 3. �
Proof of Theorem 1.11. By way of contradiction, assume p1 > 3. By Lemma 3.2,
we may assume that m � 2. Let q be an arbitrary prime divisor of n. Since all
prime divisors of q�1 divide n, we have that q� 2 .mod 3/ and all prime divisors
of q � 1 are congruent to 2 modulo 3. Thus, we can recursively construct the list
S of viable prime divisors of n as follows. Let S1 D Œ2; 5� and q1 D 5. For i � 2,
let qi be the smallest prime such that qi > qi�1 and all prime divisors of qi �1 are
contained in the list Si�1. Define Si WD Œ2; 5; : : : ; qi�1; qi �: Then

S2 D Œ2; 5; 11�; q2 D 11;

S3 D Œ2; 5; 11; 17�; q3 D 17;

S4 D Œ2; 5; 11; 17; 23�; q4 D 23;

S5 D Œ2; 5; 11; 17; 23; 41�; q5 D 41;

S6 D Œ2; 5; 11; 17; 23; 41; 47�; q6 D 47;

and so on. Define S WD limi!1 Si . Then

n

f .n/
D

2t

2t � 1
�

mY
iD1

p
ti

i

p
ti

i � 1
�

2m

2m� 1
�

mY
iD1

pi

pi � 1
�

2m

2m� 1
�

mY
iD1

qi

qi � 1
:

Using a computer, we have verified for 2�m� 57096 that

2m

2m� 1

mY
iD1

qi

qi � 1
< 2 and

257096

257096� 1

57096Y
iD1

qi > 4:48 � 10457008:

Clearly, n=f .n/ > 1, and since n=f .n/ must be an integer by Lemma 3.1, the
theorem follows. �
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Remark 3.3. Whether or not the list S constructed in the proof of Theorem 1.11
is finite, sieve methods [Halberstam and Richert 1974] can be used to show that
the product

2m

2m� 1

mY
iD1

qi

qi � 1
(3-2)

is bounded above. We conjecture that (3-2) is less than 2 for all m� 2, but we are
unable to provide a proof since a tight explicit bound is both tedious and difficult
to compute using sieve methods. The truth of this conjecture would imply that the
answer to Question 1.9 is affirmative.

4. The proof of Theorem 1.12

Definition 4.1. Let t be a positive integer, and let q be a prime divisor of 2t � 1.
We say that q is a primitive divisor of 2t � 1 if q does not divide 2s � 1 for any
positive integer s < t .

Theorem 4.2 [Bang 1886]. Let t � 2 be an integer. Then 2t � 1 has a primitive
divisor except when t D 6.

Theorem 4.3. Let G be a minimal abelian POS group, such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 <p2 < � � �<pm are odd primes. Then p1D3 and 2t�1D2pk�1Dpipj ,
for some i ¤ j .

Proof. As before, let

nD jGj D 2tp2
k

mY
iD1
i¤k

pi and f .n/D .2t
� 1/.p2

k � 1/

mY
iD1
i¤k

.pi � 1/:

Since G is a POS group, n=f .n/ is an integer by Lemma 3.1.
Next, note that n� 0 .mod 3/. For if not, then pk > 3 and p2

k
�1� 0 .mod 3/.

Then, since f .n/� 0 .mod p2
k
� 1/, we have that f .n/� 0 .mod 3/, which con-

tradicts the fact that n=f .n/ is an integer. This proves that p1 D 3.
Now, suppose that p is an odd prime divisor of t . Then 2p � 1 divides 2t � 1,

and so 2p � 1 divides n. Consequently, every prime divisor of 2p � 1 is pi for
some i , and then pi �1� 0 .mod p/. Also, for each such pi , we have that pi �1

divides n. Thus, since n is not divisible by the cube of any odd prime, it follows
that 2p � 1 has at most two distinct odd prime divisors. Therefore, we are led to
consider the following five cases:

(1) 2p � 1D p2
k

for some odd prime divisor p of t .
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(2) 2p � 1D pip
2
k

for some i , and some odd prime divisor p of t .

(3) There exists an odd prime that divides t , and for every odd prime p that divides
t , we have that 2p � 1D pi for some i .

(4) There exists at least one odd prime p that divides t such that 2p � 1D pipj

for some i ¤ j .

(5) No odd prime divides t ; that is t D 2a.

Ljunggren [1943] proved that Case (1) is impossible.
In Case (2), we have that pi � 1 � 0 .mod p/ and pk � 1 � 0 .mod p/. Then

.pi�1/.p2
k
�1/� 0 .mod p2/, which says that p2 divides n. Hence, pDpk . But

this contradicts the fact that pk � 1 � 0 .mod p/. Hence, Case (2) is impossible
as well.

For Case (3), we show first that t has exactly one odd prime divisor. Suppose
that p and q are odd prime divisors of t . Then 2p�1Dpi and 2q�1Dpj for some
i and j . Then pi�1� 0 .mod p/ and pj �1� 0 .mod q/. By Theorem 4.2, there
exists an odd prime r ¤pi ; pj such that 2pq�1�0 .mod r/. Since 2pq�1 divides
2t � 1, we have that f .n/� 0 .mod r/, and so r D pv for some v. Since pv is a
primitive divisor, it follows that pv�1� 0 .mod pq/. But then .pi�1/.pv�1/�

0 .mod p2/, and .pj � 1/.pv � 1/� 0 .mod q2/, which implies that p D q.
Thus, t has at most one odd prime divisor. Suppose t D 2apb . Let 2p � 1 D

pi . Then pi � 1 � 0 .mod p/. If b � 2, we can use Theorem 4.2 to produce
a prime divisor pj ¤ pi of 2p2

� 1 such that pj � 1 � 0 .mod p2/. But then
.pi � 1/.pj � 1/� 0 .mod p3/, which contradicts the fact that n=2t is cube-free.
Therefore, we only need to consider here the two possibilities t D 2ap and t D p,
since the possibility that t D 2a is handled separately below as Case (5).

Suppose first that t D 2ap. As before, let 2p�1Dpi . Then pi�1� 0 .mod 3/

and pi � 1 � 0 .mod p/. Suppose that a � 1. Then 2t � 1 � 0 .mod 3/, so that
.2t � 1/.pi � 1/ � 0 .mod 9/, which implies that pk D 3. If p D 3, then 26 � 1

divides 2t �1, and so .2t �1/.pi �1/� 0 .mod 27/, which is a contradiction. On
the other hand, if p ¤ 3, then by Theorem 4.2, there exists a prime q ¤ pi such
that q � 1 � 0 .mod 2ap/. Hence, .pi � 1/.q � 1/ � 0 .mod p2/, which implies
that p D pk D 3, again a contradiction. Therefore, aD 0 and t D p, which is the
second possibility above. Again, let 2p�1Dpi . Then pi�1� 0 .mod p/, so that
p¤ pi . Also, pi �1� 0 .mod 3/. If pk ¤ 3, then .p2

k
�1/.pi �1/� 0 .mod 9/,

which is impossible since the only square that divides n is p2
k
¤ 9. Hence, pk D 3.

If p D 3 D pk , then n � 0 .mod 8/, but n 6� 0 .mod 16/. However, if p D 3,
then n would be divisible by .2pk � 1/.p2

k
� 1/D .7� 1/.32 � 1/, which implies

that n � 0 .mod 16/. This contradiction shows that p ¤ 3. Also, since p is odd,
we have that pi ¤ 3. Thus, all three primes p, pi and pk D 3 are distinct. If
p � 1 .mod 3/, then 26 � 1 divides 2p�1 � 1 D pi � 1, and so the number of



258 LENNY JONES AND KELLY TOPPIN

elements of order ppi is

.p� 1/.pi � 1/D 2.p� 1/.2p�1
� 1/� 0 .mod 27/;

which does not divide n. Thus, p� 2 .mod 3/. Now, let q be an odd prime divisor
of p � 1. Then 2q � 1 and 22q � 1 divide 2p�1 � 1, and so both divide n. Let r

be a primitive divisor of 2q � 1, and let s be a primitive divisor of 22q � 1. Since
p � 2 .mod 3/, we have that q ¤ 3, and therefore the existence of s is guaranteed
by Theorem 4.2. Then

r � 1� 0� s� 1 .mod q/:

Since r ¤ s, it follows that either r ¤ p or s ¤ p. Suppose, without loss of
generality, that r ¤ p. Note that r ¤ 3 so that the number of elements of order pr

is .p� 1/.r � 1/. But

.p� 1/.r � 1/� 0 .mod q2/;

which implies that q D 3, a contradiction. Hence, we conclude that no odd primes
divide p� 1. Write p� 1D 2a. Then the number of elements of order pi is

pi � 1D 2p
� 2D 2.22a

� 1/� 0 .mod 3/:

If a� 7, then 6700417 and 274177 divide 22a

� 1, and the number of elements of
order pi � 6700417 � 274177 is

2.22a

� 1/.6700416/.274176/� 0 .mod 27/;

which does not divide n. Hence, a� 6, and it is easy to check that 2aC1 is prime
exactly when a D 1, 2 or 4. Since p � 2 .mod 3/, then a D 2 or 4. If a D 2,
then p D 5, and 31D 25� 1 divides n. But then, the number of elements of order
32 �5 �31, which is .32�1/.5�1/.31�1/D 26 �3 �5, does not divide n. Similarly, if
aD 4, then pD 17, and the power of 2 that divides f .n/ is greater than the power
of 2 that divides n. Therefore, Case (3) is impossible.

We proceed now to Case (4). Suppose that p is an odd prime dividing t such that
2p�1Dpipj , for some i¤j . Then pi�1�pj�1�0 .mod p/, so that p2 divides
the number of elements of order pipj , and thus p2 divides n. Hence, p D pk . If
there exists a prime q ¤ p that divides t , then 2pq �1 divides n. By Theorem 4.2,
there is a primitive divisor ps of 2pq � 1 with s 62 fi; j g. Then p divides ps � 1,
and hence p3 divides .pi � 1/.pj � 1/.ps � 1/, the number of elements of order
pipj ps . This contradiction shows that p D pk is the only odd prime that divides
t . An argument similar to the one used in Case (3) shows that p2 does not divide
t . Then, as in Case (3), we only have to consider the two possibilities: t D 2ap

and t D p. Suppose that t D 2ap, with a � 1. Since 2p � 1D pipj , with i ¤ j ,
it follows that p ¤ 3. Then, by Theorem 4.2, there exists a primitive divisor ps
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of 22p � 1. Thus, s 62 fi; j g and ps � 1 � 0 .mod p/. But then we have that the
number of elements in G of order pipj ps is

.pi � 1/.pj � 1/.ps � 1/� 0 .mod p3/:

Hence, aD 0 and t D p D pk .
This brings us to Case (5). Assume now that tD2a. As in Case (3), if a�7, then

6700417 and 274177 divide 22a

� 1, and n is divisible by the number of elements
in G of order 2 � 6700417 � 274177, which is .22a

� 1/.6700416/.274176/. But
.22a

� 1/.6700416/.274176/ cannot divide n since

.22a

� 1/.6700416/.274176/� 0 .mod 27/;

and n=2t is cube-free. Thus, a� 6. It is straightforward to check that each of these
cases, in some way, violates the hypotheses of the theorem. For example, if aD 6,
then n is divisible by

264
� 1D 3 � 5 � 17 � 257 � 641 � 65537 � 6700417:

Hence, .264 � 1/ � 640 and .264 � 1/ � 6700416 must also divide n. However,
.264�1/�640�0 .mod 25/ and .264�1/�6700416�0 .mod 9/, which contradicts
the fact that n is divisible by exactly one odd square. Checking the remaining cases
completes the proof of the theorem. �
Remark 4.4. Without loss of generality, we can assume that pi < pj in the state-
ment of the conclusion of Theorem 4.3. Also, this conclusion implies that 3 D

p1 < pk < pi < pj , with pk � 11. Thus, m� 4.

Proof of Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � � < pm are odd primes, with 1�m� 5. By Theorem 4.3, we
have that p1 D 3 and 2t � 1 D 2pk � 1 D pipj for some i ¤ j . By Remark 4.4,
we can also assume that pk � 11 and that mD 4 or mD 5.

Consider first the case when mD 4. In this case, we have

n

f .n/
D

2pk �3 �p2
k
�pi �pj

.2pk �1/ �2 �.p2
k
�1/ �.pi�1/ �.pj �1/

D
2pk�1 �3 �p2

k

.p2
k
�1/ �.pi�1/ �.pj �1/

:

Since pi � 1� pj � 1� 0 .mod pk/, it follows that either

(1) pk � 1D 2a � 3 and pk C 1D 2b or

(2) pk � 1D 2a and pk C 1D 2b � 3.

In (1), we get that
2D 2b

� 2a
� 3D 2a.2b�a

� 3/;
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which implies that a D 1 and b D 3. Hence, pk D 7, which contradicts the fact
that pk � 11. In (2), we get two possibilities. The first possibility gives

2D 2a.2b�a
� 3� 1/;

which implies that a D b D 0. Thus pk D 2, which is impossible. The second
possibility yields

2D 2b.3� 2a�b/;

which implies that either a D 2 and b D 1, in which case pk D 5; or a D b D 0,
in which case pk D 2. Both situations are impossible. Hence, there are no POS
groups satisfying the conditions of the theorem with mD 4.

Now suppose that mD 5. Then

n

f .n/
D

2pk � 3 �p �p2
k
�pi �pj

.2pk � 1/ � 2 � .p� 1/ � .p2
k
� 1/ � .pi � 1/ � .pj � 1/

:

Since pk < pi < pj , we have
pj

pj�1
<

pi

pi�1
<

pk

pk�1
. Thus,

n

f .n/
�

2pk � 3 � 5 �p4
k

.2pk � 1/ � 2 � 4 � .p2
k
� 1/ � .pk � 1/2

:

It is straightforward to show that

g.x/D
15 � 2x �x4

8 � .2x � 1/.x2� 1/.x� 1/2

is a decreasing function for x � 2, and that g.x/ < 2 when x � 32. It follows that
n=f .n/ < 2 when pk � 37. Clearly, n=f .n/ > 1, and since we are assuming that
n=f .n/ is an integer, we only have to check pk with 11 � pk � 31. The fact that
2pk�1 must be the product of two distinct primes rules out all primes in this range
except pk D 11 and pk D 23. If pk D 23, then 223 � 1 D 47 � 178481 divides n.
But then 178481�1D 24 �5 �23 �97 also divides n, which contradicts the fact that
m D 5. Verifying that the case pk D 11 gives the POS group in the statement of
the theorem completes the proof. �
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On the associated primes of the third power
of the cover ideal

Kim Kesting, James Pozzi and Janet Striuli

(Communicated by Joseph Gallian)

An algebraic approach to graph theory involves the study of the edge ideal and
the cover ideal of a given graph. While a lot is known for the associated primes
of powers of the edge ideal, much less is known for the associated primes of the
powers of the cover ideal. The associated primes of the cover ideal and its second
power are completely determined. A configuration called a wheel is shown to
always appear among the associated primes of the third power of the cover ideal.

1. Introduction

We start with some definitions and notation, for which we follow [Harris et al.
2008; Villarreal 2001]. A (finite) graph G consists of two finite sets, the vertex set
VG and the edge set EG , whose elements are unordered pairs of vertices. An edge
{xi , x j } ∈ EG is written xi x j (or x j xi ). If xi x j is an edge, we say that the vertices
xi and x j are adjacent and that the edge is incident to xi and x j . All our graphs
will be simple, meaning that the only possible edges are xi x j for i 6= j .

A subset C ⊆ VG is a (vertex) cover of G if each edge in EG is incident to a
vertex in C . A cover C is minimal if no proper subset of C is a cover of G.

The results of this paper are in the area of algebraic graph theory, where algebraic
methods are used to investigate properties of graphs. Indeed, a graph G with vertex
set VG = {x1, . . . , xn} can be related to the polynomial ring R = k[x1, . . . , xn],
where k is a field. In the following we take the liberty of referring to xi as a
variable in the polynomial ring and as a vertex in the graph G, without any further
specification. Given a ring R, we denote by ( f1, . . . , fl) the ideal of R generated
by the elements f1, . . . , fl ∈ R.

Two ideals of the polynomial ring R = k[x1, . . . , xn] that have proven most
useful in studying the properties of a graph G with vertex set VG = {x1, . . . , xn}

MSC2010: 00A05.
Keywords: graph, polynomial ring, cover ideal, associated prime ideals.
This project was conducted during Summer 2010 and was supported by the University of Fairfield
and the NSF grant no. 0901427.
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and edge set EG are the edge ideal

IG = (xi x j | xi x j ∈ EG)

and the cover ideal

JG = (xi1 · · · xik | xi1, . . . , xik is a minimal cover of G).

Both are square-free monomial ideals, that is, they are generated by monomials in
which each variable appears at most one time.

One of the most basic tools in commutative algebra to study an ideal I of a
noetherian ring R is to compute the finite set of associated prime ideals of I ,
which is denoted by Ass(R/I ) (for details, see [Eisenbud 1995]). In the case of a
monomial ideal L in a polynomial ring S= k[x1, . . . , xn], an element in Ass(S/L)
is a monomial prime ideal, which is an ideal generated by a subset of the variables.
Because of this fact we can record the following definition.

Definition. Let L be a monomial ideal in the polynomial ring S = k[x1, . . . , xn]

and let P = (xi1, . . . , xis ) be a monomial prime ideal. If there exists a monomial m
such that xi j m ∈ L for each j = 1, . . . , s and xi m /∈ L for every i 6= i1, . . . , is then
P is an associated prime to L . We denote by Ass(S/L) the set of all associated
(monomial) primes of L .

Chen et al. [2002] gave a constructive method for determining primes associated
to the powers of the edge ideal, but much less is known about cover ideals. It is
known that, given a graph G and its cover ideal JG , a monomial prime ideal P is
in Ass(S/JG) if and only if P = (xi , x j ) and xi x j is an edge of G (see [Villarreal
2001], for example).

The initial point of our investigation is a result of Francisco, Ha and Van Tuyl
(Theorem 1.1 below) describing the associated primes of the ideal (JG)

2.
Let G be a graph. A path in G is a sequence of distinct vertices x1, x2, . . . , xk

such that x j x j+1 ∈ EG for j = 1, 2, . . . , k− 1. The length of such a path is k− 1,
one less than the number of vertices. If xk x1 is also an edge of G, we say that the
graph C with vertex set {x1, x2, . . . , xk} and edge set {x1x2, . . . , xk−1xk, xk x1} is
a cycle (in G). A cycle with an odd number of vertices is also called an odd hole.

Given a graph G and a set of vertices W ⊆ VG , the graph generated by W has
vertex set W and edge set {xy | xy ∈ EG, x ∈W, y ∈W }.

Theorem 1.1 [Francisco et al. 2010]. Let G be a graph with vertex set {x1, . . . , xn},
edge set EG and cover ideal JG . A monomial prime ideal P = (xi1, . . . , xik ) of the
polynomial ring S = k[x1, . . . , xn] is in the set Ass(S/J 2

G) if and only if either

• k = 2 and xi1 xi2 ∈ EG , or

• k is odd and the graph generated by xi1, . . . , xik is an odd hole.
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As an example, if G is the graph r
x4

rx6 r
x3

r
x5

rx2

rx1rx7

!!
!!

AA ��
aaaa
## cc we will have

Ass(J )=
{(x1, x2), (x1, x7), (x2, x3), (x2, x4), (x3, x4), (x4, x5), (x4, x6), (x5, x6), (x6, x7)}

(the associated prime of J consists of the primes generated by two variables that
correspond to the edges of the graph), and

Ass(J 2)= Ass(J )∪ {(x2, x3, x4), (x4, x5, x6), (x1, x2, x4, x6, x7)}

(the associated prime of J 2
G contains all the primes that are either generated by two

variables corresponding to edges or generated by three variables corresponding to
odd cycles of G).

In this paper we study the associated primes of the third power of the cover ideal,
the ideal J 3

G . We prove that the primes generated by the variables corresponding
to the vertices of a wheel (see next definition) always appear among the associated
primes of J 3

G . This result is connected with the coloring number of a graph, as
discussed at the end of Section 2.

The algebra system Macaulay2 was used for all the computations in this paper,
and in particular in finding the pattern that led to the main theorem.

2. Centered odd holes and the main theorem

Definition. A graph C is said to be a wheel if VC = VH ∪ {y}, where H , called
the rim of C , is an odd hole such that the graph generated by H in C is H itself,
and y, called the center of C , is a vertex adjacent in C to at least three vertices of
H and belonging to at least two odd cycles in C . (It follows that y belongs to at
least three odd cycles in C .) The rim H and center y are part of the data needed
to specify a wheel, as they may not be uniquely determined by C .

Let C be a wheel with rim H and center y. A vertex x ∈ VH is radial if xy is an
edge of C . Let there be k radial vertices, labeled consequently x1, . . . , xk in order
around the wheel. We leave it to the reader to specify precisely what this means.
For i = 1, . . . , k−1, we denote by li the length of the path in H joining xi to xi+1

(and not going through any other radial vertex). Similarly lk denotes the length of
the path in H from xk to x1.

For the main theorem we will need the following lemma, where we use the
notation | | for the size (that is, the number of vertices) of a graph.

Lemma 2.1. Let C be a wheel with rim H and center y, and let k be its radial
number. If W is a vertex cover for C that contains y, then |W | ≥ |C |/2+ 1. If W
is a vertex cover for C that does not contain y, then

|W | ≥ k+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.
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Moreover,
k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
≥
|C |
2
+ 1. (2-1)

Proof. Let VH be the vertex set of H . Assume that W contains the vertex y. The
vertex set W ∩ VH has to be a vertex cover for H . Moreover, since H is an odd
hole, the cardinality of W ∩ VH has to be at least (|H | + 1)/2, which is equal to
|C |/2. Therefore the cardinality of W is |C |/2+ 1.

Assume now that W does not contain the vertex y. Let x1, . . . , xk be the radial
vertices. Since y /∈W , all the radial vertices are in W . As W ∩VH is a cover of H ,
in the path from xi to xi+1 we need at least b(li−1)/2c vertices, for i=1, . . . , k−1,
and we need b(lk − 1)/2c vertices for the path from xk to x1.

To prove (2-1) we write

k+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
≥ k+ l1−1

2
+ · · ·+

lk−1
2
≥

l1
2
+ · · ·+

lk
2
+

k
2

≥
l1+· · ·+lk+1

2
+

k−1
2
≥
|C |
2
+ 1,

where in the last inequality we used the fact that k ≥ 3. �

In the following we will make an abuse of notation: if G is a graph with vertices
x1, . . . , xn and H is a subgraph generated by the vertices xi1, . . . , xik , by H we also
denote the prime monomial ideal (xi1 . . . , xik ) in the polynomial ring k[x1, . . . , xn].
Here is our main theorem.

Theorem 2.2. Let G be a graph with vertex set VG ={x1, . . . , xn} and assume that
G has a subgraph C which is a wheel. Let S= k[x1, . . . , xn] and let J be the cover
ideal of G. Then the set Ass(S/J 3) is not contained in the set Ass(S/J 2), and in
fact C ∈ Ass(S/J 3) \Ass(S/J 2).

Proof. By Lemma 2.11 in [Francisco et al. 2011], we may assume that G = C .
Let y be the center of the wheel C , and let x1, x2, . . . , xk be the radial vertices.
Denote by xi j , for j = 1, . . . , li − 1, the vertices between xi and xi+1 if i < k and
the vertices between xk and x1 if i = k.

That C is not in Ass(S/J 2) follows from Theorem 1.1, since C is neither an
odd hole nor an edge.

To show that C is in Ass(S/J 3) we need to find a monomial c such that c /∈ J 3

and xc ∈ J 3 for each vertex x of C . Let c be the monomial

c = y2
∏

i=1,...,k

x2
i

∏
i=1,...,k

j=1,...,li−1

xa
i j , where a =

{
1 if j is odd,
2 if j is even.

To show that c is the desired monomial, we first prove that

deg c = k+ 2+ n+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
. (2-2)
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Let n be the size of H . For a monomial m we denote by deg m the degree of m.
In computing deg c, the contribution from the variables y and xi , for i = 1, . . . , k,
is given by 2k + 2. For i = 1, . . . , k − 1, between xi and xi+1, there are li − 1
vertices, and there are lk − 1 vertices between xk and x1. Given an integer s, there
are bs/2c even integers and ds/2e odd integers between 1 and s. Therefore, in
computing deg c, the contribution from the variables xi j is given by

2
⌊ l1−1

2

⌋
+ · · ·+ 2

⌊ lk−1
2

⌋
+

⌈ l1−1
2

⌉
+ · · ·+

⌈ lk−1
2

⌉
.

The degree of the monomial c is therefore equal to

2k+ 2+ 2
⌊ l1−1

2

⌋
+ · · ·+ 2

⌊ lk−1
2

⌋
+

⌈ l1−1
2

⌉
+ · · ·+

⌈ lk−1
2

⌉
= 2k+ 2+

(⌊ l1−1
2

⌋
+

⌈ l1−1
2

⌉)
+ · · ·+

(⌊ lk−1
2

⌋
+

⌈ lk−1
2

⌉)
+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ k+ (l1− 1)+ · · ·+ (lk − 1)+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ l1+ · · ·+ lk +

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ n+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.

The last line establishes (2-2).

To prove that c does not belong to J 3, we first show the strict inequality

deg c < 2
(
|C |
2
+ 1

)
+ k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
. (2-3)

For suppose this inequality is not satisfied. Then (2-2) gives

k+2+n+
⌊ l1−1

2

⌋
+· · ·+

⌊ lk−1
2

⌋
≥ 2

(
|C |
2
+1
)
+k+

⌊ l1−1
2

⌋
+· · ·+

⌊ lk−1
2

⌋
,

which means that
2+ n ≥ 2

(
|C |
2
+ 1

)
.

But |C | = |H | + 1= n+ 1. Thus

2+ n ≥ 2
(n+1

2
+ 1

)
= n+ 2+ 1,

which is impossible. Therefore (2-3) holds.

Let us show that (2-3) implies that c /∈ J 3. Assume otherwise; then c=hm1m2m3

with mi ∈ J for i = 1, 2, 3. Since mi ∈ J , the variables that appear in each mi

correspond to a minimal cover of C . Lemma 2.1 says that such a cover has at least
|C |/2+1 vertices if it contains y and at least k+b(l1−1)/2c+ · · ·+b(lk−1)/2c
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— a number at least as large as |C |/2+1 — if not. Using the fact that at least one
of the three covers must not contain y, we thus obtain

deg c = deg h+ deg m1+ deg m2+ deg m3

≥ deg h+ 2
(
|C |
2
+ 1

)
+ k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.

This contradicts (2-3) (since deg h ≥ 0) and so shows that c /∈ J 3.

To finish the proof of Theorem 2.2 we need to show that for every vertex x ∈ VC

we have xc ∈ J 3.
Let x be any vertex of H and relabel the vertices of H starting from x = t1

clockwise t2, . . . , tn , where n is the size of H . We can write xc=m1m2m3, where

m1 = y
∏

i odd

ti , m2 = yt1
∏

i even

ti , m3 =
∏

i=1,...,k

xi

∏
i=1...,k
j even

xi j .

Note that m1 and m2 correspond to covers, as they contain y and every other
vertex of H . Also m3 corresponds to a cover as all the xi are included, and therefore
all the edges connecting y to H are covered, and every other vertex in the path from
xi to xi+1 is included.

Finally we need to write yc = m1m2m3 with mi ∈ J for i = 1, 2, 3. For this
assume that x1 is such that the path from xk to x1 is odd. Relabel the vertices
x1 = t1 and then clockwise to tn . Let

m1 = y
∏

i odd

ti .

Note that m1 will give a cover as we are considering every other vertex in the odd
cycle and the vertex y. Now let l the least even number so that tl corresponds to a
radial vertex xg, for some g. Set

m2 = y
∏

l≤i≤n
i even

ti
∏

1≤i≤l
i odd

ti .

Because we are considering every other vertex from t1 to tl−1, every other vertex
from tl , and the center y, the monomial m2 corresponds to a cover of the wheel.

Finally

m3 = yxgxg+1 . . . xk

∏
i=g,...,k

j even

xi j

∏
i=1,...,l−1

i even

ti .

Also m3 gives a cover as it contains every other vertex from t2 to tl = xg, every
other vertex from xi to xi+1, for i = g, . . . , k−1, every other vertex from xk to x1,
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and the center y. Notice that x1 is missing from the monomial m3 but the vertex y
is listed in the monomial as for the vertex preceding x1, because of the assumption
that the path xk, . . . , x1 in H is odd. �

For every ideal I in a polynomial ring S (or a more general ring), one can
compute the sequence of sets Ass(S/I n) for n ∈ N. Brodmann [1979] proved, in
much greater generality, that there exists a positive integer a such that

aI⋃
i=1

Ass(S/I i )=

∞⋃
i=1

Ass(S/I i ). (2-4)

Very little is known about the value of aI . In [Francisco et al. 2011], the authors
give an upper bound for aI in the case that I is an edge ideal for a graph.

The value of aJ , where J is the cover ideal of a graph G, is related to the
coloring number of G, that is, the least number of colors that one needs to color
the vertices of G so that two adjacent vertices always have different colors. We
denote the coloring number of G by χ(G). It is shown in [Francisco et al. 2011]
that, in (2-4), aJ ≥χ(G)−1 when J is the cover ideal of G. The same paper gives
examples for which aJ > χ(G)− 1. Centered odd holes are an infinite family of
such examples.

Corollary 2.3. Let C be a wheel with cover ideal J . If C has a vertex that is not
radial, then aJ ≥ χ(C).

Proof. Because C contains an odd hole, one needs at least three colors for the
vertexes of C . We first show that χ(C)= 3. Let {a, b, c} be a list of three colors.
Assume that x is a vertex of C which is not radial. Color the vertex x and the
center y with c, and finally color the remaining vertices alternating a and b.

The main theorem implies that aJ ≥ 3. �

We finish the paper with an example that illustrates the idea behind the proof of
the main theorem. Consider this wheel: rx1 rx11 rx2

rx21

rx22r
x3

r
x31

r
x32

r
x4

rx41

rx5

rx51 rx52

r y

(((
���

��

@@
HH ���







J
JJ

@
@
@

��
��

��

�
����

XXXXXX

XXXPPP

The monomial c used in the proof of the main theorem is given by

c = x2
1 x2

2 x2
3 x2

4 x2
5 x2

22x2
32x2

52x11x21x31x41x51.
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We can write yc=m1m2m3, where the monomials m1, m2, and m3 correspond
to the following covers:

rx1 r rx2

rrx22rr
x31

rr
x4

r
rx5

r rx52

r y

(((
���

��

@@ HH ���
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JJ

@
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���

XXXXXX

XXXPPP

rx1 r rx2

rrx22r
x3

rr
x32

rrx41

r rx51 r
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Soap film realization of isoperimetric surfaces with
boundary

Jacob Ross, Donald Sampson and Neil Steinburg

(Communicated by Frank Morgan)

We examine surfaces of the type proved to be minimizing under a connectivity
condition by Dorff et al. We determine which of these surfaces are stable soap
films. The connectivity condition is shown to be very restrictive; few of these
surfaces are stable (locally minimizing) without it.

1. Introduction

Surface area minimization in soap bubbles and soap films is one of the more
fascinating subjects in mathematics today. Metacalibration techniques — a gen-
eralization of the calibrations popularized by Harvey and Lawson [1982] (see also
[Morgan 1988, Chapter 6]) — were developed to investigate the problems that arise
in surface minimization. In particular metacalibration techniques prove very useful
in solving a new class of problems with both fixed volume and fixed boundary
constraints. We call these problems equitent problems after Lawlor et al. Equitent
stands for equal content (volume condition) and equal extent (boundary condition)
[Dorff et al. 2008].

In this paper we consider a certain class of equitent problems addressed in [Dorff
et al. 2011]. It was shown there that certain equitent surfaces are globally minimiz-
ing under a connectivity condition that restricts the surfaces’ homotopy class. This
connectivity condition is not however true for general minimizing surfaces. We
examine which of these surfaces are locally minimizing without the connectivity
condition. This is equivalent to showing these surfaces are realizable as a soap
film. We demonstrate this for those surfaces that are proved to be locally minimal.

2. The surfaces of Dorff et al.

Equitent surfaces are constructed via the union of sections of spheres and planes.
Starting with a cone over a wire-frame polyhedron, the center of the cone is then

MSC2010: primary 49Q10; secondary 49Q05, 53A10.
Keywords: bubble, soap film, isoperimetric, equitent, metacalibration, minimization, minimal,

surface area.

271



272 JACOB ROSS, DONALD SAMPSON AND NEIL STEINBURG

Figure 1. Equitent surface constructed on a cube wireframe.

replaced by a volume (bubble) that is enclosed by spherical caps in the same poly-
hedral arrangement. See the example soap film in Figure 1. Dorff et al. categorize
these figures by the dual figure to the wire frame polyhedron. This dual figure,
called the connectivity graph, is used to define the planes and spheres used in
the construction of these surfaces and describes the adjacency conditions on the
resulting surface. The specifics of the construction are not requisite to our results.

In their paper Dorff et al. also define a connectivity condition, which is that
exterior regions share boundary only if the corresponding vertices in the connec-
tivity graph are adjacent. They prove that the constructed surfaces are globally area
minimizing among all surfaces that enclose the same fixed volume, have the same
wire frame polyhedral boundary, and satisfy the connectivity condition.

3. Soap film stability

Theorem. Among all the minimal surfaces of Dorff et al. in R3, there are only
six that are stable as a soap film: those whose connectivity graphs are a single
point, edge, equilateral triangle, regular tetrahedron, regular octahedron, or regu-
lar icosahedron.

Proof. We relax the connectivity condition and look at which surfaces are locally
area minimizing among surfaces that enclose the same fixed volume and have the
same wire frame polyhedral boundary. We reduce conditions for local minimality
to conditions on the connectivity graph.

First, in the constuction of the surfaces Dorff et al. require that the connectivity
graph to be a uniform polyhedron (polytope) of unit edge length. A uniform poly-
hedron is one with regular polygon faces and congruent vertices. This guarantees
the existence of particular vector fields needed in the minimization proof. They also
require the circumradius of the connectivity graph to be strictly less than 1. A cir-
cumradius greater than or equal to 1 would create a central bubble of volume zero.
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Uniform polyhedra that meet this condition are limited to the tetrahedron, cube,
octahedron, icosahedron, triangular prism, pentagonal prism, square antiprism, and
pentagonal antiprism.

Minimality conditions come from the work of Jean Taylor [1976]. She proved
that Plateau’s rules for soap films must hold for locally minimizing surfaces in R3.
These are:

(1) Soap films are made of smooth surfaces of constant mean curvature.

(2) Soap films always meet in threes along a smooth curve, meeting at equal
angles of 120o.

(3) These curves meet in fours at a point, meeting at equal angles of cos−1(−1
3)

(approximately 109o).

The first and third rules always hold as a result of the surface’s construction. The
second rule, however, further limits the number of connectivity graphs that can be
formed. In the construction, each face of the connectivity graph corresponds to
one of these curves (from a vertex of the wire-frame polyhedron) and each edge
corresponds to a smooth surface connecting to this curve (from an edge of the wire-
frame polyhedron). Thus the second rule implies that connectivity graphs must be
constrained to have only triangular faces.

The uniform polyhedra that meet the conditions on the construction and satisfy
this second rule are limited to the tetrahedron, octahedron, and icosahedron. For
connectivity graphs in lower dimensions that also satisfy these conditions, we have
a single point (0 dimensions), a line segment (1 dimension), and an equilateral
triangle (2 dimensions). �

These conditions are very restrictive; out of the 18 convex uniform polyhedrons
and infinite sets of prisms, antiprisms, and lower dimensional figures, only six
equitent surfaces can be created in R3. In the next section we demonstrate each of
these surfaces as a soap film.

4. Realization of the bubbles

Equitent surfaces can be realized as a soap film by dipping a wire-frame in a soap
solution and blowing a soap bubble onto the surface. (It may however take several
tries to get a surface of a particular homotopy class, and have it last long enough
to take a picture!) Each of the six connectivity graphs identified in the last section
do generate a stable minimal surface when realized as a soap film this way. Note
that the wire-frame polyhedron in each case is the dual figure to the connectivity
graph. Also note that the number of vertices in the connectivity graph corresponds
to the number of exterior regions separated by the equitent surface.
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Dimension 0 Dimension 1 Dimension 2

Figure 2. Equitent surfaces with lower dimensional connectivity graph.

For lower dimensional connectivity graphs we see that the surface realized from
a single point is a spherical bubble with no wire frame (Figure 2, left). A single
edge as a connectivity graph yields a lens shaped bubble on a planar surface. Here
we represent the wire-frame as a circle (any polygon in two dimensions will do);
see Figure 2, middle. From an equilateral triangle we have a “football” shaped
bubble connected to three planar surfaces (Figure 2, right).

For the three dimensional connectivity graphs, a polyhedral shaped bubble with
spherical caps will be formed. These figures will also have planar surfaces con-
necting to each edge of the bubble. For tetrahedral, octahedral, or icosahedral
connectivity graphs we get a tetrahedron-, cube-, or dodecahedron-shaped bubble,
respectively. See Figure 3.

Tetrahedral graph Octahedral graph Icosahedral graph

Figure 3. Equitent surfaces with dimension-3 connectivity graph.

5. Conclusion

As noted earlier, we have seen that the connectivity condition of Dorff et al. is
a very restrictive condition. Each of the locally minimizing surfaces were known
prior to their work, though perhaps not yet proven to be minimal. The real impact
of their paper comes from the pioneering new method of metacalibration and how
we can use it to tackle equitent problems. Their paper gives the first new results
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Figure 4. Other examples of equitent surfaces: rectangular prism
wire-frame (left) and negative-pressure soap bubbles (right).

proven using this method, though it has also been used to provide new proofs of
some multiple bubble problems [Dilts et al. ≥ 2011].

We hope to be able to generalize the metacalibration approach to handle further
equitent problems. This includes finding an alternate construction of equitent sur-
faces that relaxes the uniformity condition on the connectivity graphs. This would
allow us to investigate surfaces such as those generated on a rectangular prism
wire-frame, not just a cube (Figure 4, left).

Another problem to consider are equitent surfaces that would be generated by
connectivity graphs of circumradius greater than or equal to 1. Such surfaces are
stable in R2 and R3, though the central bubble has negative pressure and the faces
bow inwards (Figure 4, right).
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Zero forcing number, path cover number, and
maximum nullity of cacti

Darren D. Row
(Communicated by Chi-Kwong Li)

The zero forcing number of a graph is the minimum size of a zero forcing set.
This parameter is useful in the minimum rank/maximum nullity problem, as it
gives an upper bound to the maximum nullity. The path cover number of a graph
is the minimum size of a path cover. Results for comparing the parameters are
presented, with equality of zero forcing number and path cover number shown
for all cacti and equality of zero forcing number and maximum nullity for a
subset of cacti. (A cactus is a graph where each edge is in at most one cycle.)

1. Introduction

Throughout this paper, a graph G = (VG, EG) will mean a simple (no loops, no
multiple edges) undirected graph. We will assume a finite and non-empty vertex set
VG . The edge set EG consists of two-element subsets of vertices. If {x, y} ∈ EG ,
we say x and y are neighbors or x and y are adjacent, and write x ∼ y.

The zero forcing number of a graph was introduced in [AIM 2008] and the
related terminology was developed in [Barioli et al. 2009], [Barioli et al. 2010],
and [Hogben 2010]. Referring to it as the graph infection number, physicists have
used this parameter in studying quantum systems control [Burgarth and Giovannetti
2007; Burgarth and Maruyama 2009; Severini 2008]. Consider a black and white
vertex coloring of a graph G. From the initial coloring, vertices change color
according to the color-change rule: If v is the only white neighbor of a black
vertex u, then change the color of v to black. Applying the color-change rule to
u to change the color of v, we say u forces v and write u → v. Given an initial
coloring of G, the derived set is the set of vertices colored black after the color-
change rule is applied until no more changes are possible. If the set Z of vertices
initially colored black has derived set that is all the vertices of G, we say Z is a
zero forcing set for G. A zero forcing set with the minimum number of vertices is
called an optimal zero forcing set, and this minimum size of a zero forcing set for
a graph G is the zero forcing number of the graph, denoted Z(G).

MSC2010: primary 05C50; secondary 15A03.
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The path cover number P(G) of a graph G is the smallest positive integer m
such that there are m vertex-disjoint induced paths in G such that every vertex of
G is a vertex of one of the paths.

An association between graphs and matrices is made in the following way. De-
note by Sn(R) the set of n× n real symmetric matrices. The graph of A ∈ Sn(R),
denoted G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : ai j 6= 0, 1≤
i < j ≤ n}. Given a graph G, the set of symmetric matrices described by G is
S(G)={A∈ Sn(R) :G(A)=G}. The minimum rank of G is mr(G)=min{rank A :
A ∈ S(G)} and the maximum nullity of G is M(G) = max{null A : A ∈ S(G)}.
Clearly mr(G)+M(G)= |G|, where the order |G| is the number of vertices in G.
Because of this relationship, finding the value of one of these two parameters for
a graph is equivalent to finding the value for both.

Following are theorems relating the zero forcing number to path cover number
and maximum nullity of a graph. These bounds will be used in later results.

Theorem 1.1 [Hogben 2010]. For any graph G, P(G)≤ Z(G).

Theorem 1.2 [AIM 2008]. For any graph G, M(G)≤ Z(G).

It is well known that if G is a tree then P(G)= Z(G) [AIM 2008] and P(G)=

M(G) [Johnson and Duarte 1999], so the three parameters are equal.
In this paper, we compare the graph parameters Z(G), P(G), and M(G). In

Section 2, we present the effect on the parameters after the deletion of a single ver-
tex or the deletion of a single edge. These (mostly known) results will be utilized in
later sections. Results of similar type for each of the graph parameters are presented
in a unified format to emphasize the relationship to each other. The main result
of Section 3 is equality of zero forcing number and path cover number for cacti,
where a cactus is a graph where each edge is in at most one cycle. In Section 4,
we prove zero forcing number is equal to maximum nullity for a restricted family
of cacti. Section 5 summarizes our results and suggests further research.

Additional properties and some notation. Here we present additional terminol-
ogy, notation, and theorems that will be used. For a given zero forcing set Z , a
chronological list of forces is a listing of the forces used to construct the derived
set in the order they are performed. A forcing chain for a chronological list of
forces is a sequence of vertices (v1, v2, . . . , vk) such that for i = 1, . . . , k − 1,
vi → vi+1, and a maximal forcing chain is a forcing chain that is not a proper
subsequence of any other forcing chain. The collection of maximal forcing chains
for a chronological list of forces is called the chain set of the chronological list of
forces, and an optimal chain set is a chain set from a chronological list of forces
of an optimal zero forcing set. When a chain set contains a chain consisting of a
single vertex, we say that the chain set contains the vertex as a singleton. For a
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zero forcing set Z , a reversal of Z is the set of vertices which are last in the forcing
chains in the chain set of some chronological list of forces [Barioli et al. 2010].

Theorem 1.3 [Barioli et al. 2010]. If Z is a zero forcing set of G then so is any
reversal of Z.

Observation 1.4. If Z ′ is a reversal of Z , then |Z ′| = |Z |. In particular, if Z is an
optimal zero forcing set, then a reversal Z ′ of Z is also an optimal zero forcing set.

A vertex v is called terminal if it is the endpoint of a path in some minimum
path cover. It is called doubly terminal if it is in a path by itself in some minimum
path cover, and is called simply terminal if it is terminal but not doubly terminal.

For a graph G = (VG, EG) and W ⊆ VG , the induced subgraph G[W ] is the
graph with vertex set W and edge set {{v, w} ∈ EG : v, w ∈ W }. The subgraph
induced by W = VG \W will be denoted by G −W , or in the case W is a single
vertex {v}, by G− v. For e ∈ EG , the subgraph (VG, EG \ {e}) will be denoted by
G− e.

A graph is called connected if any two vertices are linked by a path. If a graph
is not connected, we say it is disconnected. The maximal connected subgraphs
of a graph are called the components of the graph. If the graph G − v has more
connected components than G, then v is called a cut-vertex of G. Similarly, a
cut-edge of a graph is one such that its deletion increases the number of connected
components.

2. Edge spread and vertex spread

We present a number of (mostly known) results which will be used in later sec-
tions. They are grouped and formatted in such a way as to emphasize commonality
between the types of results for the different parameters.

Edge spread. In this subsection, we consider the effects on zero forcing number,
path cover number, and maximum nullity when deleting a single edge from a graph.
For a graph G and an edge e of G, the rank edge spread of e in G is re(G) =

mr(G)−mr(G− e), the null edge spread of e in G is ne(G)=M(G)−M(G− e),
and the zero edge spread of e in G is ze(G) = Z(G)− Z(G − e) [Edholm et al.
2010]. Here we make an analogous definition concerning change in path cover
number when deleting an edge.

Definition 2.1. The path edge spread of e in G is pe(G)= P(G)−P(G− e).

First we present the bounds on the zero edge spread and path edge spread and
attempt to characterize edges with a given edge spread value.

Theorem 2.2 [Edholm et al. 2010]. For every graph G and every edge e = {v, w}

of G, −1 ≤ ze(G) ≤ 1. If ze(G) = 1, then there exists an optimal chain set such
that e is not an edge in any chain.
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Theorem 2.3. For every graph G and every edge e={v, w} of G,−1≤pe(G)≤1.
If pe(G)= 1, then there exists a minimum path cover such that v and w are not in
the same path.

Proof. Let G be a graph and e = {v, w} be an edge in G. Consider a minimum
path cover of G. If v and w are not covered by the same path, then this path cover
of G is also a path cover of G− e. If v and w are covered by the same path in the
path cover of G, then splitting the path into two paths will create a path cover of
G− e. Either way, P(G− e)≤ P(G)+ 1 so pe(G)≥−1.

Consider a minimum path cover of G − e. If v and w are not covered by the
same path, then this path cover of G − e is also a path cover of G (observe that
this case cannot occur if pe(G) = 1). If v and w are covered by the same path in
the path cover of G − e, there must be a vertex on the path between them. Let x
be the vertex that is between v and w on the path and adjacent to v. Split the path
between v and x . This is a path cover of G, but with one more than P(G−e) paths.
In the case pe(G)= 1, this is a minimum path cover of G with v and w in different
paths. Regardless of the path edge spread, P(G)≤ P(G− e)+ 1 so pe(G)≤ 1. �

Theorem 2.4 [Edholm et al. 2010]. Let e={v, w} be an edge of G. If ze(G)=−1,
then for every optimal zero forcing chain set of G, e is an edge in a chain.

Theorem 2.5. Let e = {v, w} be an edge of G. If pe(G) = −1, then for every
minimum path cover of G, v and w are in the same path.

Proof. The contrapositive will be proved. Let G be a graph and e = {v, w} be
an edge of G. Suppose there is a minimum path cover of G in which v and w

are not in the same path. This path cover of G is also a path cover of G − e, so
P(G− e)≤ P(G). Hence pe(G)≥ 0. �

Theorem 2.5 can be viewed as a partial converse to the second statement in
Theorem 2.3. Here we provide an example showing that the converse of the second
statement in Theorem 2.3 is not true. This example also shows the converse of the
second statement in Theorem 2.2 is false.

Example 2.6. Let G be this graph:

x

u

y

v

z

w

For e = {v, y} we have pe(G) = 0, but v and y are not in the same path in the
minimum path cover.
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Although the bounds on ze(G) and pe(G) are the same, the parameters are not
generally comparable, as can be seen in Examples 2.7 and 2.8 below. Null edge
spread has the same bounds as well, and [Edholm et al. 2010] gives examples
showing the incomparability of ze(G) with ne(G).

Example 2.7. Let G be this graph:

e

Here Z(G) = 3 and Z(G − e) = P(G) = P(G − e) = 2. Therefore, ze(G) = 1 >

0= pe(G).

Example 2.8. Let G be this graph:

e

Here Z(G) = 5, Z(G − e) = 6, and P(G) = P(G − e) = 4. Therefore, ze(G) =

−1 < 0= pe(G).

Under the conditions of Observation 2.9 we can use one of parameters ze(G) or
pe(G) to determine the other.

Observation 2.9. Let G be a graph such that P(G) = Z(G) and let e be an edge
of G. Then:

(1) pe(G)≥ ze(G).

(2) If ze(G)= 1, then pe(G)= 1.

(3) If pe(G)=−1, then ze(G)=−1.

Next we consider edge spreads when the edge is a cut-edge.

Theorem 2.10 [Barioli et al. 2004]. Let e = {v1, v2} be a cut-edge of a connected
graph G. Let G1 and G2 be the connected components of G − e with v1 ∈ G1 and
v2 ∈ G2. Then

re(G)=

{
0 if maxi=1,2{rvi (Gi )} = 2,

1 otherwise.
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Corollary 2.11. Let e = {v1, v2} be a cut-edge of a connected graph G. Let G1

and G2 be the connected components of G− e with v1 ∈ G1 and v2 ∈ G2. Then

ne(G)=

{
0 if mini=1,2{nvi (Gi )} = −1,

−1 otherwise.

Proof. This follows from Theorem 2.10 and the fact that re(G)+ ne(G) = 0 for
any graph G and any edge e of G. �

Theorem 2.12. Let e= {v1, v2} be a cut-edge of a connected graph G. Let G1 and
G2 be the connected components of G− e with v1 ∈ G1 and v2 ∈ G2. Then

ze(G)=

{
−1 if vi is in an optimal zero forcing set in Gi for i = 1, 2,

0 otherwise.

Proof. Let Z1 and Z2 be optimal zero forcing sets for G1 and G2, respectively. Let
Z = Z1∪Z2. Color the vertices of Z black and the remaining vertices white. Forces
can be performed in G1 until v1 is black. Forces can be performed in G2 until v2

is black. Now the remaining forces can take place in G1 and in G2. Therefore Z
is a zero forcing set for G and Z(G) ≤ |Z | = Z(G1)+Z(G2)= Z(G − e). Hence
ze(G)≤ 0.

Suppose v1 is an optimal zero forcing set Z1 for G1 and v2 is in an optimal
zero forcing set Z2 in G2. Let Z ′1 be a reversal of Z1. Then by Observation 1.4,
Z ′1 is an optimal zero forcing set for G1 and there is a chronological list of forces
in which v1 does not perform a force (i.e., v1 is last in the maximal forcing chain
which contains it). Let Z = Z ′1 ∪ Z2 \ {v2}. Color the vertices of Z black and the
remaining vertices white. Forces can be performed in G1 until all vertices of G1

are black and v1 has not performed a force. Now v1 is black and v2 is the only
white neighbor of v1, so v1→ v2. Now all the vertices of Z2 are black and none
has performed a force, so all other vertices of G2 can be forced black. Therefore
Z is a zero forcing set for G and Z(G)≤ |Z | =Z(G1)+Z(G2)−1=Z(G−e)−1.
Theorem 2.2 gives ze(G)≥−1, so ze(G)=−1.

Suppose now that at least one of v1 or v2 is not in any optimal zero forcing
set for the respective component. Without loss of generality, say v1 is not in any
optimal zero forcing set for G1. Let Z be an optimal zero forcing set for G and
consider the chronological list of forces. Examine the following cases.

Case 1: Suppose v1→v2. Then v1 cannot force any vertex of G1. Since v1 is not
in any optimal zero forcing set for G1, it is not at the end of a forcing chain for any
optimal zero forcing set of G1. Thus v1 forcing v2 requires |Z∩VG1 |≥Z(G1)+1. It
must also be that |Z∩VG2 |≥Z(G2)−1. Then Z(G)=|Z |= |Z∩VG1 |+|Z∩VG2 |≥

Z(G1)+Z(G2)= Z(G− e), so ze(G)≥ 0.
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Case 2: Suppose v1 6→ v2. Then |Z ∩ VG2 | ≥ Z(G2). Since v1 is not in any
optimal zero forcing set for G1, it must be that |Z ∩ VG1 | ≥ Z(G1). Then Z(G)=

|Z | = |Z ∩ VG1 | + |Z ∩ VG2 | ≥ Z(G1)+Z(G2)= Z(G− e), so ze(G)≥ 0. �

Theorem 2.13 [Barioli et al. 2004]. Let e = {v1, v2} be a cut-edge of a connected
graph G. Let G1 and G2 be the connected components of G − e with v1 ∈ G1 and
v2 ∈ G2. Then

pe(G)=

{
−1 if vi is terminal in Gi for i = 1, 2,

0 otherwise.

The converse of Theorem 2.4 is open from [Edholm et al. 2010], and the con-
verse of Theorem 2.5 is left open in this paper. We will show that the converses of
these theorems are true for a cut-edge.

Theorem 2.14. Let e = {v, w} be a cut-edge of G. If e is an edge in a chain for
every optimal zero forcing chain set of G, then ze(G)=−1.

Proof. The contrapositive will be proved. Suppose ze(G) 6=−1. By Theorem 2.12,
ze(G)= 0. Let G1 and G2 be the connected components of G−e with v ∈G1 and
w ∈ G2. Let Z1 and Z2 be optimal zero forcing sets for G1 and G2, respectively.
Let Z = Z1 ∪ Z2. Color the vertices of Z black and the remaining vertices white.
Forces can be performed in G1 until v is black. Forces can be performed in G2 until
w is black. Now the remaining forces can take place in G1 and in G2. Therefore
Z is a zero forcing set for G and e = {v, w} is not an edge in any chain. Also,
|Z | = Z(G1)+ Z(G2) = Z(G − e) = Z(G)− ze(G) = Z(G), so Z is an optimal
zero forcing set for G. �

Theorem 2.15. Let e= {v, w} be a cut-edge of G. If v and w are in the same path
for every minimum path cover of G, then pe(G)=−1.

Proof. The contrapositive will be proved. Suppose pe(G) 6=−1. By Theorem 2.13,
pe(G)= 0. Let G1 and G2 be the connected components of G−e with v ∈G1 and
w ∈G2. Consider a path cover of G consisting of minimum path covers of G1 and
G2. Then v and w are not in the same path of this path cover of G. Also, since
pe(G)= 0, this path cover of G is minimum. �

Vertex spread. In this section, we consider the effects on minimum rank, maxi-
mum nullity, zero forcing number, and path cover number when deleting a single
vertex from a graph. For a graph G and a vertex v of G, the rank spread of v in
G is rv(G) = mr(G)−mr(G − v) [Barioli et al. 2004], the null spread of v in G
is nv(G) =M(G)−M(G − v) [Edholm et al. 2010], the zero spread of v in G is
zv(G)= Z(G)−Z(G − v) [Edholm et al. 2010], and the path spread of v in G is
pv(G)= P(G)−P(G− v) [Barioli et al. 2005].
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Theorem 2.16 [Edholm et al. 2010; Huang et al. 2010]. For every graph G and
vertex v of G, −1≤ zv(G)≤ 1.

Theorem 2.17 [Barioli et al. 2004; Barioli et al. 2005]. For every graph G and
vertex v of G, −1≤ pv(G)≤ 1.

Recall that v being contained as a singleton means it is in a forcing chain by
itself in an optimal chain set, and v being doubly terminal means it is in a path by
itself in a minimum path cover.

Theorem 2.18 [Edholm et al. 2010]. Let v be a vertex of G. Then zv(G) = 1 if
and only if there exists an optimal chain set of G that contains v as a singleton.

Theorem 2.19 [Barioli et al. 2005]. Let v be a vertex of G. Then pv(G)= 1 if and
only if v is doubly terminal.

Theorem 2.20 [Edholm et al. 2010]. Let v be a vertex of G. If zv(G) = −1, then
v is never in an optimal zero forcing set for G.

Theorem 2.21 [Barioli et al. 2005]. Let v be a vertex of G. If pv(G)=−1, then v

is not terminal.

The next theorems give the parameter spreads for a cut-vertex. Recall that v

being simply terminal means that v is terminal but not doubly terminal. By Theo-
rems 2.19 and 2.21, this is equivalent to the path spread being zero and v being an
endpoint in some minimal path cover.

Theorem 2.22 [Barioli et al. 2004]. Let G = (VG, EG) be a graph with cut-vertex
v ∈ VG . Let W1, . . . , Wk be the vertex sets for the connected components of G−v,
and for 1≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Then

rv(G)=min

{
k∑

i=1

rv(Gi ), 2

}

Corollary 2.23. Let G = (VG, EG) be a graph with cut-vertex v ∈ VG . Let
W1, . . . , Wk be the vertex sets for the connected components of G − v, and for
1≤ i ≤ k, let Gi =G[Wi ∪{v}]. Let m denote min1≤ j≤k{nv(G j )}, and t denote the
number of the Gi ’s in which nv(Gi )= 0. Then

nv(G)=


1 if m = 1,

0 if m = 0 and t = 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

Proof. This follows from Theorem 2.22 and the fact that rv(G)+ nv(G) = 1 for
any graph G and any vertex v of G. �
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Theorem 2.24 [Row 2011]. Let G = (VG, EG) be a graph with cut-vertex v ∈ VG .
Let W1, . . . , Wk be the vertex sets for the connected components of G− v, and for
1 ≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Let m denote min1≤ j≤k{zv(G j )}, and t denote
the number of the Gi ’s in which zv(Gi )= 0 and v is in an optimal zero forcing set.
Then

zv(G)=


1 if m = 1,

0 if m = 0 and t ≤ 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

Theorem 2.25 [Barioli et al. 2005]. Let G = (VG, EG) be a graph with cut-vertex
v ∈ VG . Let W1, . . . , Wk be the vertex sets for the connected components of G−v,
and for 1 ≤ i ≤ k, let Gi = G[Wi ∪ {v}]. Let m denote min1≤ j≤k{pv(G j )}, and t
denote the number of the Gi ’s in which v is simply terminal. Then

pv(G)=


1 if m = 1,

0 if m = 0 and t ≤ 1,

−1 if m = 0 and t ≥ 2, or if m =−1.

3. Comparing Z(G) and P(G) for cacti

A block of a graph is a maximal connected subgraph without a cut-vertex. A cactus
is a graph in which each block is either a cycle or an edge. In other words, a cactus
is a graph in which any two cycles share at most one vertex. An example of a
cactus is shown in Figure 1. In this section, we prove Z(G)= P(G) for any cactus
G. We begin with a few preliminaries.

Theorem 3.1 [Row 2011]. Let G be a unicyclic graph. Then Z(G)= P(G).

Figure 1. A cactus. No edge is in more than one cycle.
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Lemma 3.2. Let G be a graph, v a vertex in G, and H the graph constructed by
appending a leaf w to v in G. Suppose Z(G) = P(G) and Z(H) = P(H). The
vertex v is in an optimal zero forcing set for G if and only if v is terminal in G.

Proof. Suppose v is in an optimal zero forcing set for G. An optimal chain set
from this optimal zero forcing set determines a path cover of G with Z(G)= P(G)

paths and v as an endpoint of a path. Hence v is terminal.
Suppose v is terminal in G. Then e = {v, w} is a cut edge and the graph

H ′ = ({w}, ∅) is a single isolated vertex. Therefore, w is terminal in H ′. By
Theorem 2.13, pe(H)=−1. By Observation 2.9, ze(H)=−1. By Theorem 2.12,
v is in an optimal zero forcing set for G. �

Theorem 3.3. Let G be a cactus. Then Z(G)= P(G).

Proof. The theorem will be proved by induction on the number of cycles in the cac-
tus. If there is one cycle, G is a unicyclic graph and by Theorem 3.1, Z(G)=P(G).
Suppose now that for some m ≥ 2 any cactus G with less than m cycles satisfies
Z(G)= P(G). Let G be a cactus with m cycles. Since the cycles are edge disjoint,
there is a cut-vertex v such that G − v has connected components with vertex
sets W1, . . . , Wk and each graph Gi = G[Wi ∪ {v}],∀i = 1, . . . k is a cactus with
fewer than m cycles. By the inductive hypothesis, Z(Gi ) = P(Gi ),∀i = 1, . . . , k
and Z(Gi − v) = P(Gi − v),∀i = 1, . . . , k, so zv(Gi ) = pv(Gi ),∀i = 1, . . . , k.
Therefore, min1≤ j≤k{zv(G j )} = min1≤ j≤k{pv(G j )}. For all i = 1, . . . k, consider
the graphs Hi constructed by appending a leaf wi to v in Gi . By the inductive
hypothesis, Z(Gi ) = P(Gi ),∀i = 1, . . . k and Z(Hi ) = P(Hi ),∀i = 1, . . . k. By
Lemma 3.2, v is in an optimal zero forcing set for G j if and only if v is terminal in
G j . Then zv(G j )= 0 and v is in an optimal zero forcing set for G j if and only if
pv(G j )= 0 and v is terminal in G j if and only if v is simply terminal in G j by the
contrapositive of Theorem 2.19. Then by Theorems 2.24 and 2.25, zv(G)= pv(G).
Hence Z(G)=

∑k
i=1 Z(Gi − v)+ zv(G)=

∑k
i=1 P(Gi − v)+ pv(G)= P(G). �

4. Comparing Z(G) and M(G) for cacti

In Section 3 we showed equality of Z(G) and P(G) for all cacti G by utilizing
Theorem 3.1 for the base case in the induction proof. Since it is not true that
Z(G)=M(G) for all unicyclic graphs, in this section we focus on a subset of cacti
and prove Z(G)=M(G) for each graph in this subset.

Let Cn be an n-cycle and let U ⊆ VCn . The graph H obtained from Cn by
appending a leaf to each vertex in U is called a partial n-sun. If U = VCn , then
H is called an n-sun. It was shown in [Barioli et al. 2005] that M(H)= P(H) for
partial n-suns except for n-suns with n > 3 odd.

If there are at least two components of the graph G − v which are paths, each
joined to v in G at only one endpoint, then vertex v is called appropriate. A
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vertex v is called a peripheral leaf if v is adjacent to only one other vertex u, and
u is adjacent to no more than two vertices. The trimmed form of a graph G is
an induced subgraph obtained by a sequence of deletions of appropriate vertices,
isolated paths, and peripheral leaves until no more such deletions are possible.

Theorem 4.1 [Row 2011]. If the trimmed form of G, Ğ, can be obtained by per-
forming n1 deletions of appropriate vertices, n2 deletions of isolated paths, and n3

deletions of peripheral leaves, then Z(G)= Z(Ğ)+ n2− n1.

Theorem 4.2 [Barioli et al. 2005]. If the trimmed form of G, Ğ, can be obtained
by performing n1 deletions of appropriate vertices, n2 deletions of isolated paths,
and n3 deletions of peripheral leaves, then M(G)=M(Ğ)+ n2− n1.

Theorem 4.3 [Barioli et al. 2005]. The trimmed form of a unicyclic graph G is
either the empty graph or a partial n-sun.

Observation 4.4. The trimmed form of a unicyclic graph G in which at least one
of the cycle vertices has only two neighbors is not an n-sun.

The following theorem and lemma will be used in the proof of Theorem 4.7, the
main result of this section.

Theorem 4.5. Let G be a unicyclic graph in which the cycle has three vertices, an
even number of vertices, or a vertex which has only two neighbors. Then Z(G) =

M(G).

Proof. Let Ğ be the trimmed form of G. By Theorem 4.3 and Observation 4.4,
Ğ is either the empty graph or a partial n-sun, but not an n-sun with n odd and
greater than three. The formulas from [Barioli et al. 2005] give M(Ğ) = P(Ğ).
Theorem 3.1 gives Z(Ğ) = P(Ğ), so Z(Ğ) = M(Ğ). Then Z(G) = M(G) by
Theorems 4.1 and 4.2. �

Lemma 4.6. Let G be a graph, v a vertex in G, and H the graph constructed from
G by appending a leaf w to v, then appending a leaf x to w. Suppose Z(G)=M(G)

and Z(H)=M(H). The vertex v is in an optimal zero forcing set for G if and only
if nv(G)= 0.

Proof. By construction, e = {v, w} is a cut edge and the graph

H ′ = {{w, x}, {{w, x}}}

is a path on two vertices. Since Z(H ′) = M(H ′), ze(H) = ne(H). Also, w is in
an optimal zero forcing set for H ′ and nw(H ′) = 0. Then nv(G) = 0⇔ ne(H) =

−1⇔ ze(H)=−1⇔ v is in an optimal zero forcing set for G by Corollary 2.11
and Theorem 2.12. �

Here we present the main result of the section.
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Theorem 4.7. Let G be a cactus in which each cycle has three vertices, an even
number of vertices, or a vertex which has only two neighbors. Then Z(G)=M(G).

Proof. Let G be a cactus in which each cycle has three vertices, an even number
of vertices, or a vertex which has only two neighbors. The theorem will be proved
by induction on the number of cycles in the cactus. If there is one cycle, G is a
unicyclic graph in which the cycle has three vertices, an even number of vertices,
or a vertex which has only two neighbors, and by Theorem 4.5, Z(G) = M(G).
Suppose now that for some m ≥ 2 any cactus G in which each cycle has three
vertices, an even number of vertices, or a vertex which has only two neighbors
with less than m cycles satisfies Z(G) =M(G). Let G be a cactus in which each
cycle has three vertices, an even number of vertices, or a vertex which has only two
neighbors with m cycles. Since the cycles are edge disjoint, there is a cut-vertex v

such that G− v has connected components with vertex sets W1, . . . , Wk and each
graph Gi = G[Wi ∪ {v}],∀i = 1, . . . k is a cactus in which each cycle has three
vertices, an even number of vertices, or a vertex which has only two neighbors with
fewer than m cycles. By the inductive hypothesis, Z(Gi )=M(Gi ),∀i = 1, . . . , k
and Z(Gi − v) = M(Gi − v),∀i = 1, . . . , k, so zv(Gi ) = nv(Gi ),∀i = 1, . . . , k.
Therefore, min1≤ j≤k{zv(G j )} = min1≤ j≤k{nv(G j )}. For all i = 1, . . . k, consider
the graphs Hi constructed by appending a leaf wi to v in Gi then appending a
leaf xi to wi . By the inductive hypothesis, Z(Gi ) = M(Gi ),∀i = 1, . . . k and
Z(Hi ) = M(Hi ),∀i = 1, . . . k. By Lemma 4.6, v is in an optimal zero forcing
set for G j if and only if nv(G j ) = 0. Then zv(G j ) = 0 and v is in an optimal
zero forcing set for G j if and only if nv(G j ) = 0. Then by Theorem 2.24 and
Corollary 2.23, zv(G)= nv(G). Hence

Z(G)=

k∑
i=1

Z(Gi − v)+ zv(G)=

k∑
i=1

M(Gi − v)+ nv(G)=M(G). �

The restrictions imposed on the cacti in this section are sufficient for Z(G) =

M(G), but are not necessary, as can be seen in the following example.

Example 4.8. The graph G shown in Figure 2 does not satisfy the property that
each odd cycle of size five or more has at least one vertex with only two neighbors,
but does satisfy Z(G)=M(G).

5. Conclusions and open questions

We utilized cut-vertex and cut-edge results for zero forcing number, path cover
number, and maximum nullity to build graphs having equality of parameters from
smaller graphs having equality of the same parameters. Specifically, from knowing
Z(G) = P(G) for unicyclic graphs we showed Z(G) = P(G) for cacti, and from
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Figure 2. A cactus G that is not in the restricted family but which
satisfies Z(G)=M(G).

Z(G)=M(G) for a restricted family of unicyclic graphs we showed Z(G)=M(G)

for a restricted family of cacti.

Question 5.1. What other graphs with equality of some parameters have addi-
tional properties that would allow cut-vertex and cut-edge results to be utilized to
“build” larger graphs having equality of the parameters?

Question 5.2. What are necessary conditions for a cactus to satisfy Z(G)=M(G)?

The converse of Theorem 2.4 is open from [Edholm et al. 2010]. We proved
the converse holds if e is a cut-edge. We also proved the converse of Theorem 2.5
holds for a cut-edge.

Question 5.3. Is the converse of Theorem 2.5 true? That is, if v and w are in the
same path for every minimum path cover of G, does pe(G)=−1 where e={v, w}?

In general, v being in an optimal zero forcing set does not imply it being ter-
minal, nor does v being terminal imply it being in an optimal zero forcing set, as
evidenced by Examples 5.5 and 5.6 below. With the hypothesis that Z(G)= P(G),
we do get v in an optimal zero forcing set implying v terminal, as can be seen
in the first part of the proof for Lemma 3.2 where the graph H is not used. The
hypothesis about H is needed in Lemma 4.6 (see Example 5.7).

Question 5.4. Is the graph H from the hypothesis of Lemma 3.2 necessary for the
conclusion? For a graph G with Z(G)= P(G), does vertex v being terminal imply
v is in an optimal zero forcing set?

Example 5.5. The vertex v is a cut-vertex for this graph G:

w1

w2

w4

v

w5

w3 w6
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Now both G[{v, w1, w2, w3}] and G[{v, w4, w5, w6}] are K4, so we can write
zv(G[{v, w1, w2, w3}]) = zv(G[{v, w4, w5, w6}]) = 1 and v is simply terminal
in G[{v, w1, w2, w3}] and G[{v, w4, w5, w6}]. Hence zv(G)= 1 and pv(G)=−1
by Theorems 2.24 and 2.25. Therefore, v is in an optimal zero forcing set but not
terminal by Theorems 2.18 and 2.21.

Example 5.6. Let G be this graph:

w1 w2 w3 w4

v

w5 w6 w7 w8

Then Z(G − v) = 5 by [AIM 2008]. By Theorem 2.16, Z(G) ≥ 4 and moreover
{w2, w3, w5, w6} is a zero forcing set, so Z(G)=4. The graph G−v is not a path, so
P(G−v)≥ 2 and {(w1, w2, w3, w4, w5), (w6, w7, w8, w9, w10)} is a path cover for
G−v. Therefore, P(G−v)=2. By Theorem 2.17, and considering G is not a path,
2≤ P(G)≤ 3. To show P(G) 6= 2, attempt to cover G with two induced paths and
consider w5. If w5 was in a path by itself, the other eight vertices cannot be covered
with a single induced path, so w5 has to be in a path with other vertices. Since the
three neighbors of w5 are all neighbors of each other, w5 has to be an endpoint of
an induced path. Consider which neighbor is in the path with w5. If w1 is with w5,
then w2 and w6 have to be in the other path, then v, w3, and w7 have to be with w5

and w1, then w4 and w8 have to be with w2 and w6, but G[{w2, w4, w6, w8}] is not
a path. If w2 is with w5, then w1 and w6 have to be in the other path, then v has to
be with w5 and w2, then w3 has to be with w1 and w6, then w7 has to be with w5,
w2, and v, but G[{v, w2, w5, w7}] is not a path. If w6 is with w5, then w1 and w2

have to be in the other path, then v has to be with w5 and w6, then w3 has to be
with w1 and w2, then w7 has to be with w5, w6, and v, but G[{v, w5, w6, w7}] is
not a path. So P(G)≥ 3. Hence zv(G)=−1 and pv(G)= 1. Hence, v is terminal
but never in an optimal zero forcing set by Theorems 2.19 and 2.20.

Example 5.7. Let G be this graph:

v
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Then Z(G) = M(G) and nv(G) = 0, but v is not in an optimal zero forcing set
for G.
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Jacobson’s refinement of Engel’s theorem for
Leibniz algebras
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(Communicated by Chi-Kwong Li)

We develop Jacobson’s refinement of Engel’s Theorem for Leibniz algebras. We
then note some consequences of the result.

Since Leibniz algebras were introduced in [Loday 1993] as a noncommutative
generalization of Lie algebras, one theme has been to extend Lie algebra results
to Leibniz algebras. In particular, Engel’s theorem has been extended in [Ayupov
and Omirov 1998; Barnes 2011; Patsourakos 2007]. In the second of these works,
the classical Engel’s theorem is used to give a short proof of the result for Leibniz
algebras. The proofs in the other two papers do not use the classical theorem and,
therefore, the Lie algebra result is included in the result. In this note, we give two
proofs of the generalization to Leibniz algebras of Jacobson’s refinement to Engel’s
theorem, a short proof which uses Jacobson’s theorem and a second proof which
does not use it. It is interesting to note that the technique of reducing the problem to
the special Lie algebra case significantly shortens the proof for the general Leibniz
algebras case. This approach has been used in a number of situations [Barnes
2011]. We also note some standard consequences of this theorem. The proofs of
the corollaries are exactly as in Lie algebras (see [Kaplansky 1971]). Our result can
be used to directly show that the sum of nilpotent ideals is nilpotent, and hence one
has a nilpotent radical. In this paper, we consider only finite dimensional algebras
and modules over a field F.

An algebra A is called Leibniz if it satisfies x(yz)= (xy)z+ y(xz). Denote by
Ra and La , respectively, right and left multiplication by a ∈ A. Then

Rbc = Rc Rb+ Lb Rc, (1)

Lb Rc = Rc Lb+ Rbc, (2)

Lc Lb = Lcb+ Lb Lc. (3)

MSC2010: primary 17A32; secondary 17B30.
Keywords: Jacobson’s refinement, Engel’s Theorem, Leibniz algebras, Lie algebras, nilpotent,

bimodule.
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Using (1) and (2) we obtain

Rc Rb =−Rc Lb. (4)

It is known that Lb=0 if b=ai , i≥2, where a1
=a and an is defined inductively

as an+1
= aan . Furthermore, for n > 1, Rn

a = (−1)n−1 Ra Ln−1
a . Therefore Ra is

nilpotent if La is nilpotent.
For any set X in an algebra, we let 〈X 〉 denote the algebra generated by X .

Using (1), Ra2 = (Ra)
2
+ La Ra . Furthermore, the associative algebra generated

by all Rb, Lb, b ∈ 〈a 〉 is equal to 〈Ra, La 〉. Suppose that Ln−1
a = 0. Then Rn

a = 0.
For any s ∈ 〈Ra, La 〉, s2n−1 is a combination of terms with each term having at
least 2n−1 factors. Moreover, each of these factors is either La or Ra . Any La to
the right of the first Ra can be turned into an Ra using (4). Hence, any term with
2n−1 factors can be converted into a term with either La in the first n−1 leading
positions or Ra in the last n postitions. In either case, the term is 0 and s2n−1

= 0.
Thus 〈Ra, La 〉 is nil and hence nilpotent.

Let M be an A-bimodule and let Ta(m)= am and Sa(m)=ma, a ∈ A, m ∈ M .
The analogues of (1)–(4) hold:

Sbc = Sc Sb+ Tb Sc, (5)

Tb Sc = ScTb+ Sbc, (6)

TcTb = Tcb+ TbTc, (7)

Sc Sb =−ScTb. (8)

These operations have the same properties as La and Ra , and the associative algebra
〈Ta, Sa 〉 generated by all Tb, Sb, b ∈ 〈a 〉 is nilpotent if Ta is nilpotent. We record
this as

Lemma. Let A be a finite dimensional Leibniz algebra and let a ∈ A. Let M be a
finite dimensional A-bimodule such that Ta is nilpotent on M. Then Sa is nilpotent,
and 〈Sa, Ta 〉, the algebra generated by all Sb, Tb, b ∈ 〈a 〉, is nilpotent.

A subset of A which is closed under multiplication is called a Lie set.

Theorem (Jacobson’s refinement of Engel’s theorem for Leibniz algebras). Let A
be a finite dimensional Leibniz algebra and M be a finite dimensional A-bimodule.
Let C be a Lie set in A such that A = 〈C 〉. Suppose that Tc is nilpotent for each
c ∈ C. Then, for all a ∈ A, the associative algebra B = 〈Sa, Ta 〉 is nilpotent.
Consequently B acts nilpotently on M , and there exists m ∈ M , m 6= 0, such that
am = ma = 0 for all a ∈ A.

Proof 1 (using the Lie result). If M is irreducible, then either M A = 0 or ma =
−am for all a in A and all m in M from [Barnes 2011, Lemma 1.9]. Since left
multiplication of A on M gives a Lie module, the Jacobson refinement to Engel’s
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theorem yields that A acts nilpotently on M on the left and hence on M as a
bimodule. If M is not irreducible, then A acts nilpotently on the irreducible factors
in a composition series of M and hence on M . �

Proof 2 (independent of the Lie result). Let x ∈ C . Then Tx is nilpotent and the
associative algebra generated by Tb and Sb for all b∈〈x 〉 is nilpotent by the lemma.
Since {a | aM = 0 = Ma} is an ideal in A, we may assume that A acts faithfully
on M .

Let D be a Lie subset of C such that 〈D 〉 acts nilpotently on M , and 〈D 〉 is
maximal with these properties. If C ⊆ 〈D 〉, then A = 〈C 〉 = 〈D 〉, and we are
done. Thus suppose that C * 〈D 〉, and we will obtain a contradiction.

Let E = 〈D 〉 ∩ C . E is a Lie set since both 〈 D 〉 and C are Lie sets. Since
D ⊆ 〈D 〉 and D ⊆ C , it follows that D ⊆ E and 〈D 〉 ⊆ 〈E 〉. Since E ⊆ 〈D 〉,
〈E 〉 ⊆ 〈D 〉 and 〈D 〉 = 〈E 〉.

Let dim(M)= n. Since 〈D 〉 = 〈E 〉 acts nilpotently on M , σ1 · · · σn = 0 where
σi = Sdi or Tdi for di ∈ E . Then:
σ1 · · · σiτσi+1 · · · σ2n−1 = 0 where τ = Sa or Ta , a ∈ A, for all i .

If x is any product in A with 2n terms, of which 2n − 1 come from E , then
Sx and Tx are linear combinations of elements as in the last paragraph. Hence
Sx = Tx = 0, which implies that x = 0, since the representation is faithful.

There exists a smallest positive integer j such that τ1 · · · τ j C ⊆ 〈E 〉 for all
τ1, . . . , τ j with τi = Rdi or Ldi where di ∈ E . Then there exists an expression
z = τd1 · · · τd j−1 x /∈ 〈E 〉 for some x ∈ C and di ∈ E . Note that z ∈ C since C is
a Lie set. Consider zE . Now, zC , Cz ⊆ C and z〈E 〉, 〈E 〉z ⊆ 〈E 〉. Therefore
zE , Ez ⊆ E . Then zn E , Ezn

⊆ E for all positive integers n, using induction and
the defining identity for Leibniz algebras. Then F = {zn, n ≥ 1} ∪ E is a Lie set
contained in C , and since z /∈ 〈E 〉, it follows that 〈E 〉( 〈 F 〉.

It remains to show that 〈F 〉 acts nilpotently on M . Define M0 = 0 and

Mi = {m ∈ M | Em,m E ⊆ Mi−1}.

Since E acts nilpotently on M , Mk = M for some k. We show zMi , Mi z ⊆ Mi .
Clearly zM0 = M0z = 0. Suppose that z acts invariantly on Mi for all i < t . For
m ∈ Mt , d ∈ E , (zm)d = z(md)− m(zd) ∈ zMt−1 + m E ⊆ Mt−1 with similar
expressions for (mz)d , d(mz) and d(zm). Thus z acts invariantly on each Mi , and
hence z2 does also. Thus 〈z 〉 acts invariantly on each Mi . But 〈z 〉 acts nilpotently
on M by the lemma. Hence F acts nilpotently on M , which is a contradiction. �

We obtain the abstract version of the theorem.

Corollary 1. Let C be a Lie set in a Leibniz algebra A such that 〈C 〉 = A and Lc

is nilpotent for all c ∈ C. Then A is nilpotent.
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The following are extensions of results from [Jacobson 1955], whose proofs are
the same as in the Lie algebra case.

Corollary 2. If T is an automorphism of A of order p and has no nonzero fixed
points, then A is nilpotent.

Corollary 3. If D is a nonsingular derivation of A over a field of characteristic 0,
then A is nilpotent.

Corollary 4. If B and C are nilpotent ideals of A, then B +C is a nilpotent ideal
of A.
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The rank gradient and the lamplighter group
Derek J. Allums and Rostislav I. Grigorchuk

(Communicated by David R. Larson)

We introduce the notion of the rank gradient function of a descending chain of
subgroups of finite index and show that the lamplighter group Z2 oZ has uncount-
ably many 2-chains (that is, chains in which each subsequent group has index 2
in the previous group) with pairwise different rank gradient functions. In doing
so, we obtain some information on subgroups of finite index in the lamplighter
group.

1. Introduction

The lamplighter group, by which we mean the wreath product of the group of
order 2 with the infinite cyclic group, denoted L = Z2 o Z, is a popular object in
group theory and its applications. Just two illustrations of this are Chapter 6 in
[Meier 2008] and some select sections in [Lubotzky and Segal 2003]. It is a 2-step
solvable group (i.e., metabelian) of exponential growth, infinitely presented and
scale invariant [Grigorchuk and Żuk 2001; Nekrashevych and Pete 2011], which
is the cornerstone in all known results about the range of L2-Betti numbers of
groups on compact manifolds. In particular, Atiyah’s problem about the existence
of closed manifolds with noninteger and even irrational L2-Betti numbers was com-
pletely solved on a base of considerations related to L [Grigorchuk and Żuk 2001;
Grabowski 2010; Grigorchuk et al. 2000].

Lackenby [2005] introduced an interesting group-theoretical notion, the rank
gradient, which happens to be useful in topology, the theory of countable equiv-
alence relations, the study of amenable groups and other areas. Given a group G
and a descending sequence {Hn}

∞

n=1 of subgroups of finite index one can define

RG(G, {Hn})= lim
n→∞

d(Hn)− 1
[G : Hn]

to be the rank gradient of the sequence {Hn} with respect to G where d(H) denotes
the minimal number of generators of a group H .

MSC2010: 20E18, 20E22, 20E26, 20F65.
Keywords: lamplighter group, rank gradient, decay of rank gradient, finitely generated residually

finite amenable groups.
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Amenable groups were introduced by J. von Neumann in 1929 and play an im-
portant role in many areas of mathematics [Nekrashevych and Pete 2011]. There
are a number of results due to Lackenby, M. Abért, A. Jaikin-Zapirain and N.
Nikolov showing that amenability of G or of certain normal subgroups of G usu-
ally implies vanishing of the rank gradient. For instance, finitely generated infinite
amenable groups have RG = 0 with respect to any normal chain with trivial inter-
section; see [Abért et al. 2011, Theorem 5].

It is reasonable to study the rank gradient for sequences {Hn} with trivial core
(i.e., no nontrivial normal subgroups in the intersection

⋂
n Hn). Indeed,

RG(G, {Hn})= RG(G/N , {Hn/N })

if N GG, N <
⋂

n Hn. The most attention is given to the case when
⋂

n Hn ={1}. One
of the remaining open questions is this:

Question 1.1 [Abért et al. 2011]. Let G be a finitely generated infinite amenable
group. Is it true that RG(G, {Hn})= 0 for any chain with trivial intersection?

If
⋂
∞

n=1 Hn = H then H is a closed subgroup with respect to the profinite topol-
ogy and RG(G, {Hn}) is a characteristic of the pair (G, H) which in some sit-
uations may characterize the pair (G, H) up to isomorphism. We say two pairs
(G, H), (P, Q) are isomorphic if there is an isomorphism φ : G → P such that
φ(H)= Q.

If RG(G, {Hn})= 0 then one may be interested in the decay of the function of
the natural argument n ∈ N given by

rg(n)= rg(G,{Hn})
(n)=

d(Hn)− 1
[G : Hn]

which we call the rank gradient function. We may omit (G, {Hn}) if the group
and chain in consideration are understood. Again, the rate of decay of rg(n) may
be an invariant of the pair (G, H) and may characterize the way H lies in G as
a subgroup. Note that the same subgroup can be obtained as the intersection of
distinct chains: one can delete certain elements in Hn thereby allowing rg(n) to
decay as fast as one would like and indeed this is not the only way to get different
chains with the same intersection. Thus, we restrict our definition to the case when
for some prime p, we have [Hn+1 : Hn]= p and in this case we say the chain is a p-
chain. Our main result shows that rg(n) may be used to show that the lamplighter
group contains 2-chains with distinct rates of decay of the rank gradient function.

Theorem 1.2. The group L has uncountably many 2-chains with pairwise distinct
rank gradient functions.

This result is obtained by explicitly describing subgroups of index 2 in the
“higher rank” lamplighter groups Ln = Zn

2 oZ.
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Theorem 1.3. For any 2-chain {Hn} in L each member Hn is isomorphic to Li =

Zi
2 oZ for some i ≤ n.

This is a corollary of Theorem 2.1 below.

2. Subgroups of index 2 in Ln

Let Ln=Zn
2 oZ=

⊕
Z Zn

2oZ (by Z2 we mean the group of order 2 and the generator
of Z acts by shifting in the direct sum) and let An =

⊕
Z Zn

2 be the base group of
Ln . Observe that Ln is generated by the elements ai , i = 1, 2, . . . , n and t where
t is a generator of the infinite multiplicative cyclic group which we nevertheless
denote in the additive way Z, and ai ∈ An, i = 1, 2, . . . , n are elements given
by an n ×∞ matrix with all entries zero except one located in the i-th row and
column at position 0 (we assume that the columns are enumerated by the elements
of Z). So Ln = 〈a1, . . . , an, t〉. We will use similar notation for generation in the
remainder of the paper. Observe that if we identify elements of the base group An

with two sided infinite (bi-infinite) sequences of columns of dimension n over Z2

then conjugation by t acts on them as a shift τ in the set of sequences. We will use
this fact later.

Theorem 2.1. Let H < Ln be a subgroup of index 2. Then either H ' Ln or
H ' L2n . There are 2n+1

− 2 subgroups of the first type and 1 subgroup of the
second type.

In the proof, we use the following well known result.

Lemma 2.2. Let M =Zp⊕· · ·⊕Zp⊕· · · be a finite or infinite direct sum of cyclic
groups Zp with p a prime. Then every subgroup P < M is a direct summand:
M = P ⊕ Q for some Q. (See [Kargapolov and Merzljakov 1977, Chapter 10].)

We will often interpret Zn
p as a vector space of dimension n over the prime field

Fp ' Zp. Before we present a proof of Theorem 2.1, we will need the following
lemma.

Lemma 2.3. Let M=Zn
p. Every subgroup P<M of index p has a unique “orthog-

onal” complement Q < M such that M = P⊕Q. The group Q is generated by the
element ā = (a1, . . . , an) which is determined by P. Then P consists of elements
x̄ = (x1, . . . , xn) whose coordinates satisfy the “orthogonality” condition

a1x1+ · · ·+ anxn ≡ 0 (mod p).

Proof. Let [M : P]= p. Consider the subgroup P as a subspace of the vector space
M = Zn

p. Choose a basis of P consisting of elements b̄1, . . . , b̄n−1

b̄1 = (b1,1, . . . , b1,n), . . . , b̄n−1 = (bn−1,1, . . . , bn−1,n),
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with bi, j ∈Zp. Now define the (n−1)×n matrix B = (bi j ), which has rank n−1,
and consider the system of equations

b1,1x1+ · · ·+ b1,nxn = 0
...

bn−1,1x1+ · · ·+ bn−1,nxn = 0.

This system has the nontrivial solution ā= (a1, . . . , an) and every other solution is
some constant multiple of ā. It is then easy to see that M = P⊕〈ā〉. It is also clear
that given some ā ∈ M with ā 6= 0, the set of solutions of a1x1 + · · · + anxn ≡ 0
(mod p) yields a subgroup P of index p in M . �

Although we do not this, observe that by using tools from linear algebra, the
notion of orthogonal complement can be defined in a similar way as we did for
a subgroup of index p in an elementary p-group of finite rank. We will use the
notation H⊥ to denote the orthogonal complement of a subgroup H < M in M .

Corollary 2.4. There is a bijection between subgroups of index p in M = Zn
p and

subgroups of order p given by
H → H⊥.

We now restrict our attention to the case when p = 2.

Proof of Theorem 2.1. Observe that the abelianization A := (Ln)ab is isomorphic
to Zn

2×Z. Define A2 < A to be the subgroup generated by the squares of elements
in A. Then, A/A2

' Zn+1
2 = 〈ā1, . . . , ān, t̄〉 where as before Z = 〈t〉 denotes the

multiplicative infinite cyclic group generated by t , and a bar over some generator,
āi or t̄ for example, denotes that we are considering the element corresponding to
ai or t of Ln as an element of the quotient group Ln/[Ln,Ln]L

2
n ' Zn+1

2 . If we
consider ai as an n×∞ matrix, then it is of the form

· · · 0 0 0 · · ·
...

...
...

· · · 0 1 0 · · ·
...

...
...

· · · 0 0 0 · · ·

 ,

where the 1 is in the i-th row and the 0-th column. Recall that each ai is the i-th
generator of A0

n , where we define

An =
⊕

Z

Zn
2 =

⊕
j∈Z

A j
n.

The number of subgroups of index 2 in Ln is equal to the number of epimorphisms
Ln → Z2 which is equal to the number of subgroups of index 2 in Zn+1

2 which
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is equal to 2n+1
− 1 since the kernel of any such epimorphism is an orthogonal

complement to a subgroup of order 2 generated by some nonidentity element. We
have a short exact sequence

1→An→ Ln
φ
→ 〈t〉 → 1

where φ is the natural projection onto Z = 〈t〉. Let H < Ln be of index 2. Then
H is normal in Ln and therefore shift invariant.

There are two cases: either φ[H ] = 〈t2
〉 or φ[H ] = 〈t〉.

Case 1. Assume φ[H ]= 〈t2
〉. In this case H∩An =An , since otherwise we would

have [Ln : H ] ≥ 4 and there is only one subgroup H of index 2 in Ln with this
property. Furthermore, t2

∈ H and H =An o 〈t2
〉.

Let D0 < An, D0 ' Z2n
2 be a subgroup of n × ∞ matrices where the only

nonzero entries belong to columns with position 0 and 1. Define D j = t−2 j D0t2 j .
Then notice Di ∩ D j = 0 for i 6= j and An =

⊕
j∈Z D j . The element t2 acts by

conjugation on
⊕

j∈Z D j as a one-step shift. This implies H ' L2n .

Case 2. Now we assume φ[H ] = 〈t〉. We have 2n+1
−2 such subgroups H . In this

case, H∩An = P is a shift invariant subgroup of index 2 in An . Because P is shift
invariant, there must be some x ∈ An whose matrix representation has only one
nonzero column, namely the column with position 0, such that x /∈ P . Let q ∈ Zn

2
be the vector with coordinates the same as x . That is, we consider x as an n × 1
vector and relabel it q for clarity. Then let Q0 be the orthogonal complement to
〈q〉:

A0
n = 〈q〉⊕ Q0,

where as before we have An =
⊕

i∈Z Ai
n . Note that we are considering Q0 and 〈q〉

as subgroups of A0
n and so Q0 is a subgroup of H since otherwise we would have

[L : H ] ≥ 4. Define

Q =
⊕
i∈Z

Qi , where Qi
= t−i Q0t i .

Let R=Z2[t, t−1
] be the ring of Laurent polynomials in Z2. It is isomorphic to

the group ring Z2[Z]where as before Z is the additive notation for the multiplicative
infinite cyclic group generated by t . The group An can be converted into an R-
module Mn by agreeing that the generator t acts on An as the previously defined
right-shifting element τ (remember that elements of An can be considered as bi-
infinite sequences of columns representing the elements of Zn

2). Moreover, An

is the additive group of this module, Mn is a free R-module of rank n and is
isomorphic to Rn .

Observe that Q is a shift invariant subgroup of H . Because of Lemma 2.2 there
is a subgroup S < P such that the decomposition P = Q ⊕ S holds. Note that
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S is also a shift invariant subgroup of P and therefore can be interpreted as an
R-module. Therefore P, Q and S can be considered as submodules of Mn and the
decomposition of modules P = Q⊕ S holds (we will not change the notation for
P, Q, S when considering them as modules or vise versa since it will be clear by
the context if we are considering these objects as abelian groups or as R-modules).

We will need the following lemma. Any graduate level textbook in Algebra
will contain the fact that a ring of polynomials with coefficients in some field is
a principal ideal domain. The ring R is the localization of the polynomial ring in
the multiplicative set consisting of the nonnegative powers of t [Reid 1988]. Many
properties of the Laurent polynomial ring follow from the general properties of
localization as well as the next one which is a well known fact. However, we were
unable to find a suitable reference for this so we add a proof of it below.

Lemma 2.5. The ring R is a principal ideal domain.

Proof. Let I be an ideal in R. Then I ∩Z2[t] is an ideal in Z2[t] and since the ring
of polynomials over a field is a principal ideal domain, I ∩Z2[t] = ( f ) for some
f ∈ Z2[t]. Then R f ⊂ I . For h ∈ I , h = t−k g for some k ∈ N and g ∈ Z2[t].
Thus g ∈ I ∩ Z2[t] = ( f ), and so h = t−k f a ∈ R f for some a in R. Therefore
R f = I . �

Since they are submodules of a finitely generated free module Mn 'Rn over a
principal ideal domain R, the modules P, Q and S are also free. As P is a subgroup
of index 2 in An , the module P is free of rank n, Q is free of rank n− 1 and S is
free of rank 1. Thus the Rn-module P , when considered as a group generated by
the additive group P and the element t which acts by conjugation on P as the shift
element τ , becomes isomorphic to Rn o Z' Ln .

We have 2n+1
−2 subgroups H which can be obtained in the second case. Indeed,

there are 2n
− 1 choices for the vector q and therefore the subgroup Q. And to

each choice of Q we have two choices to construct H : either to assume that t ∈ H
or that t /∈ H . In this way, we get 2(2n

− 1) = 2n+1
− 2 subgroups corresponding

to Case 2. This finishes the proof of the first theorem. �

3. Construction of chains

Since Z2[x, x−1
] is a principal ideal domain by Lemma 2.5, a shift invariant sub-

group T of A1 =
⊕

Z Z2 corresponds to a principal ideal J such that

Z2[x, x−1
]/J' Z2

which is a field. This implies that J is a maximal ideal generated by some irre-
ducible polynomial of degree 1. Thus, J= 〈 f 〉 with deg( f )= 1 so f = x+1. The
corresponding element of T is then ξ = (. . . , 0, 1, 1, 0, . . .) where the 1’s are in
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the 0 and 1 place respectively. Additionally, ξ is a generator of T as an R-module.
One then concludes that T consists of sequences

(. . . , a−1, a0, a1, . . .),

where ∑
n

an ≡ 0 (mod 2). (1)

This observation gives an effective way to construct a subgroup H of index 2
in Ln with H ' Ln . Choose a basis E of Zn

2 and write elements of An as n×∞
matrices (where the columns are indexed by Z as usual) with respect to this basis
at position i ∈Z. Then take a subgroup of An consisting of elements which satisfy
the relation (1) in the first row. After this, choose t ∈ H or t /∈ H .

We know that L contains 3 subgroups of index 2, where 2 are isomorphic to L

and the other is isomorphic to L2. Furthermore, L2 has 7 subgroups of index 2,
where 1 is isomorphic to L4 and 6 are isomorphic to L2, etc. If we take a subgroup
H <L of index 2k obtained from L by taking a descending chain of subgroups of
index 2 in the previous member of the chain then we have H 'L2i for some i ≤ k.
We can then take a subgroup of index 2 isomorphic to L2i (call this choice type
0) or to L2i+1 (call this choice type 1). It is clear that d(Ln) = n + 1 (obviously
Ln is generated by n + 1 elements and the abelianization of Ln is Zn

2 × Z and is
(n + 1)-generated). Now let ω ∈ {0, 1}N be a sequence. Then these two types of
choices for subgroups of index 2 allow us to construct a chain {Hω

n } such that the
subgroup Hω

n is obtained from the previous subgroup Hω
n−1 by looking at the n-th

term in our sequence ω. That is, a 0 dictates we make a choice of type 0 and a
1 dictates we make a choice of type 1. It is clear that in such a way we obtain
uncountably many different chains {Hω

n } such that each of the functions rgω(n) are
distinct. This provides the proof of Theorem 1.2.

Remark. If rω = limn→∞ rgω(n) > 0 then rω = 2−k for some k and the rank
gradient of the chain {Hω

n } is positive where the number of 0’s in the sequence ω
is k. In this case, Hω

=
⋂

n Hω
n contains a nontrivial normal subgroup. In all other

cases the rank gradient of the 2-chain is 0.

4. Conclusion

It is clear that the same method used to construct uncountably many rank gradient
functions of 2-chains in L allows one to construct uncountably many 2-chains with
pairwise distinct types of decay of the rank gradient function. For instance, one
can consider a family of functions δα(n) = 2−nα with 0 < α < 1 where to each
such function we have a corresponding sequence ω with the property that the rank
gradient function rgω(n) is the best approximation of the function 2−nα . By “best
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approximation”, we mean the following. Starting with any subgroup H1 ' L2

of index 2 in L (which corresponds to the value ω1 = 1 of the sequence ω and
the value rgω(1) = 1 > 1

2 = δα(1)), one can make a choice of type 0 until the
rank gradient function becomes less than the value of the function δα(n) for the
corresponding value of the argument n. Then make the choice of type 1 until the
rank gradient function becomes greater or equal to δα(n) for the corresponding
value of n. Then again make the choice of type 0, etc. By continuing this process,
we construct a 2-chain that best approximates δα(n). Since the rates of decay of the
functions δα(n) are clearly different for different values of α, the (rates of decay
of the) corresponding rank gradient functions are also distinct.

Our study is the first step in understanding what types of decay of the rank gra-
dient function may arise in the case of finitely generated residually finite amenable
groups.

If {Hn}
∞

n=1 is a descending chain of subgroups of finite index in a residually
finite group G, then the intersection H∗ =

⋂
∞

n=1 Hn is a subgroup of G closed with
respect to the profinite topology and indeed any closed subgroup can be obtained
in this way. The rank gradient function of the chain {Hn}

∞

n=1 introduced by us
may serve as a certain characteristic of the subgroup H∗. Right now it is unclear
how rg(n) depends on the chain {Hn}

∞

n=1 with fixed intersection H∗. Even in the
case when H∗= {1}, it may be that different p-chains with trivial intersection have
different rates of decay of rg(n) but we do not have any examples of this. Of course,
it is reasonable to only consider chains with the property that Hn+1 is a maximal
subgroup in {Hn}. While we have considered the case of the lamplighter group, it
will also be interesting to study the decay of the rank gradient function with respect
to other amenable groups such as with respect to the 3-generated infinite torsion
2-group of intermediate growth constructed in [Grigorchuk 1980; 1984].
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