involve a journal of mathematics

Jacobson's refinement of Engel's theorem for Leibniz algebras Lindsey Bosko, Allison Hedges, John T. Hird, Nathaniel Schwartz and Kristen Stagg

Jacobson's refinement of Engel's theorem for Leibniz algebras

Lindsey Bosko, Allison Hedges, John T. Hird, Nathaniel Schwartz and Kristen Stagg
(Communicated by Chi-Kwong Li)

Abstract

We develop Jacobson's refinement of Engel's Theorem for Leibniz algebras. We then note some consequences of the result.

Since Leibniz algebras were introduced in [Loday 1993] as a noncommutative generalization of Lie algebras, one theme has been to extend Lie algebra results to Leibniz algebras. In particular, Engel's theorem has been extended in [Ayupov and Omirov 1998; Barnes 2011; Patsourakos 2007]. In the second of these works, the classical Engel's theorem is used to give a short proof of the result for Leibniz algebras. The proofs in the other two papers do not use the classical theorem and, therefore, the Lie algebra result is included in the result. In this note, we give two proofs of the generalization to Leibniz algebras of Jacobson's refinement to Engel's theorem, a short proof which uses Jacobson's theorem and a second proof which does not use it. It is interesting to note that the technique of reducing the problem to the special Lie algebra case significantly shortens the proof for the general Leibniz algebras case. This approach has been used in a number of situations [Barnes 2011]. We also note some standard consequences of this theorem. The proofs of the corollaries are exactly as in Lie algebras (see [Kaplansky 1971]). Our result can be used to directly show that the sum of nilpotent ideals is nilpotent, and hence one has a nilpotent radical. In this paper, we consider only finite dimensional algebras and modules over a field \mathbb{F}.

An algebra A is called Leibniz if it satisfies $x(y z)=(x y) z+y(x z)$. Denote by R_{a} and L_{a}, respectively, right and left multiplication by $a \in A$. Then

$$
\begin{align*}
R_{b c} & =R_{c} R_{b}+L_{b} R_{c} \tag{1}\\
L_{b} R_{c} & =R_{c} L_{b}+R_{b c} \tag{2}\\
L_{c} L_{b} & =L_{c b}+L_{b} L_{c} . \tag{3}
\end{align*}
$$

[^0]Using (1) and (2) we obtain

$$
\begin{equation*}
R_{c} R_{b}=-R_{c} L_{b} . \tag{4}
\end{equation*}
$$

It is known that $L_{b}=0$ if $b=a^{i}, i \geq 2$, where $a^{1}=a$ and a^{n} is defined inductively as $a^{n+1}=a a^{n}$. Furthermore, for $n>1, R_{a}^{n}=(-1)^{n-1} R_{a} L_{a}^{n-1}$. Therefore R_{a} is nilpotent if L_{a} is nilpotent.

For any set X in an algebra, we let $\langle X\rangle$ denote the algebra generated by X. Using (1), $R_{a^{2}}=\left(R_{a}\right)^{2}+L_{a} R_{a}$. Furthermore, the associative algebra generated by all $R_{b}, L_{b}, b \in\langle a\rangle$ is equal to $\left\langle R_{a}, L_{a}\right\rangle$. Suppose that $L_{a}^{n-1}=0$. Then $R_{a}^{n}=0$. For any $s \in\left\langle R_{a}, L_{a}\right\rangle, s^{2 n-1}$ is a combination of terms with each term having at least $2 n-1$ factors. Moreover, each of these factors is either L_{a} or R_{a}. Any L_{a} to the right of the first R_{a} can be turned into an R_{a} using (4). Hence, any term with $2 n-1$ factors can be converted into a term with either L_{a} in the first $n-1$ leading positions or R_{a} in the last n postitions. In either case, the term is 0 and $s^{2 n-1}=0$. Thus $\left\langle R_{a}, L_{a}\right\rangle$ is nil and hence nilpotent.

Let M be an A-bimodule and let $T_{a}(m)=a m$ and $S_{a}(m)=m a, a \in A, m \in M$. The analogues of (1)-(4) hold:

$$
\begin{align*}
S_{b c} & =S_{c} S_{b}+T_{b} S_{c}, \tag{5}\\
T_{b} S_{c} & =S_{c} T_{b}+S_{b c}, \tag{6}\\
T_{c} T_{b} & =T_{c b}+T_{b} T_{c}, \tag{7}\\
S_{c} S_{b} & =-S_{c} T_{b} . \tag{8}
\end{align*}
$$

These operations have the same properties as L_{a} and R_{a}, and the associative algebra $\left\langle T_{a}, S_{a}\right\rangle$ generated by all $T_{b}, S_{b}, b \in\langle a\rangle$ is nilpotent if T_{a} is nilpotent. We record this as

Lemma. Let A be a finite dimensional Leibniz algebra and let $a \in A$. Let M be a finite dimensional A-bimodule such that T_{a} is nilpotent on M. Then S_{a} is nilpotent, and $\left\langle S_{a}, T_{a}\right\rangle$, the algebra generated by all $S_{b}, T_{b}, b \in\langle a\rangle$, is nilpotent.

A subset of A which is closed under multiplication is called a Lie set.
Theorem (Jacobson's refinement of Engel's theorem for Leibniz algebras). Let A be a finite dimensional Leibniz algebra and M be a finite dimensional A-bimodule. Let C be a Lie set in A such that $A=\langle C\rangle$. Suppose that T_{c} is nilpotent for each $c \in C$. Then, for all $a \in A$, the associative algebra $B=\left\langle S_{a}, T_{a}\right\rangle$ is nilpotent. Consequently B acts nilpotently on M, and there exists $m \in M, m \neq 0$, such that $a m=m a=0$ for all $a \in A$.
Proof 1 (using the Lie result). If M is irreducible, then either $M A=0$ or $m a=$ -am for all a in A and all m in M from [Barnes 2011, Lemma 1.9]. Since left multiplication of A on M gives a Lie module, the Jacobson refinement to Engel's
theorem yields that A acts nilpotently on M on the left and hence on M as a bimodule. If M is not irreducible, then A acts nilpotently on the irreducible factors in a composition series of M and hence on M.

Proof 2 (independent of the Lie result). Let $x \in C$. Then T_{x} is nilpotent and the associative algebra generated by T_{b} and S_{b} for all $b \in\langle x\rangle$ is nilpotent by the lemma. Since $\{a \mid a M=0=M a\}$ is an ideal in A, we may assume that A acts faithfully on M.

Let D be a Lie subset of C such that $\langle D\rangle$ acts nilpotently on M, and $\langle D\rangle$ is maximal with these properties. If $C \subseteq\langle D\rangle$, then $A=\langle C\rangle=\langle D\rangle$, and we are done. Thus suppose that $C \nsubseteq\langle D\rangle$, and we will obtain a contradiction.

Let $E=\langle D\rangle \cap C . E$ is a Lie set since both $\langle D\rangle$ and C are Lie sets. Since $D \subseteq\langle D\rangle$ and $D \subseteq C$, it follows that $D \subseteq E$ and $\langle D\rangle \subseteq\langle E\rangle$. Since $E \subseteq\langle D\rangle$, $\langle E\rangle \subseteq\langle D\rangle$ and $\langle D\rangle=\langle E\rangle$.

Let $\operatorname{dim}(M)=n$. Since $\langle D\rangle=\langle E\rangle$ acts nilpotently on $M, \sigma_{1} \cdots \sigma_{n}=0$ where $\sigma_{i}=S_{d_{i}}$ or $T_{d_{i}}$ for $d_{i} \in E$. Then:
$\sigma_{1} \cdots \sigma_{i} \tau \sigma_{i+1} \cdots \sigma_{2 n-1}=0$ where $\tau=S_{a}$ or $T_{a}, a \in A$, for all i.
If x is any product in A with $2 n$ terms, of which $2 n-1$ come from E, then S_{x} and T_{x} are linear combinations of elements as in the last paragraph. Hence $S_{x}=T_{x}=0$, which implies that $x=0$, since the representation is faithful.

There exists a smallest positive integer j such that $\tau_{1} \cdots \tau_{j} C \subseteq\langle E\rangle$ for all $\tau_{1}, \ldots, \tau_{j}$ with $\tau_{i}=R_{d_{i}}$ or $L_{d_{i}}$ where $d_{i} \in E$. Then there exists an expression $z=\tau_{d_{1}} \cdots \tau_{d_{j-1}} x \notin\langle E\rangle$ for some $x \in C$ and $d_{i} \in E$. Note that $z \in C$ since C is a Lie set. Consider $z E$. Now, $z C, C z \subseteq C$ and $z\langle E\rangle,\langle E\rangle z \subseteq\langle E\rangle$. Therefore $z E, E z \subseteq E$. Then $z^{n} E, E z^{n} \subseteq E$ for all positive integers n, using induction and the defining identity for Leibniz algebras. Then $F=\left\{z^{n}, n \geq 1\right\} \cup E$ is a Lie set contained in C, and since $z \notin\langle E\rangle$, it follows that $\langle E\rangle \subsetneq\langle F\rangle$.

It remains to show that $\langle F\rangle$ acts nilpotently on M. Define $M_{0}=0$ and

$$
M_{i}=\left\{m \in M \mid E m, m E \subseteq M_{i-1}\right\}
$$

Since E acts nilpotently on $M, M_{k}=M$ for some k. We show $z M_{i}, M_{i} z \subseteq M_{i}$. Clearly $z M_{0}=M_{0} z=0$. Suppose that z acts invariantly on M_{i} for all $i<t$. For $m \in M_{t}, d \in E,(z m) d=z(m d)-m(z d) \in z M_{t-1}+m E \subseteq M_{t-1}$ with similar expressions for $(m z) d, d(m z)$ and $d(z m)$. Thus z acts invariantly on each M_{i}, and hence z^{2} does also. Thus $\langle z\rangle$ acts invariantly on each M_{i}. But $\langle z\rangle$ acts nilpotently on M by the lemma. Hence F acts nilpotently on M, which is a contradiction.

We obtain the abstract version of the theorem.
Corollary 1. Let C be a Lie set in a Leibniz algebra A such that $\langle C\rangle=A$ and L_{c} is nilpotent for all $c \in C$. Then A is nilpotent.

The following are extensions of results from [Jacobson 1955], whose proofs are the same as in the Lie algebra case.
Corollary 2. If T is an automorphism of A of order p and has no nonzero fixed points, then A is nilpotent.

Corollary 3. If D is a nonsingular derivation of A over a field of characteristic 0 , then A is nilpotent.

Corollary 4. If B and C are nilpotent ideals of A, then $B+C$ is a nilpotent ideal of A.

Acknowledgments

The authors completed this work as graduate students at North Carolina State University. They thank Professor E. L. Stitzinger for his guidance and support.

References

[Ayupov and Omirov 1998] S. A. Ayupov and B. A. Omirov, "On Leibniz algebras", pp. 1-12 in Algebra and operator theory (Tashkent, 1997), edited by M. G. Y. Khamkimdjanov and S. A. Ayupov, Kluwer, Dordrecht, 1998. MR 99i:17001 Zbl 0928.17001
[Barnes 2011] D. W. Barnes, "Some theorems on Leibniz algebras", Comm. Algebra 39:7 (2011), 2463-2472. MR 2821724 Zbl 05956938
[Jacobson 1955] N. Jacobson, "A note on automorphisms and derivations of Lie algebras", Proc. Amer. Math. Soc. 6 (1955), 281-283. MR 16,897e Zbl 0064.27002
[Kaplansky 1971] I. Kaplansky, Lie algebras and locally compact groups, University of Chicago Press, 1971. MR 43 \#2145 Zbl 0223.17001
[Loday 1993] J.-L. Loday, "Une version non commutative des algèbres de Lie: les algèbres de Leibniz", Enseign. Math. (2) 39:3-4 (1993), 269-293. MR 95a:19004 Zbl 0806.55009
[Patsourakos 2007] A. Patsourakos, "On nilpotent properties of Leibniz algebras", Comm. Algebra 35:12 (2007), 3828-3834. MR 2009b: 17006 Zbl 1130.17002

Received: 2011-06-06

Irbosko@ncsu.edu	Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV 26074, United States
armcalis@ncsu.edu	Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, United States
johnthird@gmail.com	Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, United States
njschwar@ncsu.edu	Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, United States
klstagg@ncsu.edu	Department of Mathematics, University of Texas at Tyler, Tyler, TX 75799, United States

-

involve

msp.berkeley.edu/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu
Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@ wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A\&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100 /$ year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
http://msp.org/
A NON-PROFIT CORPORATION
Typeset in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$

involve 2011 vol. 4 no. 3

An implementation of scatter search to train neural networks for brain lesion recognition 203 Jeffrey Larson and Francis Newman
P_{1} subalgebras of $M_{n}(\mathbb{C})$ 213
Stephen Rowe, Junsheng Fang and David R. Larson
On three questions concerning groups with perfect order subsets 251
Lenny Jones and Kelly Toppin
On the associated primes of the third power of the cover ideal 263
Kim Kesting, James Pozzi and Janet Striuli
Soap film realization of isoperimetric surfaces with boundary 271
Jacob Ross, Donald Sampson and Neil Steinburg
Zero forcing number, path cover number, and maximum nullity of cacti 277
Darren D. Row
Jacobson's refinement of Engel's theorem for Leibniz algebras 293
Lindsey Bosko, Allison Hedges, John T. Hird, Nathaniel Schwartz and Kristen Stagg
The rank gradient and the lamplighter group 297
Derek J. Allums and Rostislav I. Grigorchuk

[^0]: MSC2010: primary 17A32; secondary 17B30.
 Keywords: Jacobson's refinement, Engel's Theorem, Leibniz algebras, Lie algebras, nilpotent, bimodule.

