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A linear subspace B of L(H) has the property P1 if every element of its pre-
dual B∗ has the form x + B⊥ with rank(x) ≤ 1. We prove that if dim H ≤ 4
and B is a unital operator subalgebra of L(H) which has the property P1, then
dim B ≤ dim H . We consider whether this is true for arbitrary H .

1. Introduction

The duality between the full algebra L(H) of bounded linear operators on a Hilbert
space H and its ideal L∗ of trace class operators plays an important role in invariant
subspace theory. Indeed, it is easy to use rank one operators in the preannihilator
of an operator algebra B to construct nontrivial invariant subspaces for B and con-
versely (see [Larson 1982]). In his proof that subnormal operators are intransitive,
S. Brown [1978] focused attention on a more subtle connection between rank one
operators and invariant subspaces. He showed that certain linear subspaces B of
L(H) have the following property: every element of its predual B∗ has the form
x + B⊥ with rank(x) ≤ 1, where B⊥ = {a ∈ L∗ : Tr(ba)= 0, for all b ∈ B} is the
preannihilator of B. This was called the P1 property in [Larson 1982]. D. Hadwin
and E. Nordgren [1982], and independently the third author, observed the connec-
tion between this property and reflexivity. Although neither property implies the
other, if an algebra B has property P1 and is also reflexive (B = AlgLat(B)) then
so are all of its ultra-weakly closed subalgebras.

Azoff obtained many results about linear subspaces of L(H) which have the
property P1. Among them, he proved the following simple, but beautiful, result
by using ideas from algebraic geometry. If dim H = n ∈ N and a linear space
S ⊂ L(H)≡ Mn(C) has the property P1, then the dimension of S is no larger than
2n−1. Furthermore, there exists a subspace S⊂Mn(C) which has the property P1

and dim S= 2n−1. For an expository account of these and related results, we refer
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to [Azoff 1986], where linear spaces with the property P1 are called elementary
spaces. For this article the original term P1 seemed more suitable because we want
to work with the more general property Pk in the same context.

In this paper we consider the analogue of Azoff’s result for the subcase of unital
operator subalgebras in L(H)≡Mn(C) (an operator algebra is unital if it contains
the identity operator of L(H)). If B is the diagonal subalgebra of L(H), it is easy
to show that B has property P1 and dim B = n. In Section 5 we show that if n ≤ 4
and B ⊂ Mn(C) is a unital subalgebra which has property P1, then dim B ≤ n. It
is natural to conjecture that this is also true for arbitrary n. We make this formal:

Question 1. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1. Must dim B ≤ n?

Note that if the above conjecture is true, then we can deduce Azoff’s result as a
corollary. Indeed, if S ⊂ L(H)≡ Mn(C) is a linear space with property P1, then

B =
{(
λ s
0 λ

)
: λ ∈ C, s ∈ S

}
⊂ L(H (2))≡ M2n(C)

is a unital operator algebra with property P1 [Kraus and Larson 1986; 1985; Azoff
1986]. So dim B ≤ 2n implies dim S ≤ 2n− 1.

An algebra B ⊂ L(H) is called a P1 algebra if A has property P1. An algebra
B ⊂ L(H) is called a maximal P1 algebra if whenever A is a subalgebra of L(H)
having property P1 and A⊃ B, then A= B. We consider a subquestion of Question
1.

Question 2. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra. If B has property P1 and dim B = n, is B a maximal P1 algebra?

In Section 3 and Section 4, we prove that if a unital P1 subalgebra B ⊂ Mn(C)

is semisimple or singly generated and dim B = n, then B is a maximal P1 algebra.
In [Larson 1982], the third author showed that if a weakly closed operator

algebra B has property P1, then B is 3-reflexive [Azoff 1973], that is, its three-
fold ampliation B(3) is reflexive. (This result also holds for linear subspaces with
the same proof). He raised the following problem: Suppose dim H = n ∈ N and
B⊂ L(H)≡Mn(C) is a unital operator algebra with property P1. Is B 2-reflexive?
Note that this question also makes sense for linear subspaces. Azoff [1986] showed
that the answer to the above question is affirmative for n=3 (for all linear subspaces
of M3(C) with property P1). Very little additional progress has been made on this
problem since the mid 1980’s. The purpose of the research project resulting in this
article was to push further on this problem. In Section 6 of this paper, we will
show that the answer to the above question for unital algebras is also affirmative
for n = 4. The proof requires a detailed analysis of several subcases undertaken in
the preceding sections.
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We would like to pose the following subquestion.

Question 3. Suppose dim H = n ∈N and B ⊂ L(H)≡ Mn(C) is a unital operator
algebra with property P1 and dim B = n. Is B 2-reflexive?

Throughout this paper, we will use the following notation. If H is a Hilbert
space and n is a positive integer, then H (n) denotes the direct sum of n copies of
H , that is, the Hilbert space H⊕· · ·⊕H . If a is an operator on H , then a(n) denotes
the direct sum of n copies of a (regarded as an operator on H (n)). However, we
will use In instead of I (n) to denote the identity operator on H (n). If B is a set of
operators on H , then B(n) = {b(n) : b ∈ B}.

This paper focuses on problems concerning operator algebras and linear sub-
spaces of operators in finite dimensions. All of our results and proofs are given for
finite dimensions. However, many of the definitions are given in the mathematics
literature for infinite (as well as finite) dimensions, where the Hilbert space is
assumed to be separable. The Hahn–Banach theorem and the Riesz representation
theorem, the definitions of reflexive algebras and subspaces, the properties P1 and
Pk , are all given in the literature for infinite dimensions, but we will only use them
here in the context of finite dimensions. In cases where proofs of known results
are given for the sake of exposition, we will usually just give the proofs for finite
dimensions. However, we will adopt the convention that if the statement of a result
or definition in this article does not specify finite dimensions, then the reference
we cite actually gives the infinite dimensional proof, or, if no reference is cited,
then the proof we provide is in fact valid for infinite dimensions.

We will use some standard notation: If A ∈ L(H), it is common to use Alg(A)
to denote the algebra generated by A and I and Alg0(A) to denote the algebra
generated by A alone. If L is a lattice of subspaces, then it is also common to use
Alg(L) to denote the algebra of operators that holds each element of L invariant.
The meaning of the use of Alg(·) will be clear from context so there will be no
ambiguity.

2. Preliminaries

Let H be a Hilbert space with dim H = n. Then L(H) ≡ Mn(C). Let {ei }
n
i=1 be

an orthonormal basis of H . If a ∈ L(H)≡Mn(C) is an arbitrary operator, then the
trace of a is defined as

Tr(a)=
n∑

i=1

〈aei , ei 〉.

It is easy to show that Tr(a) does not depend on the choice of {ei }
n
i=1. Moreover, the

trace has the important property that Tr(ab)=Tr(ba) for all a, b∈ L(H)≡Mn(C).
In this case, the space of trace class operators on H , denoted L∗, can be identified
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algebraically with Mn(C), and is equipped with the trace class norm

‖a‖1 = Tr((a∗a)1/2).

Recall that the dual of a linear space is the space of all (continuous) linear func-
tionals on the space. In the case of L∗ = Mn(C), every linear functional on L∗ has
the form a→ Tr(ab) for some b ∈ L(H)≡ Mn(C). In this way, L(H) is identified
as the dual space of L∗, and L∗ is called the predual of L(H). If S ⊂ L(H) is a
linear subspace, then as a linear space itself S can be identified as the dual of the
quotient linear space L∗/S⊥, where S⊥ = {a ∈ L∗|Tr(ba) = 0 for all b ∈ S} is the
preannihilator of S. Here, as usual, the quotient space L∗/S⊥ means the set of all
cosets of L∗, {x+ S⊥|x ∈ L∗}. We also write x+ S⊥ as [x]. We write S∗= L∗/S⊥.
The duality between S and S∗ is that if [x] ∈ S∗ for some x ∈ L∗, and associate the
linear functional on S given by

b→ Tr(bx), for all b ∈ S.

This is well defined by the definition of S⊥. In order to obtain S as exactly the
dual of the space S∗, one needs to apply a version of the Hahn–Banach theorem
[Han et al. 2007]. We say a linear subspace S of L(H) ≡ Mn(C) has property P1

if every element of its predual B∗ has the form x + B⊥ with rank(x)≤ 1.
Let B ⊂ L(H) ≡ Mn(C) be a unital operator subalgebra. If z ∈ L(H) is

an invertible operator, elementary computations yield (zBz−1)⊥ = z−1 B⊥z and
(zBz−1)∗ = z−1 B∗z, where the multiplication action of z on the quotient space B∗
is given by

z−1(x + B⊥)z = z−1xz+ z−1 B⊥z = z−1xz+ (zBz−1)∗.

From this it is easy to see that if B has property P1, then so does zBz−1. It is also
true that B has property P1 if and only if its adjoint algebra B∗ = {b∗|b ∈ B} has
property P1.

Lemma 2.1 [Larson 1982]. An algebra B has property P1 if and only if every
element b∗ ∈ B∗ has the form x + B⊥ with rank(x)≤ 1.

Proof. Only if is trivial. Suppose every element b∗ ∈ B∗ has the form x + B⊥ with
rank(x)≤ 1. Note that for each b∈ B and each b⊥ ∈ B⊥, Tr(bb⊥)= 0. This implies
that L(H) = B∗⊕ B⊥ with respect to the inner product 〈x, y〉 = Tr(y∗x). So for
each a ∈ L(H), a= b∗+b⊥ for some b∗ ∈ B∗ and b⊥ ∈ B⊥. Therefore, a= x+B⊥
with rank(x)≤ 1 by the assumption of the lemma. �

Lemma 2.2. Let B be a subalgebra of L(H). If B has property P1 and p ∈ B is a
projection, then pBp ⊂ L(pH) also has property P1.

Proof. Suppose z ∈ B⊥ and b ∈ B. Then Tr(pbppzp) = Tr(pbpz) = 0. So
pzp ∈ (pBp)⊥. For each a ∈ L(H), there exists a b⊥ ∈ B⊥ such that the rank of
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a+ b⊥ is at most 1. So the rank of pap+ pb⊥ p = p(a+ b⊥)p is at most 1. This
proves the lemma. �

Recall that a vector ξ ∈H is a separating vector of B if bξ = 0 for some b ∈ B
then b = 0. We say that B has the separating vector property if it has a separating
vector. A direct sum of subspaces with the separating vector property has the
separating vector property (take the direct sum of the separating vectors). If B is
similar to a subspace with a separating vector, then B has a separating vector. (If
B = T CT−1, and x separates C , then T x separates B).

Lemma 2.3. If Alg(A, I ) is a singly generated unital subalgebra of L(H) with H
finite dimensional, then B has a separating vector.

Consider a Jordan block B. The vector
0
...

0
1


separates B. Since any matrix is similar to a finite direct sum of Jordan blocks,
and each Jordan block has a separating vector, the result follows.

The following result is the finite-dimensional special case of Proposition 1.2 of
[Herrero et al. 1991].

Theorem 2.4. If B is a subalgebra of L(H), with H finite dimensional, such that
either B or B∗ has a separating vector, then B has property P1.

Property Pk , a generalization of property P1, was also introduced by the third
author in [Larson 1982]. Recall that an algebra B has property Pk if every element
of its predual B∗ has the form x + B⊥ with rank(x)≤ k.

Lemma 2.5 [Larson 1982]. Let B be a subalgebra of L(H). Then B has property
Pk if and only if B(k) = {b(k)|b ∈ B} ⊂ L(H (k)) has property P1.

Proof. “⇒”. By Lemma 2.1, we need to show that each operator (b∗)(k), b ∈ B,
can be written as f + B⊥ with rank( f )≤ 1. Note that

B(k)
⊥
=
{
(xi j )k×k |x11+ · · ·+ xkk ∈ B⊥

}
⊃
{
(xi j )k×k |x11 · · · , xkk ∈ B⊥

}
.

By the assumption, B has property Pk . So there exists a b⊥ ∈ B⊥ such that the
rank of b∗ + b⊥ is at most k. We can write b∗ + b⊥ = ξ1 ⊗ η1 + · · · + ξk ⊗ ηk ,
where ξi ⊗ ηi is the rank one operator defined by ξi ⊗ ηi (ξ) = 〈ξ, ηi 〉ξi . Let
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zi i = kξi ⊗ ηi −
∑

1≤r≤k ξr ⊗ ηr , 1≤ i ≤ k, and let

z =


z11 kξ2⊗ η2 · · · kξk ⊗ ηk

kξ1⊗ η1 z22 · · · kξk ⊗ ηk

· · · · · · · · · · · ·

kξ1⊗ η1 kξ2⊗ η2 · · · zkk

 .
Then z ∈ B(k)

⊥
and

(b∗)(k)+ (b⊥)(k)+ z = k


ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk

· · · · · · · · · · · ·

ξ1⊗ η1 ξ2⊗ η2 · · · ξk ⊗ ηk


is a rank 1 matrix.

“⇒”. By the assumption, for each a ∈ L(H) there exists z ∈ B(n)
⊥

such that the
rank of a(n) + z is at most 1. Write z = (zi j )k×k . Then z11 + · · · + zkk ∈ B⊥ and
the rank of a+ zi i is at most 1. So the rank of

a+
1
k
(z11+ · · ·+ zkk)=

1
k
((a+ z11)+ · · ·+ (a+ zkk))

is at most k. �

Corollary 2.6. If B is a subalgebra of L(H) and dim H = k, then B(k) ⊂ L(H (k))

has property P1.

3. Semi-simple maximal P1 algebras

Suppose B is a subalgebra of Mn(C) which has property P1. Recall that B is
a maximal P1 algebra of Mn(C) if whenever A is a subalgebra of Mn(C) having
property P1 and A⊇ B, then A= B. The main result of this section is the following
theorem.

Theorem 3.1. Let B ⊆ Mn(C) be a unital semisimple algebra. If B has property
P1, then dim B ≤ n. Furthermore, if dim B = n, then B is a maximal P1 algebra.

To prove this theorem, we will need the following lemmas:

Lemma 3.2. Let B ⊆ L(H)= Mn(C) be a semisimple algebra. If B has property
P1, then dim B ≤ n.

Proof. We will use induction on n. The case n = 1 is clear. Suppose this is
true for n ≤ k and let B ⊂ Mk+1(C) be a semisimple algebra. We need to show
dim B ≤ k+1. Suppose B has a nontrivial central projection, p, 0< p< 1. Then,
B = pBp⊕ (1− p)B(1− p). By Lemma 2.1,

pBp ⊂ L(pH) and (1− p)B(1− p)⊂ L((1− p)H),
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are both semisimple algebras with property P1. By the assumption of induction
dim pBp ≤ dim(pH) and dim(1− p)B(1− p)≤ dim(1− p)H . Therefore,

dim B = dim(pBp)+ dim((1− p)B(1− p))

≤ dim pH + dim(1− p)H

= dim H = k+ 1.

Suppose B does not have a nontrivial central projection. Then, B ∼= Mr (C). Since
B has property P1, r2

≤ n+ 1 by Lemma 2.5. So r ≤ n+ 1. �

Lemma 3.3. Suppose 0 6= a ∈ Mn(C). Then there exists a finite set of operators
b1, . . . , bk, c1, . . . , ck , such that

∑k
i=1 bi aci = In .

Proof. Note that Mn(C)aMn(C) is a two sided ideal of Mn(C) and

Mn(C)aMn(C) 6= 0.

Since Mn(C) is a simple algebra, Mn(C)aMn(C) = Mn(C), which implies the
lemma. �

The following well known lemma will be very helpful.

Lemma 3.4. There are finitely many unitary matrices u1, u2, . . . , uk ∈Mn(C) such
that 1

k

∑k
i=1 ui au∗i = (Tr(a)/n)In for all a ∈ Mn(C).

The following lemma is a special case of Lemma 3.6. However, we include its
proof to illustrate our idea.

Lemma 3.5. Suppose B is a unital subalgebra of M4(C) and B ∼= M2(C), then B
is a maximal P1 algebra.

Proof. We may write M4(C) as M2(C)⊗M2(C) and assume B=M2(C)⊗ I2. Note
that with respect to the matrix units of I2⊗M2(C), each element of B=M2(C)⊗ I2

has the following form
(

a 0
0 a

)
, a ∈ M2(C). By Corollary 2.6, B has property P1.

Assume B ( R ⊆ M4(C) and R is an algebra with property P1. We can write
R = R1 + J , where R1 ⊃ B is the semisimple part and J is the radical of R.
Since R has property P1, R1 has property P1. By Lemma 3.2, dim R1 ≤ 4. Since
dim B = 4, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤2 ∈ J with respect to the matrix units I2⊗M2(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are sets
of operators b1, . . . , bk, c1, . . . , ck ∈ M2(C), such that

k∑
i=1

bi x11ci = I2. (1)
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Let y = (yi j )1≤i, j≤2 =
∑k

i=1(bi ⊗ I2)x(ci ⊗ I2) ∈ J . By (1), we have y11 = I2.
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ I2)y(u∗i ⊗ I2) ∈ J.

Then, z11 = I2 and zi j = λi j I2 for some λi j ∈ C, 1≤ i, j ≤ 2. So, z ∈ I2⊗M2(C).
Since z∈ J , z2

=0, as elements in the radical are nilpotent. By the Jordan canonical
theorem, there exists an invertible matrix w ∈ I2⊗M2(C) such that

wzw−1
= I2⊗

(
0 1
0 0

)
.

Replacing R by wRw−1, we may assume that R contains B and I2 ⊗
(

0 1
0 0

)
.

Furthermore, we may assume that R is the algebra generated by M2(C)⊗ I2 and
I2⊗

(
0 1
0 0

)
. Then

R =
{(

a b
0 a

)
: a, b ∈ M2(C)

}
.

Simple computation shows that R does not have property P1. This is a contradic-
tion. Therefore J = 0 and R = B. �

Lemma 3.6. Let B be a unital subalgebra of Mn2(C) such that B ∼= Mn(C). Then
B is a maximal P1 algebra.

Proof. We may write Mn2(C) as Mn(C)⊗Mn(C) and assume B=Mn(C)⊗In . Note
that with respect to the matrix units of In⊗Mn(C), each element of B=Mn(C)⊗ In

has the form 
a 0 · · · 0
0 a · · · 0
...
...
. . .

...

0 0 · · · a

 , a ∈ Mn(C).

By Corollary 2.6, B has property P1. Assume B ( R⊆Mn2(C) and R is an algebra
with property P1. We can write R = R1+ J , where R1 ⊃ B is the semisimple part
and J is the radical of R. Since R has property P1, R1 has property P1. By
Lemma 3.2, dim R1 ≤ n2. Since dim B = n2, we have R1 = B.

Suppose 0 6= x = (xi j )1≤i, j≤n ∈ J with respect to the matrix units In ⊗Mn(C).
Without loss of generality, we may assume x11 6= 0. By Lemma 3.3, there are finite
sets of operators b1, . . . , bk, c1, . . . , ck ∈ Mn(C), such that

k∑
i=1

bi x11ci = In. (2)
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Let y = (yi j )1≤i, j≤n =
∑k

i=1(bi ⊗ In)x(ci ⊗ In) ∈ J . By (2), we have y11 = In .
Choose unitary matrices u1, . . . , uk as in Lemma 3.4. Let

z = (zi j )=

k∑
i=1

(ui ⊗ In)y(u∗i ⊗ In) ∈ J.

Then, z11 = In and zi j = λi j In for some λi j ∈C, 1≤ i, j ≤ n. So, z ∈ In⊗Mn(C).
Since z ∈ J , zn

= 0, as elements in the radical are nilpotent. By the Jordan
Canonical theorem, there exists an invertible matrix w ∈ In ⊗ Mn(C) such that
0 6=wzw−1

=
⊕k

i=1 zi ∈ In⊗Mn(C) and each zi is a Jordan block with diagonal 0.
Replacing R by wRw−1, we may assume R contains B and wzw−1

∈ In⊗Mn(C).
Suppose r =max{rankzi :1≤ i,≤ k}. We may assume rankz1=· · ·= rankzs = r

and rank zi < r for all s < i ≤ k. Then zr−1
= In ⊗

((⊕s
i=1 zr−1

)
⊕ 0

)
. Note that

zr−1
i =



0 · · · 0 1
0 · · · 0 0
.

.

.

0 · · · 0 0


.

We may assume R is the algebra generated by Mn(C)⊗ In and zr−1.
Without loss of generality, we assume r = 2, and s = n/2. The general case can

be proved similarly. Then

R =





(
a b
0 a

)
0

. . .

0
(

a b
0 a

)


s×s

: a, b ∈ Mn(C)


.

Simple computations show that

R⊥=





(
x1 ∗

y1 x2

)
∗

. . .

∗

(
xn−1 ∗

ys xn

)


s×s

: xi , yi ∈ Mn(C),

n∑
i=1

xi =

s∑
i=1

yi = 0


.

Let

m =
(

0n 0n

In 0n

)
.
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Since R has property P1, we can write m(s)
= x + R⊥ such that the rank of x is

at most 1. This implies that In + y1, In + y2, . . . , In + ys are all rank-1 matrices
for some y1, . . . , ys ∈ Mn(C) with y1 + · · · + ys = 0. Therefore, the rank of
In+ y1+ In+ y2+· · ·+ In+ ys = s In is at most s = n

2 < n. This is a contradiction.
So J = 0 and R = B. �

The following is a key lemma to prove Theorem 3.1, which has an independent
interest.

Lemma 3.7. Let λ 6= 0 be a complex number, and let y1, y2, . . . , yn ∈ Mn(C)

satisfy y1+ y2+· · ·+ yn = 0. Suppose η1, η2, . . . , ηn ∈ Cn are linearly dependent
vectors, and

t =


λ ∗ ∗ ∗ · · · ∗

η1 In + y1 ∗ ∗ · · · ∗

η2 ∗ In + y2 ∗ · · · ∗

...
...

...
...
. . .

...

ηn ∗ ∗ ∗ · · · In + yn

 .
Then rank t > 1.

Proof. We may assume that η1, . . . , ηk−1, k ≤ n, are linearly independent vectors,
and each η j , k ≤ j ≤ n, can be written as a linear combination of η1, . . . , ηk−1.
Write

ηi =

σi1
...

σin

 .
We may assume that the (k − 1)× (k − 1) matrix (σi, j )(k−1)×(k−1) is invertible.
Using row reduction, we can transform t to a new matrix

λ ∗ ∗ ∗ · · · ∗

η′1 In + y′1 ∗ ∗ · · · ∗

η′2 ∗ In + y′2 ∗ · · · ∗

...
...

...
...
. . .

...

η′n ∗ ∗ ∗ · · · In + y′n


such that the k-th row of each η′j is 0 for 1≤ j ≤ n, and y′1+ · · ·+ y′n = 0. So the
( jk+ 1, 1)-th entry of t ′ is zero for all 1≤ j ≤ n.

Suppose t is a rank 1 matrix. Then t ′ is also a rank 1 matrix. By the assumption,
λ 6= 0. This implies that each entry of the ( jk + 1)-th row of t ′ is zero for all
1 ≤ j ≤ n. In particular, the (k, k)-th entry of In + y′j is 0 for all 1 ≤ j ≤ n.
Therefore, the (k, k)-th of In + y′1+ In + y′2+ · · · + In + y′n = nIn is zero. This is
a contradiction. So rank t > 1. �
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The following lemma is a special case of Lemma 3.10. However, we include its
proof to illustrate our idea.

Lemma 3.8. Suppose dim H = 5 and

B =


λ 0 0

0 a 0
0 0 a

 : λ ∈ C, a ∈ M2(C)

⊂ L(H)= M5(C).

Then, B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊂ R ⊆ M5(C) and R has property P1. We can write R = R1+ J , where R1 ⊃ B
is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let

p =

1 0 0
0 0 0
0 0 0

 and q =

0 0 0
0 I2 02

0 02 I2

 .
Then q Bq ⊆ q Rq ⊂ B(P H)=M4(C). By Lemma 3.5, q Bq = q Rq. This implies
that we may assume

0 6= x =

0 ξ T ηT

0 02 02

0 02 02

 , where ξ, η ∈ C2.

Case 1. ξ and η are linearly independent vectors. Note that

x ·

0 0 0
0 a 0
0 0 a

=
0 ξ T a ηT a

0 0 0
0 0 0

 ∈ R.

Since ξ and η are linearly independent, and a ∈ M2(C) is arbitrary, this implies
that

R ⊇


λ ξ T ηT

0 a 0
0 0 a

 : λ ∈ C, ξ, η ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊆


0 ∗ ∗

0 y1 ∗

0 ∗ y2

 : y1, y2 ∈ M2(C), y1+ y2 = 0

 .
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Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

1 ∗ ∗

0 y1+ I2 ∗

0 ∗ y2+ I2

 , where y1+ y2 = 0.

This contradicts Lemma 3.7.

Case 2. ξ and η are linearly dependent. Without loss of generality, assume η= tξ .
So

x =

0 ξ T tξ T

0 02 02

0 02 02

 and x

0 0 0
0 a 0
0 0 a

=
0 ξ T a tξ T a

0 0 0
0 0 0

 .
Since ξ 6= 0, and a ∈ M2(C) is arbitrary, this implies that

R ⊃


λ ξ T tξ T

0 a 0
0 0 a

 : λ ∈ C, ξ ∈ C2, a ∈ M2(C)

 .
Simple computation shows that

R⊥ ⊂
{( 0 ∗ ∗

η1 y1 ∗
η2 ∗ y2

)
y1, y2 ∈ M2(C) : y1+ y2 = 0, η1, η2 ∈ C2, η1+ tη2 = 0

}
. (3)

Since R has property P1, we can write I5 = x + R⊥ such that the rank of x is at
most 1. This gives us a rank 1 matrix x of the form

R⊥ =

 1 ∗ ∗

η1 y1+ I2 ∗

η2 ∗ y2+ I2

 ,
where η1+ tη2 = 0 and y1+ y2 = 0. This contradicts Lemma 3.7. �

Lemma 3.9. Suppose {zi j }1≤i≤s,1≤ j≤r ⊆ Msr (C) and {c j i }1≤i≤s,1≤ j≤r ⊆ Mrs(C)

such that
s∑

i=1

r∑
j=1

zi j ac j i b = 0, for all a ∈ Mr (C), for all b ∈ Ms(C).

If c j i 6= 0 for some 1≤ i ≤ s, 1≤ j ≤ r , then zi j are linearly dependent.

Proof. We may assume c11 6= 0 and the (1, 1) entry of c11 is 1. Replacing c j i by
1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 c j i


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 ,
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we may assume

c j i = λi j


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 , where λ11 = 1.

Let zk
i j be the k-th column of zi j . Simple computation shows that

s∑
i=1

r∑
j=1

zi j c j i = 0

is equivalent to
∑s

i=1
∑r

j=1 λi j z1
i j = 0. Let

a =


0 0 · · · 0
1 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 .
Simple computation shows that

∑s
i=1

∑r
j=1 zi j ac j i = 0 is equivalent to

s∑
i=1

r∑
j=1

λi j z2
i j = 0.

Choosing a appropriately, we have
∑s

i=1
∑r

j=1 λi j zk
i j = 0 for all 1 ≤ k ≤ n. This

implies
∑s

i=1
∑r

j=1 λi j zi j = 0. �

Lemma 3.10. Suppose dim H = (r2
+ s2) and

B = {a(r)⊕ b(s) : a ∈ Mr (C), b ∈ Ms(C)} ⊂ L(H)= M(r2+s2)(C).

Then B is a maximal P1 algebra.

Proof. Since B has a separating vector, B has property P1 by Theorem 2.4. Suppose
B ⊆ R ⊆ M(r2+s2)(C) and R has property P1. We can write R = R1 + J , where
R1 ⊃ B is the semisimple part and J is the radical part. By Lemma 3.2, B = R1.

Suppose 0 6= x ∈ J . Let p= I (r)r ⊕0 and q=0⊕I (s)s . Then, pBp⊆ pRp⊆ B(pH)
and pRp has property P1. By Lemma 3.6, pRp = pBp. Similarly, q Rq = q Bq .
So we may assume

0 6= x =

(
0(r)r c
0 0(s)s

)
.

Write c = (ci j )1≤i≤r,1≤ j≤s . Note that c 6= 0.
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Suppose

z =



x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · xr ∗ ∗ · · · ∗

z11 z12 · · · z1r y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · ys


∈ R⊥.

Since R⊥ ⊂ B⊥, x1+ x2+ · · ·+ xr = 0r and y1+ y2+ · · ·+ ys = 0s . Note that

x(a(r)⊕ b(s))=

(
0(r)r cb(s)

0 0(s)s

)
.

Since x ∈ R⊥ and x(a(r)⊕ b(s)) ∈ R, we have

Tr


z11 . . . z1r
...

zs1 . . . zsr


c11 . . . c1s
...

cr1 . . . crs


b

. . .

b


= 0.

Simple computation shows that Tr(
∑s

i=1
∑r

j=1 zi j c j i b) = 0. Since b ∈ Ms(C)

is an arbitrary matrix,
∑s

i=1
∑r

j=1 zi j c j i = 0.
Note that

(a(r)⊕ 0)x(0⊕ b(s))=

(
0(r)r a(r)cb(s)

0 0(s)s

)
=

(
0(r)r (aci j b)1≤i≤r,1≤ j≤s

0 0(s)s

)
.

By similar arguments as above, we have
∑s

i=1
∑r

j=1 zi j ac j i b=0 for all a∈Mr (C)

and b ∈ Ms(C). By Lemma 3.9, this implies that {zi j }1≤i≤s,1≤ j≤r are linearly
dependent matrices.

Since R has property P1, Ir2+s2 = x + R⊥ for some x such that the rank of x is
at most 1. So x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

z11 z12 · · · z1r Is + y1 ∗ · · · ∗

z21 z22 · · · z2r ∗ Is + y2 · · · ∗

. . .
. . .

zs1 zs2 · · · zsr ∗ ∗ · · · Is + ys


.
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Since x is a rank 1 matrix, (zi j )1≤i≤s,1≤ j≤r are rank 1 matrices. So there are
ξ1, . . . , ξs ∈Cs, η1, . . . , ηr ∈Cr such that zi j = ξi⊗η j for 1≤ i ≤ s and 1≤ j ≤ r .
Since {zi j }1≤i≤s,1≤ j≤r are linearly dependent matrices, either {ξi }

s
i=1 are linearly

dependent or {η j }
r
j=1 are linearly dependent. Without loss of generality, assume

{ξi }
s
i=1 are linearly dependent. Now, x is a matrix of the form

Ir + x1 ∗ · · · ∗ ∗ ∗ · · · ∗

∗ Ir + x2 · · · ∗ ∗ ∗ · · · ∗

. . .
. . .

∗ ∗ · · · Ir + xr ∗ ∗ · · · ∗

ξ1⊗ η1 ξ1⊗ η2 · · · ξ1⊗ ηr Is + y1 ∗ · · · ∗

ξ2⊗ η1 ξ2⊗ η2 · · · ξ2⊗ ηr ∗ Is + y2 · · · ∗

. . .
. . .

ξs ⊗ η1 ξs ⊗ η1 · · · ξs ⊗ ηr ∗ ∗ · · · Is + ys


.

Since x1 + · · · + xr = 0, one entry of Ir + xi is not zero for some 1 ≤ i ≤ r . We
may assume the (1, 1) entry of Ir + x1 is λ 6= 0. Let

η1 =


α1

α2
...

αr

 .
Then the matrix 

λ ∗ · · · ∗

α1ξ1 Is + y1 · · · ∗

...
. . .

α1ξs ∗ · · · Is + ys


has rank 1 since it is a submatrix of x . This contradicts Lemma 3.7. So R = B. �

Proof of Theorem 3.1. By Lemma 3.2, if B has P1, then dim B ≤ n. Assume B has
property P1, and dim B= n. We claim B=

⊕r
i=1 Mni (C)

(ni ) and n=
∑r

i=1 n2
i . We

will proceed by induction on n. If n= 1, this is clear. Assume our claim is true for
n≤ k. Let B⊆Mk+1(C) be a semisimple P1 algebra and dim B= k+1. Suppose B
has a nontrivial central projection p, 0< p< 1. Then, B= pBp⊕(1− p)B(1− p).
By Lemma 2.1, pBp ⊆ B(pH) and (1− p)B(1− p) ⊆ B((1− p)H) are both
semisimple algebras with property P1. By Lemma 3.2, dim(pBp)= dim(pH) and
dim((1− p)B(1− p))= dim((1− p)H). By induction, pBp =

⊕r1
i=1 Mni (C)

(ni ),
(1− p)B(1− p)=

⊕r2
i=1 Mmi (C)

(mi ), and
∑r1

i=1 n2
i +

∑r2
i=1 m2

i = k+ 1. Suppose
B does not have a nontrivial central projection. Then B = Mr (C)⊆ Mn+1(C) and
dim B = r2

= n+ 1 by Lemma 2.5.
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Suppose B ( R ⊆ Mk(C) ∈ L(H) and R is an algebra with property P1. Let
0 6= x ∈ R \ B. Note that B =

⊕r
i=1 Mni (C)

(ni ). Let pi be the projection of B that
corresponds to the summand Mni (C)

(ni ). Then, we have pi Bpi ⊆ pi Rpi ⊆ L(pi H)
and pi Rpi has property P1. By Lemma 3.6, pi Rpi = pi Bpi . So we may assume

0 6= x =


0(n1)

n1 x12 x13 · · · x1nr

0(n2)
n2 x23 · · · x2nr

. . .
...

0(nr−1)
nr−1 xr−1r

0 0(nr )
nr

 .

We may assume that x12 6= 0. Then

(p1+ p2)x(p1+ p2) ∈ (p1+ p2)R(p1+ p2) \ (p1+ p2)B(p1+ p2).

By Lemma 2.1, (p1+ p2)R(p1+ p2) has property P1. By Lemma 3.10,

(p1+ p2)B(p1+ p2)= Mn1(C)
(n1)⊕Mn2(C)

(n2)

is a maximal P1 algebra. This is a contradiction. So B is a maximal P1 algebra. �

4. Singly generated maximal P1 algebras

In this section, we prove the following result.

Theorem 4.1. Suppose B is a singly generated unital subalgebra of Mn(C) and
dim B = n. Then B is a maximal P1 algebra.

To prove Theorem 4.1, we need several lemmas. Let Jn be the n × n Jordan
block.

Lemma 4.2. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . If N ⊃ B is a subalgebra of the upper-triangular algebra of Mn(C) and
N has property P1, then N = B.

Proof. Suppose N ) B is a subalgebra of the upper-triangular algebra and N has
property P1. Note that

B =

{
n−1∑
k=0

λk(Jn)
k
: λ0, . . . , λn−1 ∈ C

}
.
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A special case. Suppose N contains an operator x of the following form

x =


0 · · · 0 λ 0

0 · · · 0 η

0 · · · 0
. . .

...

0

 , (4)

where λ 6= η. Then N contains the algebra generated by B and x . Therefore,

N ⊃




λ1 · · · λn−2 α γ

λ1 · · · λn−2 β

λ1 · · · λn−2
. . .

...

λ1

 : λ1, . . . , λn−2, α, β, γ ∈ C


.

Simple computation shows that

N⊥ ⊂




∗ · · · ∗ 0 0
∗ · · · ∗ 0
∗ · · · ∗

. . .
...

∗




.

It is easy to see that the operator (Jn)
n−2 can not be written as a sum of a rank

one operator and an operator in N⊥. This contradicts the assumption that N has
property P1.

The general case. Suppose z ∈ N \ B. By the assumption of the lemma, z =
(zi, j )n×n is an upper-triangular matrix. Since z /∈ B, we may assume that

z j, j+k−1 6= z j+r, j+r+k−1

for some positive integers j, k, r , and zs,t = 0 for t < s + k − 1. Without loss of
generality, we assume that z1,k 6= z2,1+k and 1≤ k ≤ n− 1. If k = n− 1, then this
implies that N contains an x as in (4). If k < n − 2, then (Jn)

k+1z (or consider
z(Jn)

k+1 if zn−1,n−1 6= zn,n) is a matrix in N . If we write

(Jn)
k+1z = (yi j )n×n.

Then y1,k+1 6= y2,k+2 and ys,t = 0 for t < s + k. Repeating the above arguments,
we can see that N contains an x as in (4). This completes the proof. �

Lemma 4.3. Let B be the unital subalgebra of Mn(C) generated by the Jordan
block Jn . Then B is a maximal P1 algebra.
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Proof. Suppose N ⊃ B is a subalgebra of Mn(C) and N has property P1. By
Wedderburn’s theorem,

N = Mn1(C)⊕ · · ·Mns (C)⊕ J,

where J is the radical of N .

Case 1. n1 = · · · = ns = 1. Then N is triangularizable, that is, there exists a
unitary matrix u ∈ Mn(C) such that uNu∗ is contained in the algebra of upper-
triangular matrices (see [Christensen 1999, Proposition 2.5]). Since Jn ∈ B ⊂ N ,
u Jnu∗ is a strictly upper-triangular matrix. Simple computation shows that u has
to be a diagonal matrix. Therefore, N = u∗(uNu∗)u is contained in the algebra of
upper-triangular matrices. Since N has property P1, N = B by Lemma 4.2.

Case 2. Suppose ni ≥ 2 for some i , 1≤ i ≤ s. Choose a nonzero partial isometry
v ∈Mni (C) such that v2

= 0. Then either v /∈ B or v∗ /∈ B since B does not contain
any nontrivial projections. We may assume that v /∈ B. Consider the subalgebra Ñ
generated by v and B. An element of Ñ can be written as b1vb2v · · · vbn , where
bi ∈ J for 2 ≤ i ≤ n − 1, b1 = 1 or b1 ∈ J , bn = 1 or bn ∈ J . By Lemma 2.1
of [Christensen 1999], Ñ = C1⊕ J̃ , where J̃ is the radical part of Ñ such that
v ∈ J̃ . Note that Ñ also has property P1. By Case 1, Ñ = B. So v ∈ B. This is a
contradiction. �

Lemma 4.4. Let Bi ⊂ Mni (C) be the unital subalgebra generated by the Jordan
block Jni for i = 1, 2. Then B= B1⊕B2 is a maximal P1 subalgebra of Mn1+n2(C).

Proof. Suppose B ( N ⊂ Mn1+n2(C) and N has property P1. Let pi be the central
projections of B corresponding to Bi . Then B1 ⊂ p1 N p1 ⊂ Mn1(C) and p1 N p1

has property P1. By Lemma 4.3, p1 N p1 = B1. Similarly, p2 N p2 = B2. Suppose
x ∈ N \ B. Then we may assume that 0 6= x = p1xp2. With respect to matrix units
of Mn1(C) and Mn2(C), we can write x as

x =
(

0 (xi j )n1×n2

0 0

)
,

where (xi j )n1×n2 is a nonzero matrix. Multiplying on the left by a suitable matrix
of B, we may assume that xi j = 0 for all i ≥ 2 (which can be easily seen for the
case n2 = 1, other cases are similar). Multiplying on the right by another suitable
matrix of B, we may further assume that x1,n2 = 1 and x1, j = 0 for 1≤ j ≤ n2−1.
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So we may assume that

x =


0n1×n1


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0 0n2×n2

 .

Let Ñ be the algebra generated by B and x above. Then

Ñ =





λ1 · · · λn1

. . .
...

0 λ1




0 · · · α

0 · · · 0
· · · · · · · · ·

0 · · · 0


n1×n2

0

η1 · · · ηn2

. . .
...

0 η1




: λi , η j , α ∈ C


.

Simple computation shows that

Ñ⊥ ⊂





∗ · · · 0
. . .

...

∗ ∗



∗ · · · 0
∗ · · · ∗

· · · · · · · · ·

∗ · · · ∗


∗

∗ · · · 0
. . .

...

∗ ∗






.

Let

y =




0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0

 0n1×n2

0


0 · · · 1
0 · · · 0
· · · · · · · · ·

0 · · · 0




.

It is easy to see that the operator y cannot be written as a sum of a rank one operator
and an operator in Ñ⊥. This contradicts the fact that Ñ has property P1. �

Proof of Theorem 4.1. Suppose B is generated by a matrix T . By the Jordan
canonical form theorem, we may assume that T =

⊕r
i=1(λi + Jni ) and

∑r
i=1 ni =

n. Note that dim(B) = n if and only if λi 6= λ j for i 6= j , and if and only if
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B =
⊕r

i=1 Bi , where each Bi is the subalgebra of Mni (C) generated by the Jordan
block Jni .

Suppose B ( N ⊂Mn(C) and N has property P1. Let pi be the central projection
of B corresponding to Bi . Then Bi ⊂ pi N pi ⊂ Mni (C) and pi N pi has property
P1. By Lemma 4.3, Bi = pi N pi . Since B 6= N , there is an element 0 6= x ∈ N
such that x = pi xp j for some i 6= j . Without loss of generality, we may assume
that 0 6= x = p1xp2. Now we have B1⊕ B2 ( (p1+ p2)N (p1+ p2)⊆ Mn1+n2(C)

and (p1+ p2)N (p1+ p2) also has property P1. On the other hand, by Lemma 4.4,
B1⊕ B2 = (p1+ p2)N (p1+ p2). This is a contradiction. �

5. P1 algebras in Mn(C), n ≤ 4

Let B be a subalgebra of Mn(C). Then B = Mn1(C)⊕· · ·⊕Mns (C)⊕ J , where J
is the radical part of B. If n1, . . . , ns = 1, then B is upper-triangularizable, that is,
there exists a unitary matrix u such that u Bu∗ is a subalgebra of the upper-triangular
algebra of Mn(C) (see [Christensen 1999, Proposition 2.5] or [Humphreys 1972,
Corollary A, page 17]). The following lemma will be useful.

Lemma 5.1. [Azoff] Let S be a subspace of L(H) and consider the subalgebras
of L(H (2)) defined by

B =
{(
λe a
0 λe

)
: λ ∈ C, a ∈ S

}
, C =

{(
λe a
0 µe

)
: λ,µ ∈ C, a ∈ S

}
.

(1) B has property P1 if and only if S has property P1.

(2) C has property P1 if and only if S has property P1 and is intransitive.

Proposition 5.2. Let B be a unital subalgebra of M2(C) with property P1. Then B
is unitarily equivalent to one of the following three subalgebras:{(

λ 0
0 λ

)
: λ ∈ C

}
,

{(
λ 0
0 η

)
: λ, η ∈ C

}
,

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

Proof. It is easy to verify that the above algebras have property P1. Suppose B
has property P1. Then the semisimple part of B must be abelian. Conjugating by
a unitary matrix, we may assume that B is a subalgebra of the algebra of upper-
triangluar matrices. Note that the algebra of upper-triangular matrices does not
have property P1. So B must be one of the algebras listed in the lemma. �

Proposition 5.3. Let B be a unital subalgebra of M3(C) with property P1. Then
either B or B∗ has a separating vector. Therefore, dim B ≤ 3. Furthermore, if
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dim B = 3, then B is similarly conjugate to one of the following algebras

A1 =


λ1 0 0

0 λ2 0
0 0 λ3

 : λ1, λ2, λ3 ∈ C

, A2 =


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

,
A3 =


λ1 λ3 0

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

, A4 =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C

,
A5 =


λ1 λ2 λ3

0 λ1 0
0 0 λ1

 : λ1, λ2, λ3 ∈ C

, A6 =


λ1 0 λ2

0 λ1 λ3

0 0 λ1

 : λ1, λ2, λ3 ∈ C

.
Proof. Suppose B has property P1. Then the semisimple part of B must be abelian.
Conjugating by a unitary matrix, we may assume that B is a subalgebra of the
algebra of upper-triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C ⊕ C ⊕ C. Then B = A1 by
Theorem 3.1.

Case 2. Suppose the semisimple part of B is C ⊕ C. We may assume that the
semisimple part of B consists of matricesλ1 0 0

0 λ1 0
0 0 λ2

 .
We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

B1 =


λ1 0 λ3

0 λ1 λ4

0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B1 does not have property P1 (the identity matrix
can not be written as x + (B1)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B1. This implies that there exist α, β such that

B1 =


λ1 0 λ3α

0 λ1 λ3β

0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
If α 6= 0, let

s =

α 0 0
β 1 0
0 0 1

 .
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Simple computation shows that s A2s−1
= B, that is, s−1 Bs = A2. If α= 0, β 6= 0,

let

s =

0 1 0
β 0 0
0 0 1

 .
Then s A2s−1

= B, that is, s−1 Bs = A2. If α = β = 0, then clearly B has a
separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
A3. It is easy to see that A3 is the algebra generated by the matrix0 1 0

0 0 0
0 0 1


and dim A3 = 3. So B = A3 by Theorem 4.1.

Case 3. Suppose the semisimple part of B is C. Then B is contained in the fol-
lowing algebra

B3 =


λ1 λ2 λ3

0 λ1 λ4

0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 does not have property P1. So B is a proper subalgebra of
B3. We consider the following subcases.

Subcase 3.1. Suppose B contains an element

b =

0 α γ

0 0 β

0 0 0

 ,
such that α 6= 0 and β 6= 0. Conjugating by an invertible upper-triangular matrix,
we may assume that b= J3 is the Jordan block. So B contains A4. By Theorem 4.1,
B = A4.

Subcase 3.2. Suppose B does not contain an element b as in subcase 3.2. Then
B ⊆ A5 or B ⊆ A6. Note that A∗5 has a separating vector and A6 has a separating
vector. So both A5 and A6 have property P1. �

Lemma 5.4. Let

B =



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

⊂ M4(C).
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Then B is a maximal P1 algebra.

Proof. Note that B∗ has a separating vector. So B has property P1. Suppose A ) B
is a P1 algebra. Suppose A contains a matrix

a1 =


0 α ∗ ∗

0 0 β ∗

0 0 λ1 γ

0 0 0 λ1

 ,
such that γ 6= 0. Since B ⊂ A, we may assume that α 6= 0 and β 6= 0. Conjugating
by an upper-triangular invertible matrix, we may assume that A contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So A is the algebra generated by the Jordan block by Theorem 4.1 and dim A= 4.
However, dim B = 4 and B ( A. This is a contradiction.

Therefore, A is contained in

λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 .
Since A is an algebra containing B and A 6= B, we may assume that A contains a
matrix of the following form

a2 =


0 0 0 0
0 0 s t
0 0 0 0
0 0 0 λ1

 ,
where either s 6= 0 or t 6= 0. Furthermore, we can assume that s = 1 and t 6= 0. Let
A1 be the algebra generated by B and a2. Then

A1 =



λ1 λ2 λ3 λ4

0 λ1 λ2+ λ5 tλ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that the predual space of A1 is

η1 ∗ ∗ ∗

tη5 η2 ∗ ∗

0 −tη5 η3 0
0 η5 0 η4

 : η1, . . . , η4 ∈ C, η1+ η2+ η3+ η4 = 0

 .
It is easy to show that the matrix 

0 0 0 0
0 0 0 0
−t 0 0 0
1 1 0 0


cannot be written as x + (A1)⊥ such that the rank of x is at most 1. This is a
contradiction. So B is a maximal P1 algebra. �

Proposition 5.5. Let B be a unital subalgebra of M4(C) with property P1. Then B
satisfies one of the following conditions:

(i) B has a separating vector.

(ii) B∗ has a separating vector.

(iii) B is similarly conjugate to an algebra of the form{(
λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension 2.

In particular, dim B ≤ 4.

Proof. Suppose B has property P1. Then the semisimple part of B must be
M2(C) or abelian. If the semisimple part of B is M2(C), then B = M2(C)

(2)

by Theorem 3.1. So B has a separating vector. Suppose the semisimple part of B
is abelian. Conjugating by a unitary matrix, we may assume that B is a subalgebra
of the algebra of upper triangluar matrices. We consider the following cases.

Case 1. Suppose the semisimple part of B is C⊕C⊕C⊕C. Then

B =



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 : λ1, . . . , λ4 ∈ C


by Theorem 3.1. So B has a separating vector.
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Case 2. Suppose the semisimple part of B is C⊕C⊕C. We may assume that the
semisimple part of B consists of matrices

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 .
Let

e1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , e2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , e3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .
By Lemma 2.1, (e2 + e3)B(e2 + e3) ⊂ M2(C) has property P1. By Theorem 3.1
and the assumption of Case 2,

(e2+ e3)B(e2+ e3)=

{(
λ2 0
0 λ3

)
: λ2, λ3 ∈ C

}
.

We consider two subcases.

Subcase 2.1. Suppose B is contained in the following algebra

λ1 0 λ4 λ6

0 λ1 λ5 λ7

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ7 ∈ C

 .
By Lemma 2.1, (e1+ e2)B(e1+ e2)⊂ M3(C) has property P1. Note that

(e1+ e2)B(e1+ e2)⊆


λ1 0 λ4

0 λ1 λ5

0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
By the proof of Subcase 2.1 of Proposition 5.3, there exists an invertible matrix

s =

∗ ∗ ∗∗ ∗ ∗

0 0 1

 ,
such that

s−1
[(e1+ e2)B(e1+ e2)]s ⊆


λ1 0 λ3

0 λ1 0
0 0 λ2

 : λ1, λ2, λ3 ∈ C

 .
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Conjugating by (s ⊕ 1)−1
∈ M4(C), we may assume that B is contained in the

algebra

B1 =



λ1 0 λ4 λ5

0 λ1 0 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
It is easy to see that B1 is similarly conjugate to the algebra


λ1 0 λ5 0
0 λ1 λ6 λ4

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ6 ∈ C

 .
So we may assume that

B1 =



λ1 0 λ4 0
0 λ1 λ5 λ6

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ6 ∈ C

 .
Repeating the above arguments, we may assume that B is contained in the algebra

B2 =



λ1 0 λ4 0
0 λ1 0 λ5

0 0 λ3 0
0 0 0 λ2

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B2 does not have property P1 (the identity matrix
can not be written as x + (B2)⊥ such that the rank of x is at most 1). So B is a
proper subalgebra of B2. Therefore, there exist α, β such that

B =



λ1 0 λ4α 0
0 λ1 0 λ4β

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
If α = β = 0, then clearly B has a separating vector.

If α 6= 0 and β 6= 0, let

t =


α−1 0 0 0

0 β−1 0 0
0 0 1 0
0 0 0 1

 .
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Simple computation shows that

t Bt−1
=



λ1 0 λ4 0
0 λ1 0 λ4

0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

If α 6= 0, β = 0 or α = 0, β 6= 0, then B is similarly conjugate to the algebra

λ1 0 λ4 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
So B has a separating vector.

Subcase 2.2. Suppose B is not contained in B1. Since B is an algebra, B contains
the algebra

B3 =



λ1 λ4 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B3 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 2


and dim B3 = 4. So B = B3 by Theorem 4.1 and B has a separating vector.

Case 3. Suppose the semisimple part of B is C⊕C.

Subcase 3.1. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .
Let

f1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , f2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .



240 STEPHEN ROWE, JUNSHENG FANG AND DAVID R. LARSON

By Lemma 2.1, fi B fi ⊂ M2(C) has property P1. By Proposition 5.2,

fi B fi =

{(
λ 0
0 λ

)
: λ ∈ C

}
or fi B fi =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

We consider the following subsubcases.

Subsubcase 3.1.1. Suppose

f1 B f1 = f2 B f2 =

{(
λ 0
0 λ

)
: λ ∈ C

}
.

This implies that

B ⊂
{(
λI2 ∗

0 ηI2

)
: λ, η ∈ C

}
.

By Lemma 5.1,

B =
{(
λI2 S
0 ηI2

)
: λ, η ∈ C

}
,

where S has property P1 and is intransitive. By [Azoff 1973, Table 5A, page 34],
S is equivalent to one of the following spaces: zero space, or{(

ζ 0
0 0

)
: ζ ∈ C

}
,

{(
ζ 0
0 ζ

)
: ζ ∈ C

}
,

{(
ζ ξ

0 0

)
: ζ, ξ ∈ C

}
,{(

ζ 0
ξ 0

)
: ζ, ξ ∈ C

}
,

{(
ζ 0
0 ξ

)
: ζ, ξ ∈ C

}
,

{(
ζ ξ

0 ζ

)
: ζ, ξ ∈ C

}
.

Note that in the last four cases, neither B nor B∗ has a separating vector.

Subsubcase 3.1.2. Suppose

f1 B f1 = f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

This implies that B contains the following subalgebra

B4 =



λ1 λ2 0 0
0 λ1 0 0
0 0 λ3 λ4

0 0 0 λ3

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B4 is the algebra generated by the matrix

0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1


and dim B4 = 4. So B = B4 by Theorem 4.1, and B has a separating vector.
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Subsubcase 3.1.3. Suppose

f1 B f1 =

{(
λ 0
0 λ

)
: λ ∈ C

}
and f2 B f2 =

{(
λ η

0 λ

)
: λ, η ∈ C

}
.

If dim B > 3, then B contains a nonzero matrix

b =
(

02 a
02 02

)
.

Let B5 be the subalgebra generated by f1 B f1, f2 B f2 and b. Then dim B5 = 4 and
B5 is the algebra generated by the matrix02 a

02

(
1 1
0 1

) .
So B = B5 by Theorem 4.1 and

B =


λ1 I2 λ4a

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 ,
where a is a 2× 2 matrix. Let

t =
(

b 0
02 I2

)
.

Then

t Bt−1
=


λ1 I2 λ4ba

02

(
λ2 λ3

0 λ2

) : λ1, . . . , λ4 ∈ C

 .
So we can choose b appropriately such that ba = 02, or ba = I2, or

ba =
(

1 0
0 0

)
, or ba =

(
0 1
0 0

)
, or ba =

(
1 1
0 0

)
, or ba =

(
1 0
1 0

)
.

In each case, B has a separating vector.

Subcase 3.2. Suppose B contains the following subalgebra

λ1 0 0 0
0 λ2 0 0
0 0 λ2 0
0 0 0 λ2

 : λ1, λ2 ∈ C

 .
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Let

p =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
By Lemma 2.1, pBp ⊂ M3(C) has property P1. By Proposition 5.2,

pBp =


λ1 λ2 λ3

0 λ1 λ2

0 0 λ1

 : λ1, λ2, λ3 ∈ C


or

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
We consider the following subsubcases.

Subsubcase 3.2.1. Suppose

pBp =


λ2 λ3 λ4

0 λ2 λ3

0 0 λ2

 : λ2, λ3, λ4 ∈ C

 .
Then B contains the following subalgebra

B6 =



λ1 0 0 0
0 λ2 λ3 λ4

0 0 λ2 λ3

0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B6 is the algebra generated by the matrix

0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


and dim B6 = 4. So B = B6 by Theorem 4.1, and B has a separating vector.

Subsubcase 3.2.2. Suppose

pBp =


λ1 0 λ2

0 λ1 0
0 0 λ1

 : λ1, λ2 ∈ C

 .
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If dim B > 3, then B contains a nonzero matrix

b =
(

0 a
0 03

)
.

Let B7 be the subalgebra generated by (1 − p)B(1 − p), pBp and b. Then
dim B7 = 4 and B7 is the algebra generated the matrix

0 a

0

1 0 1
0 1 0
0 0 1


 .

So B = B7 by Theorem 4.1 and

B =



λ1 λ4a

0

λ2 0 λ3

0 λ2 0
0 0 λ2


 : λ1, . . . , λ4 ∈ C

 .
Conjugating by an appropriate invertible matrix

t =


1 0 0 0
0 λ ∗ ∗

0 0 η ∗

0 0 0 λ

 ,
we have

t Bt−1
=



λ1 λ2 0 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,

t Bt−1
=



λ1 0 λ2 0
0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 ,
or

t Bt−1
=



λ1 0 0 λ2

0 λ2 0 λ3

0 0 λ2 0
0 0 0 λ2

 : λ1, . . . , λ4 ∈ C

 .
In each case, B∗ has a separating vector.
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Case 4. Suppose the semisimple part of B is C. Consider matrices in B with the
form

b =


0 α ∗ ∗

0 0 β ∗

0 0 0 γ

0 0 0 0

 .
Subcase 4.1. B contains a matrix b with α 6= 0, β 6= 0, γ 6= 0. Conjugating by an
upper-triangular invertible matrix, we may assume that B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
So B is the algebra generated by the Jordan block by Theorem 4.1. Note that B
has a separating vector.

Subcase 4.2. B does not contain a matrix b as in Subcase 4.1 and B contains a
matrix b with two elements of α, β, γ nonzero. We may assume that α 6= 0 and
β 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
B contains the matrix

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and therefore B ⊇



λ1 λ2 λ3 0
0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
By the assumption of Subcase 4.2, we have

B ⊂



λ1 ∗ ∗ ∗

0 λ1 ∗ ∗

0 0 λ1 0
0 0 0 λ1

 : λ1 ∈ C

 . (5)

Subsubcase 4.2.1. Suppose the (2, 4)-entry of every matrix in B is zero. Then B
is contained in the algebra

B8 ⊂



λ1 λ2 λ4 λ5

0 λ1 λ3 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
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Simple computation shows that B8 does not have property P1. So B is a proper
subalgebra of B8. By (5), there exist α, β such that

B =



λ1 λ2 λ3 λ4α

0 λ1 λ2+ λ4β 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
If α = 0 and β 6= 0, then B does not have property P1. So we may assume that
α 6= 0. It is easy to see that B∗ has a separating vector.

Subsubcase 4.2.2. Suppose the (2, 4)-entry of a matrix in B is not zero. By (5),
B contains an element

b =


0 0 0 α

0 0 β γ

0 0 0 0
0 0 0 0

 ,
where γ 6= 0. Since B is an algebra, B contains

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 b =


0 0 β γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
By (5), B contains 

0 0 0 γ

0 0 0 0
0 0 0 0
0 0 0 0

 .
Since B is an algebra, B contains the subalgebra

B9 ⊆



λ1 λ2 λ3 λ4

0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
By Lemma 5.4, B9 is a maximal P1 algebra. Hence, B= B9 and B∗ has a separating
vector.

Subcase 4.3. B does not contain a matrix b as in subcase 4.1, subcase 4.2, and
B contains a matrix b with one element of α, β, γ nonzero. We may assume that
α 6= 0. Conjugating by an upper-triangular invertible matrix, we may assume that
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B contains the matrix 
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
By the assumption of subcase 4.3, B is contained in the algebra

B10 =



λ1 λ2 λ3 λ4

0 λ1 0 λ5

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ5 ∈ C

 .
Simple computation shows that B10 does not have property P1. So B is a proper
subalgebra of B10. We consider the following subsubcases.

Subsubcase 4.3.1. . If the (1, 3) entry of each element of B is zero, then B is
contained in the algebra

B11 =



λ1 λ2 0 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Simple computation shows that B11 does not have property P1. So there exist α, β
such that

B =



λ1 λ2 0 λ3α

0 λ1 0 λ3β

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
If β = 0, then B∗ has a separating vector. If β 6= 0, then B has a separating vector.

Subsubcase 4.3.2. If the (2, 4) entry of each element of B is zero, then B is con-
tained in the algebra

B12 =



λ1 λ2 λ3 λ4

0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Note that B∗12 has a separating vector and hence B∗ has a separating vector.
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Subsubcase 4.3.3. Suppose B contains an element

b =


0 0 α β

0 0 0 γ

0 0 0 0
0 0 0 0

 ,
where α 6= 0 and γ 6= 0. Let

t =


1 0 0 0
0 1 0 0
0 0 α−1

−
β

αγ

0 0 0 γ−1

 .
Then

t−1bt =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
Conjugating by t−1 if necessary, we may assume that α = γ = 1 and β = 0. Since
B is a proper subalgebra of B10, B is the algebra,

B =



λ1 λ2 λ3 λ4

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
It is easy to see that B∗ has a separating vector.

Subcase 4.4. B does not contain a matrix B as in subcase 4.1, subcase 4.2, and
subcase 4.3. Then

B ⊂



λ1 0 λ2 λ3

0 λ1 0 λ4

0 0 λ1 0
0 0 0 λ1

 : λ1, . . . , λ4 ∈ C

 .
Combining Lemma 5.1 [Azoff 1973, Table 5A, page 34], and similar arguments
as in Subsubcase 3.1.1,

B =



λ1 λ2 λ3 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
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or

B =



λ1 0 0 λ2

0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 λ3

0 λ1 0 λ2

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 ,
or

B =



λ1 0 λ2 0
0 λ1 0 λ3

0 0 λ1 0
0 0 0 λ1

 : λ1, λ2, λ3 ∈ C

 .
It is easy to show that in each case either B or B∗ has a separating vector. �

6. 2-reflexivity and property P1

Let H be a Hilbert space. The usual notation Lat(B) will denote the lattice of
invariant subspaces (or projections) for a subset B⊆ L(H), and Alg(L)will denote
the algebra of bounded linear operators leaving invariant every member of a family
L of subspaces (or projections). An algebra B is called reflexive if B=AlgLat(B).
An algebra B is called n-reflexive if the n-fold inflation B(n)={b(n) : b∈ B}, acting
on H(n), is reflexive [Azoff 1986]. In [Larson 1982], the third author proved the
following result: An algebra B is n-reflexive if and only if B⊥, the preannihilator
of B, is the trace class norm closed linear span of operators of rank≤ n. In [Larson
1982], the third author also showed the following connection between n-reflexivity
and the P1 property: If an algebra B has property P1, then B is 3-fold reflexive.
(This result also holds for linear subspaces with the same proof). He raised the
following problem: Suppose dim H = n ∈ N and B ⊂ L(H) ≡ Mn(C) is a unital
operator algebra with property P1. Is B 2-reflexive? Note that this question also
makes sense for linear subspaces. Azoff [1986] showed that the answer to the
above question is affirmative for n = 3 (for all linear subspaces of M3(C) with
property P1). In this section, we prove the following result.

Proposition 6.1. If dim H=4 and B⊂ L(H)≡M4(C) is a unital operator algebra
with property P1, then B is 2-reflexive.
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Proof. By Proposition 5.5, either B or B∗ has a separating vector or B is similarly
conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two. If B has a separating vector
or B∗ has a separating vector, then the fact that B is 2-reflexive follows from the
proofs of Corollary 7 of [Larson 1982] and Proposition 1.2 of [Herrero et al. 1991].
If B is similarly conjugate to an algebra of the form{(

λI2 s
0 ηI2

)
: λ, η ∈ C, s ∈ S

}
,

where S is a subspace of M2(C) with dimension two, then the fact that B is 2-
reflexive follows from Proposition 1 of [Kraus and Larson 1985]. �
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