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An algebraic approach to graph theory involves the study of the edge ideal and
the cover ideal of a given graph. While a lot is known for the associated primes
of powers of the edge ideal, much less is known for the associated primes of the
powers of the cover ideal. The associated primes of the cover ideal and its second
power are completely determined. A configuration called a wheel is shown to
always appear among the associated primes of the third power of the cover ideal.

1. Introduction

We start with some definitions and notation, for which we follow [Harris et al.
2008; Villarreal 2001]. A (finite) graph G consists of two finite sets, the vertex set
VG and the edge set EG , whose elements are unordered pairs of vertices. An edge
{xi , x j } ∈ EG is written xi x j (or x j xi ). If xi x j is an edge, we say that the vertices
xi and x j are adjacent and that the edge is incident to xi and x j . All our graphs
will be simple, meaning that the only possible edges are xi x j for i 6= j .

A subset C ⊆ VG is a (vertex) cover of G if each edge in EG is incident to a
vertex in C . A cover C is minimal if no proper subset of C is a cover of G.

The results of this paper are in the area of algebraic graph theory, where algebraic
methods are used to investigate properties of graphs. Indeed, a graph G with vertex
set VG = {x1, . . . , xn} can be related to the polynomial ring R = k[x1, . . . , xn],
where k is a field. In the following we take the liberty of referring to xi as a
variable in the polynomial ring and as a vertex in the graph G, without any further
specification. Given a ring R, we denote by ( f1, . . . , fl) the ideal of R generated
by the elements f1, . . . , fl ∈ R.

Two ideals of the polynomial ring R = k[x1, . . . , xn] that have proven most
useful in studying the properties of a graph G with vertex set VG = {x1, . . . , xn}
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and edge set EG are the edge ideal

IG = (xi x j | xi x j ∈ EG)

and the cover ideal

JG = (xi1 · · · xik | xi1, . . . , xik is a minimal cover of G).

Both are square-free monomial ideals, that is, they are generated by monomials in
which each variable appears at most one time.

One of the most basic tools in commutative algebra to study an ideal I of a
noetherian ring R is to compute the finite set of associated prime ideals of I ,
which is denoted by Ass(R/I ) (for details, see [Eisenbud 1995]). In the case of a
monomial ideal L in a polynomial ring S= k[x1, . . . , xn], an element in Ass(S/L)
is a monomial prime ideal, which is an ideal generated by a subset of the variables.
Because of this fact we can record the following definition.

Definition. Let L be a monomial ideal in the polynomial ring S = k[x1, . . . , xn]

and let P = (xi1, . . . , xis ) be a monomial prime ideal. If there exists a monomial m
such that xi j m ∈ L for each j = 1, . . . , s and xi m /∈ L for every i 6= i1, . . . , is then
P is an associated prime to L . We denote by Ass(S/L) the set of all associated
(monomial) primes of L .

Chen et al. [2002] gave a constructive method for determining primes associated
to the powers of the edge ideal, but much less is known about cover ideals. It is
known that, given a graph G and its cover ideal JG , a monomial prime ideal P is
in Ass(S/JG) if and only if P = (xi , x j ) and xi x j is an edge of G (see [Villarreal
2001], for example).

The initial point of our investigation is a result of Francisco, Ha and Van Tuyl
(Theorem 1.1 below) describing the associated primes of the ideal (JG)

2.
Let G be a graph. A path in G is a sequence of distinct vertices x1, x2, . . . , xk

such that x j x j+1 ∈ EG for j = 1, 2, . . . , k− 1. The length of such a path is k− 1,
one less than the number of vertices. If xk x1 is also an edge of G, we say that the
graph C with vertex set {x1, x2, . . . , xk} and edge set {x1x2, . . . , xk−1xk, xk x1} is
a cycle (in G). A cycle with an odd number of vertices is also called an odd hole.

Given a graph G and a set of vertices W ⊆ VG , the graph generated by W has
vertex set W and edge set {xy | xy ∈ EG, x ∈W, y ∈W }.

Theorem 1.1 [Francisco et al. 2010]. Let G be a graph with vertex set {x1, . . . , xn},
edge set EG and cover ideal JG . A monomial prime ideal P = (xi1, . . . , xik ) of the
polynomial ring S = k[x1, . . . , xn] is in the set Ass(S/J 2

G) if and only if either

• k = 2 and xi1 xi2 ∈ EG , or

• k is odd and the graph generated by xi1, . . . , xik is an odd hole.
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As an example, if G is the graph r
x4

rx6 r
x3

r
x5

rx2

rx1rx7

!!
!!

AA ��
aaaa
## cc we will have

Ass(J )=
{(x1, x2), (x1, x7), (x2, x3), (x2, x4), (x3, x4), (x4, x5), (x4, x6), (x5, x6), (x6, x7)}

(the associated prime of J consists of the primes generated by two variables that
correspond to the edges of the graph), and

Ass(J 2)= Ass(J )∪ {(x2, x3, x4), (x4, x5, x6), (x1, x2, x4, x6, x7)}

(the associated prime of J 2
G contains all the primes that are either generated by two

variables corresponding to edges or generated by three variables corresponding to
odd cycles of G).

In this paper we study the associated primes of the third power of the cover ideal,
the ideal J 3

G . We prove that the primes generated by the variables corresponding
to the vertices of a wheel (see next definition) always appear among the associated
primes of J 3

G . This result is connected with the coloring number of a graph, as
discussed at the end of Section 2.

The algebra system Macaulay2 was used for all the computations in this paper,
and in particular in finding the pattern that led to the main theorem.

2. Centered odd holes and the main theorem

Definition. A graph C is said to be a wheel if VC = VH ∪ {y}, where H , called
the rim of C , is an odd hole such that the graph generated by H in C is H itself,
and y, called the center of C , is a vertex adjacent in C to at least three vertices of
H and belonging to at least two odd cycles in C . (It follows that y belongs to at
least three odd cycles in C .) The rim H and center y are part of the data needed
to specify a wheel, as they may not be uniquely determined by C .

Let C be a wheel with rim H and center y. A vertex x ∈ VH is radial if xy is an
edge of C . Let there be k radial vertices, labeled consequently x1, . . . , xk in order
around the wheel. We leave it to the reader to specify precisely what this means.
For i = 1, . . . , k−1, we denote by li the length of the path in H joining xi to xi+1

(and not going through any other radial vertex). Similarly lk denotes the length of
the path in H from xk to x1.

For the main theorem we will need the following lemma, where we use the
notation | | for the size (that is, the number of vertices) of a graph.

Lemma 2.1. Let C be a wheel with rim H and center y, and let k be its radial
number. If W is a vertex cover for C that contains y, then |W | ≥ |C |/2+ 1. If W
is a vertex cover for C that does not contain y, then

|W | ≥ k+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.
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Moreover,
k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
≥
|C |
2
+ 1. (2-1)

Proof. Let VH be the vertex set of H . Assume that W contains the vertex y. The
vertex set W ∩ VH has to be a vertex cover for H . Moreover, since H is an odd
hole, the cardinality of W ∩ VH has to be at least (|H | + 1)/2, which is equal to
|C |/2. Therefore the cardinality of W is |C |/2+ 1.

Assume now that W does not contain the vertex y. Let x1, . . . , xk be the radial
vertices. Since y /∈W , all the radial vertices are in W . As W ∩VH is a cover of H ,
in the path from xi to xi+1 we need at least b(li−1)/2c vertices, for i=1, . . . , k−1,
and we need b(lk − 1)/2c vertices for the path from xk to x1.

To prove (2-1) we write

k+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
≥ k+ l1−1

2
+ · · ·+

lk−1
2
≥

l1
2
+ · · ·+

lk
2
+

k
2

≥
l1+· · ·+lk+1

2
+

k−1
2
≥
|C |
2
+ 1,

where in the last inequality we used the fact that k ≥ 3. �

In the following we will make an abuse of notation: if G is a graph with vertices
x1, . . . , xn and H is a subgraph generated by the vertices xi1, . . . , xik , by H we also
denote the prime monomial ideal (xi1 . . . , xik ) in the polynomial ring k[x1, . . . , xn].
Here is our main theorem.

Theorem 2.2. Let G be a graph with vertex set VG ={x1, . . . , xn} and assume that
G has a subgraph C which is a wheel. Let S= k[x1, . . . , xn] and let J be the cover
ideal of G. Then the set Ass(S/J 3) is not contained in the set Ass(S/J 2), and in
fact C ∈ Ass(S/J 3) \Ass(S/J 2).

Proof. By Lemma 2.11 in [Francisco et al. 2011], we may assume that G = C .
Let y be the center of the wheel C , and let x1, x2, . . . , xk be the radial vertices.
Denote by xi j , for j = 1, . . . , li − 1, the vertices between xi and xi+1 if i < k and
the vertices between xk and x1 if i = k.

That C is not in Ass(S/J 2) follows from Theorem 1.1, since C is neither an
odd hole nor an edge.

To show that C is in Ass(S/J 3) we need to find a monomial c such that c /∈ J 3

and xc ∈ J 3 for each vertex x of C . Let c be the monomial

c = y2
∏

i=1,...,k

x2
i

∏
i=1,...,k

j=1,...,li−1

xa
i j , where a =

{
1 if j is odd,
2 if j is even.

To show that c is the desired monomial, we first prove that

deg c = k+ 2+ n+
⌊ l1−1

2

⌋
+ · · ·+

⌊ lk−1
2

⌋
. (2-2)
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Let n be the size of H . For a monomial m we denote by deg m the degree of m.
In computing deg c, the contribution from the variables y and xi , for i = 1, . . . , k,
is given by 2k + 2. For i = 1, . . . , k − 1, between xi and xi+1, there are li − 1
vertices, and there are lk − 1 vertices between xk and x1. Given an integer s, there
are bs/2c even integers and ds/2e odd integers between 1 and s. Therefore, in
computing deg c, the contribution from the variables xi j is given by

2
⌊ l1−1

2

⌋
+ · · ·+ 2

⌊ lk−1
2

⌋
+

⌈ l1−1
2

⌉
+ · · ·+

⌈ lk−1
2

⌉
.

The degree of the monomial c is therefore equal to

2k+ 2+ 2
⌊ l1−1

2

⌋
+ · · ·+ 2

⌊ lk−1
2

⌋
+

⌈ l1−1
2

⌉
+ · · ·+

⌈ lk−1
2

⌉
= 2k+ 2+

(⌊ l1−1
2

⌋
+

⌈ l1−1
2

⌉)
+ · · ·+

(⌊ lk−1
2

⌋
+

⌈ lk−1
2

⌉)
+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ k+ (l1− 1)+ · · ·+ (lk − 1)+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ l1+ · · ·+ lk +

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
= k+ 2+ n+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.

The last line establishes (2-2).

To prove that c does not belong to J 3, we first show the strict inequality

deg c < 2
(
|C |
2
+ 1

)
+ k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
. (2-3)

For suppose this inequality is not satisfied. Then (2-2) gives

k+2+n+
⌊ l1−1

2

⌋
+· · ·+

⌊ lk−1
2

⌋
≥ 2

(
|C |
2
+1
)
+k+

⌊ l1−1
2

⌋
+· · ·+

⌊ lk−1
2

⌋
,

which means that
2+ n ≥ 2

(
|C |
2
+ 1

)
.

But |C | = |H | + 1= n+ 1. Thus

2+ n ≥ 2
(n+1

2
+ 1

)
= n+ 2+ 1,

which is impossible. Therefore (2-3) holds.

Let us show that (2-3) implies that c /∈ J 3. Assume otherwise; then c=hm1m2m3

with mi ∈ J for i = 1, 2, 3. Since mi ∈ J , the variables that appear in each mi

correspond to a minimal cover of C . Lemma 2.1 says that such a cover has at least
|C |/2+1 vertices if it contains y and at least k+b(l1−1)/2c+ · · ·+b(lk−1)/2c
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— a number at least as large as |C |/2+1 — if not. Using the fact that at least one
of the three covers must not contain y, we thus obtain

deg c = deg h+ deg m1+ deg m2+ deg m3

≥ deg h+ 2
(
|C |
2
+ 1

)
+ k+

⌊ l1−1
2

⌋
+ · · ·+

⌊ lk−1
2

⌋
.

This contradicts (2-3) (since deg h ≥ 0) and so shows that c /∈ J 3.

To finish the proof of Theorem 2.2 we need to show that for every vertex x ∈ VC

we have xc ∈ J 3.
Let x be any vertex of H and relabel the vertices of H starting from x = t1

clockwise t2, . . . , tn , where n is the size of H . We can write xc=m1m2m3, where

m1 = y
∏

i odd

ti , m2 = yt1
∏

i even

ti , m3 =
∏

i=1,...,k

xi

∏
i=1...,k
j even

xi j .

Note that m1 and m2 correspond to covers, as they contain y and every other
vertex of H . Also m3 corresponds to a cover as all the xi are included, and therefore
all the edges connecting y to H are covered, and every other vertex in the path from
xi to xi+1 is included.

Finally we need to write yc = m1m2m3 with mi ∈ J for i = 1, 2, 3. For this
assume that x1 is such that the path from xk to x1 is odd. Relabel the vertices
x1 = t1 and then clockwise to tn . Let

m1 = y
∏

i odd

ti .

Note that m1 will give a cover as we are considering every other vertex in the odd
cycle and the vertex y. Now let l the least even number so that tl corresponds to a
radial vertex xg, for some g. Set

m2 = y
∏

l≤i≤n
i even

ti
∏

1≤i≤l
i odd

ti .

Because we are considering every other vertex from t1 to tl−1, every other vertex
from tl , and the center y, the monomial m2 corresponds to a cover of the wheel.

Finally

m3 = yxgxg+1 . . . xk

∏
i=g,...,k

j even

xi j

∏
i=1,...,l−1

i even

ti .

Also m3 gives a cover as it contains every other vertex from t2 to tl = xg, every
other vertex from xi to xi+1, for i = g, . . . , k−1, every other vertex from xk to x1,
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and the center y. Notice that x1 is missing from the monomial m3 but the vertex y
is listed in the monomial as for the vertex preceding x1, because of the assumption
that the path xk, . . . , x1 in H is odd. �

For every ideal I in a polynomial ring S (or a more general ring), one can
compute the sequence of sets Ass(S/I n) for n ∈ N. Brodmann [1979] proved, in
much greater generality, that there exists a positive integer a such that

aI⋃
i=1

Ass(S/I i )=

∞⋃
i=1

Ass(S/I i ). (2-4)

Very little is known about the value of aI . In [Francisco et al. 2011], the authors
give an upper bound for aI in the case that I is an edge ideal for a graph.

The value of aJ , where J is the cover ideal of a graph G, is related to the
coloring number of G, that is, the least number of colors that one needs to color
the vertices of G so that two adjacent vertices always have different colors. We
denote the coloring number of G by χ(G). It is shown in [Francisco et al. 2011]
that, in (2-4), aJ ≥χ(G)−1 when J is the cover ideal of G. The same paper gives
examples for which aJ > χ(G)− 1. Centered odd holes are an infinite family of
such examples.

Corollary 2.3. Let C be a wheel with cover ideal J . If C has a vertex that is not
radial, then aJ ≥ χ(C).

Proof. Because C contains an odd hole, one needs at least three colors for the
vertexes of C . We first show that χ(C)= 3. Let {a, b, c} be a list of three colors.
Assume that x is a vertex of C which is not radial. Color the vertex x and the
center y with c, and finally color the remaining vertices alternating a and b.

The main theorem implies that aJ ≥ 3. �

We finish the paper with an example that illustrates the idea behind the proof of
the main theorem. Consider this wheel: rx1 rx11 rx2

rx21

rx22r
x3

r
x31

r
x32

r
x4

rx41

rx5

rx51 rx52

r y
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���
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The monomial c used in the proof of the main theorem is given by

c = x2
1 x2

2 x2
3 x2

4 x2
5 x2

22x2
32x2

52x11x21x31x41x51.
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We can write yc=m1m2m3, where the monomials m1, m2, and m3 correspond
to the following covers:

rx1 r rx2

rrx22rr
x31

rr
x4

r
rx5

r rx52

r y
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��
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