0

 involve

 involve a journal of mathematics

On three questions concerning groups with perfect order subsets

Lenny Jones and Kelly Toppin

On three questions concerning groups with perfect order subsets

Lenny Jones and Kelly Toppin

(Communicated by Kenneth S. Berenhaut)

In a finite group, an order subset is a maximal set of elements of the same order. We discuss three questions about finite groups G having the property that the cardinalities of all order subsets of G divide the order of G. We provide a new proof to one of these questions and evidence to support answers to the other two questions.

1. Introduction

Let G be a finite group. Carrie E. Finch and the first author [Finch and Jones 2002; 2003] defined the order subset of G determined by $x \in G$ to be the set of elements in G with the same order as x. They defined G to have perfect order subsets in short, to be a POS group - if the number of elements in each order subset of G divides the order $|G|$. It is easy to see that any nontrivial POS group has even order.

The next three theorems, whose proofs are given in [Finch and Jones 2002], allow us to refine the search for abelian POS groups to a particular class of groups. Theorem 1.1. Let $G \simeq\left(\mathbb{Z}_{p^{a}}\right)^{t} \times M$ and $\widehat{G} \simeq\left(\mathbb{Z}_{p^{a+1}}\right)^{t} \times M$, where M is an abelian group and p is a prime not dividing $|M|$. If G is a POS group, then so is \widehat{G}.
Theorem 1.2. Suppose $G \simeq \mathbb{Z}_{p^{a_{1}}} \times \mathbb{Z}_{p^{a_{2}}} \times \cdots \times \mathbb{Z}_{p^{a_{s-1}}} \times\left(\mathbb{Z}_{p^{a_{s}}}\right)^{t} \times M$, where M is an abelian group, p is a prime not dividing $|M|$, and $a_{1} \leq a_{2} \leq \ldots \leq a_{s-1}<a_{s}$. If G is a POS group, then so is $\widehat{G} \simeq\left(\mathbb{Z}_{p^{a s}}\right)^{t} \times M$.
Theorem 1.3. If G is a POS group with $G \simeq\left(\mathbb{Z}_{p^{a}}\right)^{t} \times M$, where M is an abelian group and p is a prime not dividing $|M|$, then $\widehat{G} \simeq\left(\mathbb{Z}_{p}\right)^{t} \times M$ is also a POS group.

The previous theorems provide motivation for the following definition.
Definition 1.4. Let $G \simeq\left(\mathbb{Z}_{2}\right)^{t} \times M$, where $|M|$ is odd, be a POS group. We say that G is minimal if $\left(\mathbb{Z}_{2}\right)^{t} \times \widehat{M}$ is not a POS group for any subgroup \hat{M} of M.

[^0]Theorem 1.5 [Finch and Jones 2002]. Let $G \cong\left(\mathbb{Z}_{2}\right)^{t} \times M$, where $t \geq 1$ and M is a cyclic group of odd square-free order. If G is a POS group and $G \cong\left(\mathbb{Z}_{2}\right)^{t} \times \hat{M}$ is not a POS group for any subgroup \hat{M} of M, then G is isomorphic to one of

$$
\begin{aligned}
& \mathbb{Z}_{2} \\
& \left(\mathbb{Z}_{2}\right)^{2} \times \mathbb{Z}_{3}, \\
& \left(\mathbb{Z}_{2}\right)^{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{7}, \\
& \left(\mathbb{Z}_{2}\right)^{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \\
& \left(\mathbb{Z}_{2}\right)^{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{31} \\
& \left(\mathbb{Z}_{2}\right)^{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{17} \\
& \left(\mathbb{Z}_{2}\right)^{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{17} \times \mathbb{Z}_{257} \\
& \left(\mathbb{Z}_{2}\right)^{17} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{17} \times \mathbb{Z}_{257} \times \mathbb{Z}_{131071} \\
& \left(\mathbb{Z}_{2}\right)^{32} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{17} \times \mathbb{Z}_{257} \times \mathbb{Z}_{65537}
\end{aligned}
$$

Various authors have investigated nonabelian groups in search of POS groups. For example, certain special linear groups were considered in [Finch and Jones 2003], the dihedral groups in [Libera and Tlucek 2003], and certain semidirect products and the alternating groups in [Das 2009]. In this article, our focus will be on the symmetric groups and on certain abelian groups, and specifically on three questions posed in [Finch and Jones 2002]:

Question 1.6. Is S_{3} the only symmetric group that is a POS group?
Question 1.7. If G is a POS group and $|G|$ is not a power of 2 , then must $|G|$ be divisible by 3?
Question 1.8. Are there only finitely many minimal POS groups that contain noncyclic Sylow p-subgroups of odd order?

Tuan and Hai [2010] answered Question 1.6 in the affirmative. We provide here an alternative proof that is shorter and more direct. The techniques used in our proof are similar to those of Tuan and Hai, but whereas they use a theorem of Chebyshev [1852], we resort to a more refined version of that result [Nagura 1952].

Walter Feit (personal communication; see also [Finch and Jones 2003]) answered Question 1.7 in the negative, by providing counterexamples: if p is a Fermat prime, the Frobenius group of order $p(p-1)$, with Frobenius complement \mathbb{Z}_{p-1} and Frobenius kernel \mathbb{Z}_{p}, is a POS group but its order is not divisible by 3 . Other counterexamples to Question 1.7 were constructed in [Das 2009].

All these counterexamples are nonabelian. This leads to a modified version of the question, for which we will show evidence of an affirmative answer:

Question 1.9 (modified Question 1.7). If G is an abelian POS group and $|G|$ is not a power of 2 , then must $|G|$ be divisible by 3 ?

Concerning Question 1.8, the only known abelian POS group with a noncyclic Sylow p-subgroup is

$$
\begin{equation*}
\left(\mathbb{Z}_{2}\right)^{11} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times\left(\mathbb{Z}_{11}\right)^{2} \times \mathbb{Z}_{23} \times \mathbb{Z}_{89} \tag{1-1}
\end{equation*}
$$

found in [Finch and Jones 2002]. Theorem 4.3 below shows that this is, in fact, the only such POS group whose order has exactly 5 distinct odd prime divisors and exactly one odd square prime factor.

To summarize, these are the main results of this paper:
Theorem 1.10. The symmetric group S_{n} is a POS group if and only if $n \leq 3$.
Theorem 1.11. Suppose that G is an abelian POS group and $|G|$ is not a power of 2. If $|G|$ is not divisible by 3 , then $|G|>4.48 \cdot 10^{457008}$, and $|G|$ has at least 57097 distinct prime factors.

Theorem 1.12. Let G be a minimal abelian POS group such that

$$
G \simeq\left(\mathbb{Z}_{2}\right)^{t} \times \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{k-1}} \times\left(\mathbb{Z}_{p_{k}}\right)^{2} \times \mathbb{Z}_{p_{k+1}} \times \cdots \times \mathbb{Z}_{p_{m}}
$$

where $p_{1}<p_{2}<\cdots<p_{m}$ are odd primes. If $1 \leq m \leq 5$, then

$$
G \simeq\left(\mathbb{Z}_{2}\right)^{11} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times\left(\mathbb{Z}_{11}\right)^{2} \times \mathbb{Z}_{23} \times \mathbb{Z}_{89}
$$

2. The proof of Theorem 1.10

The proof is based on a result of Nagura, which refines a theorem of Chebyshev [1852] (also known as Bertrand's postulate) to the effect that for every integer $x \geq 4$, there exists a prime p such that $x<p<2 x-2$.
Theorem 2.1 [Nagura 1952]. If $x \geq 25$, then there exists a prime p such that

$$
x<p<\frac{6}{5} x .
$$

Proof of Theorem 1.10. It is easy to verify that S_{n} is a POS group when $n \leq 3$. Suppose that $n \geq 60$. By Theorem 2.1, there exists a prime p such that $\frac{5}{12} n<p<$ $\frac{1}{2} n$. Note that $n \geq 60$ and $p>\frac{5}{12} n$ imply that $p \geq 29$. Also, since $\frac{5}{12} n<p<\frac{1}{2} n$, it follows that $2 p<n<3 p$, so an element of order p in S_{n} is either a p-cycle or the product of 2 disjoint p-cycles. Thus, the number of elements of order p in S_{n} is

$$
\begin{aligned}
& C:= \\
& \quad \frac{n(n-1)(n-2) \cdots(n-p+1)}{p}+\frac{\frac{n(n-1)(n-2) \cdots(n-p+1)}{p} \cdot \frac{(n-p)(n-p-1) \cdots(n-2 p+1)}{p}}{2} .
\end{aligned}
$$

Then

$$
\frac{n!}{C}=\frac{2 p^{2}(n-p)!}{2 p+(n-p) \cdots(n-2 p+1)}
$$

Define

$$
A:=2 p^{2}(n-p)!\quad \text { and } \quad B:=2 p+(n-p) \cdots(n-2 p+1)
$$

We show that B does not divide A. Let q be a prime divisor of B. We consider four ranges for q :
Case 1: $q \leq p$. Since $B-2 p$ is a product of $p \geq q$ consecutive integers, at least one of its factors is divisible by q. Thus, q divides $B-(B-2 p)=2 p$, so that $q=2$ or p.
Case 2: $p<q<n-2 p+1$. Impossible, since $n<3 p$ implies $(n-2 p+1)-p<1$.
Case 3: $n-2 p+1 \leq q \leq n-p$. Then q appears as a factor in $B-2 p$. So again, $q=2$ or p.
Case 4: $n-p<q$. Clearly q does not divide $A=2 p^{2}(n-p)$!. Thus, $B=2^{k} p^{m}$. Observe that B is divisible by 2 , but not by 4 . Also, since $p<n-p<2 p$, we have that p^{3} is the exact power of p that divides A. Hence, $k=1$ and $m \leq 3$. Therefore, $B \leq 2 p^{3}$. It follows that

$$
\begin{aligned}
2 p(p-1)(p+1) & =2 p^{3}-2 p \geq B-2 p=(n-p)(n-p-1) \cdots(n-2 p+1) \\
& >p(p-1)(p-2)(p-3) \cdots 3 \cdot 2
\end{aligned}
$$

since $n>2 p$. But this is impossible since $p \geq 29$.
Finally, to complete the proof, we need the number a_{n} of elements of order 2 in S_{n}, for $4 \leq n \leq 59$. By a result of Chowla, Herstein and Moore [Chowla et al. 1951], this number satisfies (for any n) the recurrence relation

$$
a_{n}=a_{n-1}+\left(a_{n-2}+1\right)(n-1)
$$

All that remains is to verify with a computer that n ! is never divisible by a_{n} for these values of n.

3. The Proof of Theorem $\mathbf{1 . 1 1}$

In light of Theorems 1.2 and 1.3, it is enough to focus on groups all of whose Sylow subgroups are elementary abelian. Thus, throughout this section, we let

$$
G \simeq\left(\mathbb{Z}_{2}\right)^{t} \times\left(\mathbb{Z}_{p_{1}}\right)^{t_{1}} \times \cdots \times\left(\mathbb{Z}_{p_{m}}\right)^{t_{m}}
$$

where $p_{1}<p_{2}<\cdots<p_{m}$ are odd primes, and $m \geq 1$. Let

$$
n=|G|=2^{t} \prod_{i=1}^{m} p_{i}^{t_{i}} \quad \text { and } \quad f(n)=\left(2^{t}-1\right) \prod_{i=1}^{m}\left(p_{i}^{t_{i}}-1\right)
$$

The following lemma is a direct consequence of the definition of a POS group.
Lemma 3.1. The group G is a POS group if and only if $n / f(n)$ is an integer.

Lemma 3.2. If $m=1$ and G is a POS group then $p_{1}=3$.
Proof. Since $m=1$, we have that $n=2^{t} p_{1}^{t_{1}}$ and $f(n)=\left(2^{t}-1\right)\left(p_{1}^{t_{1}}-1\right)$. Then, since G is a POS group, $n / f(n)$ is an integer by Lemma 3.1. Thus, there exist positive integers a and b such that

$$
\begin{equation*}
a\left(2^{t}-1\right)=p_{1}^{t_{1}} \quad \text { and } \quad b\left(p_{1}^{t_{1}}-1\right)=2^{t} \tag{3-1}
\end{equation*}
$$

Hence,

$$
p_{1}^{t_{1}}-2 \leq 2^{t}-1 \leq p_{1}^{t_{1}}
$$

Thus, there are two cases to consider:
Case 1: $2^{t}-1=p_{1}^{t_{1}}-2$. Then $p_{1}^{t_{1}}=2^{t}+1$, and so from (3-1) we conclude that $a=1+2 /\left(2^{t}-1\right)$. Hence, $t=1$, since a is an integer, which implies that $p_{1}=3$.
Case 2: $2^{t}-1=p_{1}^{t_{1}}$. We deduce from (3-1) that $p_{1}^{t_{1}}+1=2^{t}$ and $p_{1}^{t_{1}}-1=2^{c}$, for some $c<t$. Subtracting one equation from the other gives $2^{c}\left(2^{t-c}-1\right)=2$, which implies that $c=1$ and $p_{1}=3$.
Proof of Theorem 1.11. By way of contradiction, assume $p_{1}>3$. By Lemma 3.2, we may assume that $m \geq 2$. Let q be an arbitrary prime divisor of n. Since all prime divisors of $q-1$ divide n, we have that $q \equiv 2(\bmod 3)$ and all prime divisors of $q-1$ are congruent to 2 modulo 3 . Thus, we can recursively construct the list S of viable prime divisors of n as follows. Let $S_{1}=[2,5]$ and $q_{1}=5$. For $i \geq 2$, let q_{i} be the smallest prime such that $q_{i}>q_{i-1}$ and all prime divisors of $q_{i}-1$ are contained in the list S_{i-1}. Define $S_{i}:=\left[2,5, \ldots, q_{i-1}, q_{i}\right]$. Then

$$
\begin{array}{ll}
S_{2}=[2,5,11], & q_{2}=11, \\
S_{3}=[2,5,11,17], & q_{3}=17, \\
S_{4}=[2,5,11,17,23], & q_{4}=23, \\
S_{5}=[2,5,11,17,23,41], & q_{5}=41, \\
S_{6}=[2,5,11,17,23,41,47], & q_{6}=47,
\end{array}
$$

and so on. Define $S:=\lim _{i \rightarrow \infty} S_{i}$. Then

$$
\frac{n}{f(n)}=\frac{2^{t}}{2^{t}-1} \cdot \prod_{i=1}^{m} \frac{p_{i}^{t_{i}}}{p_{i}^{t_{i}}-1} \leq \frac{2^{m}}{2^{m}-1} \cdot \prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} \leq \frac{2^{m}}{2^{m}-1} \cdot \prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}
$$

Using a computer, we have verified for $2 \leq m \leq 57096$ that

$$
\frac{2^{m}}{2^{m}-1} \prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<2 \quad \text { and } \quad \frac{2^{57096}}{2^{57096}-1} \prod_{i=1}^{57096} q_{i}>4.48 \cdot 10^{457008}
$$

Clearly, $n / f(n)>1$, and since $n / f(n)$ must be an integer by Lemma 3.1, the theorem follows.

Remark 3.3. Whether or not the list S constructed in the proof of Theorem 1.11 is finite, sieve methods [Halberstam and Richert 1974] can be used to show that the product

$$
\begin{equation*}
\frac{2^{m}}{2^{m}-1} \prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \tag{3-2}
\end{equation*}
$$

is bounded above. We conjecture that (3-2) is less than 2 for all $m \geq 2$, but we are unable to provide a proof since a tight explicit bound is both tedious and difficult to compute using sieve methods. The truth of this conjecture would imply that the answer to Question 1.9 is affirmative.

4. The proof of Theorem 1.12

Definition 4.1. Let t be a positive integer, and let q be a prime divisor of $2^{t}-1$. We say that q is a primitive divisor of $2^{t}-1$ if q does not divide $2^{s}-1$ for any positive integer $s<t$.
Theorem 4.2 [Bang 1886]. Let $t \geq 2$ be an integer. Then $2^{t}-1$ has a primitive divisor except when $t=6$.

Theorem 4.3. Let G be a minimal abelian POS group, such that

$$
G \simeq\left(\mathbb{Z}_{2}\right)^{t} \times \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{k-1}} \times\left(\mathbb{Z}_{p_{k}}\right)^{2} \times \mathbb{Z}_{p_{k+1}} \times \cdots \times \mathbb{Z}_{p_{m}}
$$

where $p_{1}<p_{2}<\cdots<p_{m}$ are odd primes. Then $p_{1}=3$ and $2^{t}-1=2^{p_{k}}-1=p_{i} p_{j}$, for some $i \neq j$.

Proof. As before, let

$$
n=|G|=2^{t} p_{k}^{2} \prod_{\substack{i=1 \\ i \neq k}}^{m} p_{i} \quad \text { and } \quad f(n)=\left(2^{t}-1\right)\left(p_{k}^{2}-1\right) \prod_{\substack{i=1 \\ i \neq k}}^{m}\left(p_{i}-1\right)
$$

Since G is a POS group, $n / f(n)$ is an integer by Lemma 3.1.
Next, note that $n \equiv 0(\bmod 3)$. For if not, then $p_{k}>3$ and $p_{k}^{2}-1 \equiv 0(\bmod 3)$. Then, since $f(n) \equiv 0\left(\bmod p_{k}^{2}-1\right)$, we have that $f(n) \equiv 0(\bmod 3)$, which contradicts the fact that $n / f(n)$ is an integer. This proves that $p_{1}=3$.

Now, suppose that p is an odd prime divisor of t. Then $2^{p}-1$ divides $2^{t}-1$, and so $2^{p}-1$ divides n. Consequently, every prime divisor of $2^{p}-1$ is p_{i} for some i, and then $p_{i}-1 \equiv 0(\bmod p)$. Also, for each such p_{i}, we have that $p_{i}-1$ divides n. Thus, since n is not divisible by the cube of any odd prime, it follows that $2^{p}-1$ has at most two distinct odd prime divisors. Therefore, we are led to consider the following five cases:
(1) $2^{p}-1=p_{k}^{2}$ for some odd prime divisor p of t.
(2) $2^{p}-1=p_{i} p_{k}^{2}$ for some i, and some odd prime divisor p of t.
(3) There exists an odd prime that divides t, and for every odd prime p that divides t, we have that $2^{p}-1=p_{i}$ for some i.
(4) There exists at least one odd prime p that divides t such that $2^{p}-1=p_{i} p_{j}$ for some $i \neq j$.
(5) No odd prime divides t; that is $t=2^{a}$.

Ljunggren [1943] proved that Case (1) is impossible.
In Case (2), we have that $p_{i}-1 \equiv 0(\bmod p)$ and $p_{k}-1 \equiv 0(\bmod p)$. Then $\left(p_{i}-1\right)\left(p_{k}^{2}-1\right) \equiv 0\left(\bmod p^{2}\right)$, which says that p^{2} divides n. Hence, $p=p_{k}$. But this contradicts the fact that $p_{k}-1 \equiv 0(\bmod p)$. Hence, Case (2) is impossible as well.

For Case (3), we show first that t has exactly one odd prime divisor. Suppose that p and q are odd prime divisors of t. Then $2^{p}-1=p_{i}$ and $2^{q}-1=p_{j}$ for some i and j. Then $p_{i}-1 \equiv 0(\bmod p)$ and $p_{j}-1 \equiv 0(\bmod q)$. By Theorem 4.2, there exists an odd prime $r \neq p_{i}, p_{j}$ such that $2^{p q}-1 \equiv 0(\bmod r)$. Since $2^{p q}-1$ divides $2^{t}-1$, we have that $f(n) \equiv 0(\bmod r)$, and so $r=p_{v}$ for some v. Since p_{v} is a primitive divisor, it follows that $p_{v}-1 \equiv 0(\bmod p q)$. But then $\left(p_{i}-1\right)\left(p_{v}-1\right) \equiv$ $0\left(\bmod p^{2}\right)$, and $\left(p_{j}-1\right)\left(p_{v}-1\right) \equiv 0\left(\bmod q^{2}\right)$, which implies that $p=q$.

Thus, t has at most one odd prime divisor. Suppose $t=2^{a} p^{b}$. Let $2^{p}-1=$ p_{i}. Then $p_{i}-1 \equiv 0(\bmod p)$. If $b \geq 2$, we can use Theorem 4.2 to produce a prime divisor $p_{j} \neq p_{i}$ of $2^{p^{2}}-1$ such that $p_{j}-1 \equiv 0\left(\bmod p^{2}\right)$. But then $\left(p_{i}-1\right)\left(p_{j}-1\right) \equiv 0\left(\bmod p^{3}\right)$, which contradicts the fact that $n / 2^{t}$ is cube-free. Therefore, we only need to consider here the two possibilities $t=2^{a} p$ and $t=p$, since the possibility that $t=2^{a}$ is handled separately below as Case (5).

Suppose first that $t=2^{a} p$. As before, let $2^{p}-1=p_{i}$. Then $p_{i}-1 \equiv 0(\bmod 3)$ and $p_{i}-1 \equiv 0(\bmod p)$. Suppose that $a \geq 1$. Then $2^{t}-1 \equiv 0(\bmod 3)$, so that $\left(2^{t}-1\right)\left(p_{i}-1\right) \equiv 0(\bmod 9)$, which implies that $p_{k}=3$. If $p=3$, then $2^{6}-1$ divides $2^{t}-1$, and so $\left(2^{t}-1\right)\left(p_{i}-1\right) \equiv 0(\bmod 27)$, which is a contradiction. On the other hand, if $p \neq 3$, then by Theorem 4.2, there exists a prime $q \neq p_{i}$ such that $q-1 \equiv 0\left(\bmod 2^{a} p\right)$. Hence, $\left(p_{i}-1\right)(q-1) \equiv 0\left(\bmod p^{2}\right)$, which implies that $p=p_{k}=3$, again a contradiction. Therefore, $a=0$ and $t=p$, which is the second possibility above. Again, let $2^{p}-1=p_{i}$. Then $p_{i}-1 \equiv 0(\bmod p)$, so that $p \neq p_{i}$. Also, $p_{i}-1 \equiv 0(\bmod 3)$. If $p_{k} \neq 3$, then $\left(p_{k}^{2}-1\right)\left(p_{i}-1\right) \equiv 0(\bmod 9)$, which is impossible since the only square that divides n is $p_{k}^{2} \neq 9$. Hence, $p_{k}=3$. If $p=3=p_{k}$, then $n \equiv 0(\bmod 8)$, but $n \not \equiv 0(\bmod 16)$. However, if $p=3$, then n would be divisible by $\left(2^{p_{k}}-1\right)\left(p_{k}^{2}-1\right)=(7-1)\left(3^{2}-1\right)$, which implies that $n \equiv 0(\bmod 16)$. This contradiction shows that $p \neq 3$. Also, since p is odd, we have that $p_{i} \neq 3$. Thus, all three primes p, p_{i} and $p_{k}=3$ are distinct. If $p \equiv 1(\bmod 3)$, then $2^{6}-1$ divides $2^{p-1}-1=p_{i}-1$, and so the number of
elements of order $p p_{i}$ is

$$
(p-1)\left(p_{i}-1\right)=2(p-1)\left(2^{p-1}-1\right) \equiv 0(\bmod 27)
$$

which does not divide n. Thus, $p \equiv 2(\bmod 3)$. Now, let q be an odd prime divisor of $p-1$. Then $2^{q}-1$ and $2^{2 q}-1$ divide $2^{p-1}-1$, and so both divide n. Let r be a primitive divisor of $2^{q}-1$, and let s be a primitive divisor of $2^{2 q}-1$. Since $p \equiv 2(\bmod 3)$, we have that $q \neq 3$, and therefore the existence of s is guaranteed by Theorem 4.2. Then

$$
r-1 \equiv 0 \equiv s-1(\bmod q)
$$

Since $r \neq s$, it follows that either $r \neq p$ or $s \neq p$. Suppose, without loss of generality, that $r \neq p$. Note that $r \neq 3$ so that the number of elements of order $p r$ is $(p-1)(r-1)$. But

$$
(p-1)(r-1) \equiv 0\left(\bmod q^{2}\right)
$$

which implies that $q=3$, a contradiction. Hence, we conclude that no odd primes divide $p-1$. Write $p-1=2^{a}$. Then the number of elements of order p_{i} is

$$
p_{i}-1=2^{p}-2=2\left(2^{2^{a}}-1\right) \equiv 0(\bmod 3)
$$

If $a \geq 7$, then 6700417 and 274177 divide $2^{2^{a}}-1$, and the number of elements of order $p_{i} \cdot 6700417 \cdot 274177$ is

$$
2\left(2^{2^{a}}-1\right)(6700416)(274176) \equiv 0(\bmod 27)
$$

which does not divide n. Hence, $a \leq 6$, and it is easy to check that $2^{a}+1$ is prime exactly when $a=1,2$ or 4 . Since $p \equiv 2(\bmod 3)$, then $a=2$ or 4 . If $a=2$, then $p=5$, and $31=2^{5}-1$ divides n. But then, the number of elements of order $3^{2} \cdot 5 \cdot 31$, which is $\left(3^{2}-1\right)(5-1)(31-1)=2^{6} \cdot 3 \cdot 5$, does not divide n. Similarly, if $a=4$, then $p=17$, and the power of 2 that divides $f(n)$ is greater than the power of 2 that divides n. Therefore, Case (3) is impossible.

We proceed now to Case (4). Suppose that p is an odd prime dividing t such that $2^{p}-1=p_{i} p_{j}$, for some $i \neq j$. Then $p_{i}-1 \equiv p_{j}-1 \equiv 0(\bmod p)$, so that p^{2} divides the number of elements of order $p_{i} p_{j}$, and thus p^{2} divides n. Hence, $p=p_{k}$. If there exists a prime $q \neq p$ that divides t, then $2^{p q}-1$ divides n. By Theorem 4.2, there is a primitive divisor p_{s} of $2^{p q}-1$ with $s \notin\{i, j\}$. Then p divides $p_{s}-1$, and hence p^{3} divides $\left(p_{i}-1\right)\left(p_{j}-1\right)\left(p_{s}-1\right)$, the number of elements of order $p_{i} p_{j} p_{s}$. This contradiction shows that $p=p_{k}$ is the only odd prime that divides t. An argument similar to the one used in Case (3) shows that p^{2} does not divide t. Then, as in Case (3), we only have to consider the two possibilities: $t=2^{a} p$ and $t=p$. Suppose that $t=2^{a} p$, with $a \geq 1$. Since $2^{p}-1=p_{i} p_{j}$, with $i \neq j$, it follows that $p \neq 3$. Then, by Theorem 4.2, there exists a primitive divisor p_{s}
of $2^{2 p}-1$. Thus, $s \notin\{i, j\}$ and $p_{s}-1 \equiv 0(\bmod p)$. But then we have that the number of elements in G of order $p_{i} p_{j} p_{s}$ is

$$
\left(p_{i}-1\right)\left(p_{j}-1\right)\left(p_{s}-1\right) \equiv 0\left(\bmod p^{3}\right)
$$

Hence, $a=0$ and $t=p=p_{k}$.
This brings us to Case (5). Assume now that $t=2^{a}$. As in Case (3), if $a \geq 7$, then 6700417 and 274177 divide $2^{2^{a}}-1$, and n is divisible by the number of elements in G of order $2 \cdot 6700417 \cdot 274177$, which is $\left(2^{2^{a}}-1\right)(6700416)(274176)$. But $\left(2^{2^{a}}-1\right)(6700416)(274176)$ cannot divide n since

$$
\left(2^{2^{a}}-1\right)(6700416)(274176) \equiv 0(\bmod 27)
$$

and $n / 2^{t}$ is cube-free. Thus, $a \leq 6$. It is straightforward to check that each of these cases, in some way, violates the hypotheses of the theorem. For example, if $a=6$, then n is divisible by

$$
2^{64}-1=3 \cdot 5 \cdot 17 \cdot 257 \cdot 641 \cdot 65537 \cdot 6700417
$$

Hence, $\left(2^{64}-1\right) \cdot 640$ and $\left(2^{64}-1\right) \cdot 6700416$ must also divide n. However, $\left(2^{64}-1\right) \cdot 640 \equiv 0(\bmod 25)$ and $\left(2^{64}-1\right) \cdot 6700416 \equiv 0(\bmod 9)$, which contradicts the fact that n is divisible by exactly one odd square. Checking the remaining cases completes the proof of the theorem.
Remark 4.4. Without loss of generality, we can assume that $p_{i}<p_{j}$ in the statement of the conclusion of Theorem 4.3. Also, this conclusion implies that $3=$ $p_{1}<p_{k}<p_{i}<p_{j}$, with $p_{k} \geq 11$. Thus, $m \geq 4$.
Proof of Theorem 1.12. Let G be a minimal abelian POS group such that

$$
G \simeq\left(\mathbb{Z}_{2}\right)^{t} \times \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{k-1}} \times\left(\mathbb{Z}_{p_{k}}\right)^{2} \times \mathbb{Z}_{p_{k+1}} \times \cdots \times \mathbb{Z}_{p_{m}}
$$

where $p_{1}<p_{2}<\cdots<p_{m}$ are odd primes, with $1 \leq m \leq 5$. By Theorem 4.3, we have that $p_{1}=3$ and $2^{t}-1=2^{p_{k}}-1=p_{i} p_{j}$ for some $i \neq j$. By Remark 4.4, we can also assume that $p_{k} \geq 11$ and that $m=4$ or $m=5$.

Consider first the case when $m=4$. In this case, we have

$$
\frac{n}{f(n)}=\frac{2^{p_{k}} \cdot 3 \cdot p_{k}^{2} \cdot p_{i} \cdot p_{j}}{\left(2^{p_{k}}-1\right) \cdot 2 \cdot\left(p_{k}^{2}-1\right) \cdot\left(p_{i}-1\right) \cdot\left(p_{j}-1\right)}=\frac{2^{p_{k}-1} \cdot 3 \cdot p_{k}^{2}}{\left(p_{k}^{2}-1\right) \cdot\left(p_{i}-1\right) \cdot\left(p_{j}-1\right)}
$$

Since $p_{i}-1 \equiv p_{j}-1 \equiv 0\left(\bmod p_{k}\right)$, it follows that either
(1) $p_{k}-1=2^{a} \cdot 3$ and $p_{k}+1=2^{b}$ or
(2) $p_{k}-1=2^{a}$ and $p_{k}+1=2^{b} \cdot 3$.

In (1), we get that

$$
2=2^{b}-2^{a} \cdot 3=2^{a}\left(2^{b-a}-3\right)
$$

which implies that $a=1$ and $b=3$. Hence, $p_{k}=7$, which contradicts the fact that $p_{k} \geq 11$. In (2), we get two possibilities. The first possibility gives

$$
2=2^{a}\left(2^{b-a} \cdot 3-1\right)
$$

which implies that $a=b=0$. Thus $p_{k}=2$, which is impossible. The second possibility yields

$$
2=2^{b}\left(3-2^{a-b}\right)
$$

which implies that either $a=2$ and $b=1$, in which case $p_{k}=5$; or $a=b=0$, in which case $p_{k}=2$. Both situations are impossible. Hence, there are no POS groups satisfying the conditions of the theorem with $m=4$.

Now suppose that $m=5$. Then

$$
\frac{n}{f(n)}=\frac{2^{p_{k}} \cdot 3 \cdot p \cdot p_{k}^{2} \cdot p_{i} \cdot p_{j}}{\left(2^{p_{k}}-1\right) \cdot 2 \cdot(p-1) \cdot\left(p_{k}^{2}-1\right) \cdot\left(p_{i}-1\right) \cdot\left(p_{j}-1\right)}
$$

Since $p_{k}<p_{i}<p_{j}$, we have $\frac{p_{j}}{p_{j}-1}<\frac{p_{i}}{p_{i}-1}<\frac{p_{k}}{p_{k}-1}$. Thus,

$$
\frac{n}{f(n)} \leq \frac{2^{p_{k}} \cdot 3 \cdot 5 \cdot p_{k}^{4}}{\left(2^{p_{k}}-1\right) \cdot 2 \cdot 4 \cdot\left(p_{k}^{2}-1\right) \cdot\left(p_{k}-1\right)^{2}}
$$

It is straightforward to show that

$$
g(x)=\frac{15 \cdot 2^{x} \cdot x^{4}}{8 \cdot\left(2^{x}-1\right)\left(x^{2}-1\right)(x-1)^{2}}
$$

is a decreasing function for $x \geq 2$, and that $g(x)<2$ when $x \geq 32$. It follows that $n / f(n)<2$ when $p_{k} \geq 37$. Clearly, $n / f(n)>1$, and since we are assuming that $n / f(n)$ is an integer, we only have to check p_{k} with $11 \leq p_{k} \leq 31$. The fact that $2^{p_{k}}-1$ must be the product of two distinct primes rules out all primes in this range except $p_{k}=11$ and $p_{k}=23$. If $p_{k}=23$, then $2^{23}-1=47 \cdot 178481$ divides n. But then $178481-1=2^{4} \cdot 5 \cdot 23 \cdot 97$ also divides n, which contradicts the fact that $m=5$. Verifying that the case $p_{k}=11$ gives the POS group in the statement of the theorem completes the proof.

Acknowledgments

The authors thank the referee for the many valuable suggestions.

References

[Bang 1886] A. S. Bang, "Taltheoretiske undersøgelser", Tidsskr. Math. (5) 4 (1886), 70-80, 130137. Zbl 19.0168.02
[Chebyshev 1852] P. L. Chebyshev, "Mémoire sur les nombres premiers", J. Math. Pures Appl. (1) 17 (1852), 366-390.
[Chowla et al. 1951] S. Chowla, I. N. Herstein, and W. K. Moore, "On recursions connected with symmetric groups, I", Canadian J. Math. 3 (1951), 328-334. MR 13,10c Zbl 0043.25904
[Das 2009] A. K. Das, "On finite groups having perfect order subsets", Int. J. Algebra 3:13 (2009), 629-637. MR 2010j:20035 Zbl 1197.20018
[Finch and Jones 2002] C. E. Finch and L. Jones, "A curious connection between Fermat numbers and finite groups", Amer. Math. Monthly 109:6 (2002), 517-524. MR 2003d:11016 Zbl 1058.11009
[Finch and Jones 2003] C. E. Finch and L. Jones, "Nonabelian groups with perfect order subsets", JP J. Algebra Number Theory Appl. 3:1 (2003), 13-26. Corrigendum in 4:2 (2004), 413-416. MR 2004d:20023 Zbl 1052.20016
[Halberstam and Richert 1974] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs 4, Academic Press, London, 1974. MR 54 \#12689 Zbl 0298.10026
[Libera and Tlucek 2003] S. Libera and P. Tlucek, "Some perfect order subset groups", Pi Mu Epsilon J. 11:9 (2003), 495-498.
[Ljunggren 1943] W. Ljunggren, "Noen setninger om ubestemte likninger av formen $\frac{x^{n}-1}{x-1}=y^{q}$ ", Norsk Mat. Tidsskr. 25 (1943), 17-20. MR 8,315a Zbl 0028.00901
[Nagura 1952] J. Nagura, "On the interval containing at least one prime number", Proc. Japan Acad. 28:4 (1952), 177-181. MR 14,355b Zbl 0047.04405
[Tuan and Hai 2010] N. T. Tuan and B. X. Hai, "On perfect order subsets in finite groups", Int. J. Algebra 4:21 (2010), 1021-1029. MR 2012b:20057 Zbl 1219.20023

Received: 2010-07-23 Accepted: 2011-06-15

Ikjone@ship.edu	Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, United States
kt5638@ship.edu	Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, United States

involve

msp.berkeley.edu/involve

EDITORS

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@ dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A\&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100 /$ year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

PUBLISHED BY

El mathematical sciences publishers http://msp.org/
A NON-PROFIT CORPORATION
Typeset in IATE $_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Mathematical Sciences Publishers

involve
 2011
 vol. 4
 no. 3

An implementation of scatter search to train neural networks for brain lesion recognition 203Jeffrey Larson and Francis Newman
P_{1} subalgebras of $M_{n}(\mathbb{C})$ 213Stephen Rowe, Junsheng Fang and David R. Larson
On three questions concerning groups with perfect order subsets 251Lenny Jones and Kelly Toppin
On the associated primes of the third power of the cover ideal 263
Kim Kesting, James Pozzi and Janet Striuli
Soap film realization of isoperimetric surfaces with boundary 271
Jacob Ross, Donald Sampson and Neil Steinburg
Zero forcing number, path cover number, and maximum nullity of cacti 277
Darren D. Row
Jacobson's refinement of Engel's theorem for Leibniz algebras 293
Lindsey Bosko, Allison Hedges, John T. Hird, Nathaniel Schwartz and Kristen Stagg
The rank gradient and the lamplighter group 297
Derek J. Allums and Rostislav I. Grigorchuk

[^0]: MSC2000: primary 20F99, 11Y05; secondary 11A51.
 Keywords: perfect order subsets, abelian group, symmetric group.

