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We develop Jacobson’s refinement of Engel’s Theorem for Leibniz algebras. We
then note some consequences of the result.

Since Leibniz algebras were introduced in [Loday 1993] as a noncommutative
generalization of Lie algebras, one theme has been to extend Lie algebra results
to Leibniz algebras. In particular, Engel’s theorem has been extended in [Ayupov
and Omirov 1998; Barnes 2011; Patsourakos 2007]. In the second of these works,
the classical Engel’s theorem is used to give a short proof of the result for Leibniz
algebras. The proofs in the other two papers do not use the classical theorem and,
therefore, the Lie algebra result is included in the result. In this note, we give two
proofs of the generalization to Leibniz algebras of Jacobson’s refinement to Engel’s
theorem, a short proof which uses Jacobson’s theorem and a second proof which
does not use it. It is interesting to note that the technique of reducing the problem to
the special Lie algebra case significantly shortens the proof for the general Leibniz
algebras case. This approach has been used in a number of situations [Barnes
2011]. We also note some standard consequences of this theorem. The proofs of
the corollaries are exactly as in Lie algebras (see [Kaplansky 1971]). Our result can
be used to directly show that the sum of nilpotent ideals is nilpotent, and hence one
has a nilpotent radical. In this paper, we consider only finite dimensional algebras
and modules over a field F.

An algebra A is called Leibniz if it satisfies x(yz)= (xy)z+ y(xz). Denote by
Ra and La , respectively, right and left multiplication by a ∈ A. Then

Rbc = Rc Rb+ Lb Rc, (1)

Lb Rc = Rc Lb+ Rbc, (2)

Lc Lb = Lcb+ Lb Lc. (3)
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Using (1) and (2) we obtain

Rc Rb =−Rc Lb. (4)

It is known that Lb=0 if b=ai , i≥2, where a1
=a and an is defined inductively

as an+1
= aan . Furthermore, for n > 1, Rn

a = (−1)n−1 Ra Ln−1
a . Therefore Ra is

nilpotent if La is nilpotent.
For any set X in an algebra, we let 〈X 〉 denote the algebra generated by X .

Using (1), Ra2 = (Ra)
2
+ La Ra . Furthermore, the associative algebra generated

by all Rb, Lb, b ∈ 〈a 〉 is equal to 〈Ra, La 〉. Suppose that Ln−1
a = 0. Then Rn

a = 0.
For any s ∈ 〈Ra, La 〉, s2n−1 is a combination of terms with each term having at
least 2n−1 factors. Moreover, each of these factors is either La or Ra . Any La to
the right of the first Ra can be turned into an Ra using (4). Hence, any term with
2n−1 factors can be converted into a term with either La in the first n−1 leading
positions or Ra in the last n postitions. In either case, the term is 0 and s2n−1

= 0.
Thus 〈Ra, La 〉 is nil and hence nilpotent.

Let M be an A-bimodule and let Ta(m)= am and Sa(m)=ma, a ∈ A, m ∈ M .
The analogues of (1)–(4) hold:

Sbc = Sc Sb+ Tb Sc, (5)

Tb Sc = ScTb+ Sbc, (6)

TcTb = Tcb+ TbTc, (7)

Sc Sb =−ScTb. (8)

These operations have the same properties as La and Ra , and the associative algebra
〈Ta, Sa 〉 generated by all Tb, Sb, b ∈ 〈a 〉 is nilpotent if Ta is nilpotent. We record
this as

Lemma. Let A be a finite dimensional Leibniz algebra and let a ∈ A. Let M be a
finite dimensional A-bimodule such that Ta is nilpotent on M. Then Sa is nilpotent,
and 〈Sa, Ta 〉, the algebra generated by all Sb, Tb, b ∈ 〈a 〉, is nilpotent.

A subset of A which is closed under multiplication is called a Lie set.

Theorem (Jacobson’s refinement of Engel’s theorem for Leibniz algebras). Let A
be a finite dimensional Leibniz algebra and M be a finite dimensional A-bimodule.
Let C be a Lie set in A such that A = 〈C 〉. Suppose that Tc is nilpotent for each
c ∈ C. Then, for all a ∈ A, the associative algebra B = 〈Sa, Ta 〉 is nilpotent.
Consequently B acts nilpotently on M , and there exists m ∈ M , m 6= 0, such that
am = ma = 0 for all a ∈ A.

Proof 1 (using the Lie result). If M is irreducible, then either M A = 0 or ma =
−am for all a in A and all m in M from [Barnes 2011, Lemma 1.9]. Since left
multiplication of A on M gives a Lie module, the Jacobson refinement to Engel’s
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theorem yields that A acts nilpotently on M on the left and hence on M as a
bimodule. If M is not irreducible, then A acts nilpotently on the irreducible factors
in a composition series of M and hence on M . �

Proof 2 (independent of the Lie result). Let x ∈ C . Then Tx is nilpotent and the
associative algebra generated by Tb and Sb for all b∈〈x 〉 is nilpotent by the lemma.
Since {a | aM = 0 = Ma} is an ideal in A, we may assume that A acts faithfully
on M .

Let D be a Lie subset of C such that 〈D 〉 acts nilpotently on M , and 〈D 〉 is
maximal with these properties. If C ⊆ 〈D 〉, then A = 〈C 〉 = 〈D 〉, and we are
done. Thus suppose that C * 〈D 〉, and we will obtain a contradiction.

Let E = 〈D 〉 ∩ C . E is a Lie set since both 〈 D 〉 and C are Lie sets. Since
D ⊆ 〈D 〉 and D ⊆ C , it follows that D ⊆ E and 〈D 〉 ⊆ 〈E 〉. Since E ⊆ 〈D 〉,
〈E 〉 ⊆ 〈D 〉 and 〈D 〉 = 〈E 〉.

Let dim(M)= n. Since 〈D 〉 = 〈E 〉 acts nilpotently on M , σ1 · · · σn = 0 where
σi = Sdi or Tdi for di ∈ E . Then:
σ1 · · · σiτσi+1 · · · σ2n−1 = 0 where τ = Sa or Ta , a ∈ A, for all i .

If x is any product in A with 2n terms, of which 2n − 1 come from E , then
Sx and Tx are linear combinations of elements as in the last paragraph. Hence
Sx = Tx = 0, which implies that x = 0, since the representation is faithful.

There exists a smallest positive integer j such that τ1 · · · τ j C ⊆ 〈E 〉 for all
τ1, . . . , τ j with τi = Rdi or Ldi where di ∈ E . Then there exists an expression
z = τd1 · · · τd j−1 x /∈ 〈E 〉 for some x ∈ C and di ∈ E . Note that z ∈ C since C is
a Lie set. Consider zE . Now, zC , Cz ⊆ C and z〈E 〉, 〈E 〉z ⊆ 〈E 〉. Therefore
zE , Ez ⊆ E . Then zn E , Ezn

⊆ E for all positive integers n, using induction and
the defining identity for Leibniz algebras. Then F = {zn, n ≥ 1} ∪ E is a Lie set
contained in C , and since z /∈ 〈E 〉, it follows that 〈E 〉( 〈 F 〉.

It remains to show that 〈F 〉 acts nilpotently on M . Define M0 = 0 and

Mi = {m ∈ M | Em,m E ⊆ Mi−1}.

Since E acts nilpotently on M , Mk = M for some k. We show zMi , Mi z ⊆ Mi .
Clearly zM0 = M0z = 0. Suppose that z acts invariantly on Mi for all i < t . For
m ∈ Mt , d ∈ E , (zm)d = z(md)− m(zd) ∈ zMt−1 + m E ⊆ Mt−1 with similar
expressions for (mz)d, d(mz) and d(zm). Thus z acts invariantly on each Mi , and
hence z2 does also. Thus 〈z 〉 acts invariantly on each Mi . But 〈z 〉 acts nilpotently
on M by the lemma. Hence F acts nilpotently on M , which is a contradiction. �

We obtain the abstract version of the theorem.

Corollary 1. Let C be a Lie set in a Leibniz algebra A such that 〈C 〉 = A and Lc

is nilpotent for all c ∈ C. Then A is nilpotent.
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The following are extensions of results from [Jacobson 1955], whose proofs are
the same as in the Lie algebra case.

Corollary 2. If T is an automorphism of A of order p and has no nonzero fixed
points, then A is nilpotent.

Corollary 3. If D is a nonsingular derivation of A over a field of characteristic 0,
then A is nilpotent.

Corollary 4. If B and C are nilpotent ideals of A, then B +C is a nilpotent ideal
of A.
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