

a journal of mathematics

Maximality of the Bernstein polynomials Christopher Frayer and Christopher Shafhauser

mathematical sciences publishers

2011 vol. 4, no. 4

Maximality of the Bernstein polynomials

Christopher Frayer and Christopher Shafhauser

(Communicated by Martin Bohner)

For fixed a and b, let Q_n be the family of polynomials q(x) all of whose roots are real numbers in [a, b] (possibly repeated), and such that q(a) = q(b) = 0. Since an element of Q_n is completely determined by it roots (with multiplicity), we may ask how the polynomial is sensitive to changes in the location of its roots. It has been shown that one of the Bernstein polynomials $b_i(x) = (x-a)^{n-i}(x-b)^i$, $i = 1, \ldots, n-1$, is the member of Q_n with largest supremum norm in [a, b]. Here we show that for $p \ge 1$, $b_1(x)$ and $b_{n-1}(x)$ are the members of Q_n that maximize the L^p norm in [a, b]. We then find the associated maximum values.

1. Introduction

A monic polynomial q(x) is completely determined by its roots (with multiplicity), since it can be written as the product

$$q(x) = \prod_{i=1}^{n} (x - r_i),$$

where the r_i are the roots. So it is a fair question to ask how the polynomial q is sensitive to changes in the location of its roots. Boelkins, Miller and Vugteveen [Boelkins et al. 2006] have shown that, among degree-n monic polynomials q(x) all of whose roots are real, belong to [a, b], and include a and b, the value of the supremum norm, $\max_{a \le x \le b} q(x)$, is maximized by the polynomials

$$(x-a)^{n-1}(x-b)$$
 and $(x-a)(x-b)^{n-1}$.

So these are in some sense the "largest" polynomials in the class just described.

We will show that these are also the largest polynomials with respect to another measure of size, namely, the L^p norm for $p \ge 1$. (For p = 1 this is simply the area enclosed by the graph between a and b.)

MSC2000: 30C15.

Keywords: polynomial root dragging, L^p norm, Bernstein polynomial.

Throughout this paper we let q(x) be a monic polynomial of degree n all of whose roots are real and lie in [a, b]; we assume further that q(a) = q(b) = 0. We denote the family of all such polynomials by Q_n . We show that given any $q \in Q_n$,

$$\int_{a}^{b} |q(x)| \ dx \le (b-a)^{n+1} \frac{1}{n(n+1)},$$

and for any $p \in \mathbb{N}$

$$\int_{a}^{b} |q(x)|^{p} dx \le (b-a)^{pn+1} \frac{1}{pn+1} \left(\frac{(pn-p)! \, p!}{(pn)!} \right).$$

We then use these bounds to verify the results of [Boelkins et al. 2006]. That is, for a < x < b,

$$|q(x)| \le \frac{(b-a)^n}{n} \left(\frac{n-1}{n}\right)^{n-1}.$$

2. Preliminary information

We are interested in how "large" a polynomial in Q_n can be and therefore need a way to tell when one polynomial is larger than another. We will use the L^p norms to measure the size of a polynomial. Given a polynomial q we use the notation $\|q\|_{L^p_{[a,b]}}$ to denote the L^p norm of q:

$$||q||_{L^p_{[a,b]}} = \left(\int_a^b |q(x)|^p dx\right)^{1/p}$$

and

$$||q||_{L^{\infty}_{[a,b]}} = \max_{x \in [a,b]} |q(x)|.$$

In particular, the L^1 norm of q,

$$||q||_{L^1_{[a,b]}} = \int_a^b |q(x)| dx,$$

measures the area enclosed by q.

Our goal is to understand how the L^p norm of $q \in Q_n$ is a function of the location of its roots. Specifically, we would like to understand how the smallest root of q which is greater than a will affect the L^p norm of q. We let $r_0 = a$ and r_1 represent the smallest root greater than r_0 . With this in mind, we study how r_1 affects the L^p norm of polynomials of the form

$$q(x) = (x - r_1)^k s(x)$$

where $s(x) = (x - r_0)^l (x - r_2)(x - r_3) \cdots (x - r_{m-1})$ and n = l + k + m - 2. That is, q is a degree n polynomial with roots

$$r_0 = a < r_1 < r_2 \le r_3 \cdots \le r_{m-1} = b,$$

which takes into account having possibly repeated roots at r_0 and r_1 . To understand how r_1 affects the L^p norm of q we study the function

$$A_p(q)(r_1) = \|q\|_{L^p_{[a,b]}}^p = \int_a^{r_1} (r_1 - x)^{kp} |s(x)|^p dx + \int_{r_1}^b (x - r_1)^{kp} |s(x)|^p dx,$$

where we allow $r_1 \in [r_0, r_2]$.

The following two basic results of calculus will be used later, when we optimize the L^p norm.

Lemma 2.1. If f(x) is twice differentiable and concave up on [a, b], then

$$\max\{f(a), f(b)\} > f(x)$$

for all $x \in (a, b)$.

Lemma 2.2 (Leibniz's formula). If F(x, y) and $F_x(x, y)$ are continuous in both x and y in some region of the xy-plane including $a \le y \le x$ and u(x) is a continuous function of x, then

$$\frac{d}{dx} \int_{a}^{u(x)} F(x, y) \, dy = F(x, u(x)) \frac{d}{dx} u(x) + \int_{a}^{u(x)} F_{x}(x, y) \, dy.$$

3. Maximizing the enclosed area

We are now ready to find the member of Q_n that encloses the largest area. In order to do so we show that $A_1(q)(r_1)$ is concave up on $[r_0, r_2]$.

Theorem 3.1. If $q(x) = (x-r_1)^k s(x)$, where $s(x) = (x-r_0)^l (x-r_2) \cdots (x-r_{m-1})$ and $r_0 < r_1 < r_2 \le r_3 \le \cdots \le r_{m-1}$, then

$$\frac{d^2}{dr_1^2}A_1(q)(r_1) > 0 \quad on \ [r_0, r_2].$$

Proof. Let $F(r_1, x) = (x - r_1)^k s(x)$, and observe that $F(r_1, r_1) = 0$. Applying Leibniz's formula to each term in $dA_1(q)(r_1)/dr_1$, we have

$$\frac{d}{dr_1} \int_a^{r_1} (r_1 - x)^k |s(x)| \, dx = k \int_a^{r_1} (r_1 - x)^{k-1} |s(x)| \, dx$$

and

$$\frac{d}{dr_1} \int_{r_1}^b (x - r_1)^k |s(x)| \, dx = -k \int_{r_1}^b (x - r_1)^{k-1} |s(x)| \, dx.$$

If k = 1, the fundamental theorem of Calculus implies that

$$\frac{d^2}{dr_1^2} \int_a^{r_1} (r_1 - x) |s(x)| \, dx = |s(r_1)| \quad \text{and} \quad \frac{d^2}{dr_1^2} \int_{r_1}^b (x - r_1) |s(x)| \, dx = |s(r_1)|.$$

Since r_1 is not a root of s(x), it follows that

$$\frac{d^2}{dr_1^2}A_1(q)(r_1) = 2|s(r_1)| > 0.$$

If $k \ge 2$, then

$$\frac{d^2}{dr_1^2} \int_a^{r_1} (r_1 - x)^k |s(x)| \, dx = k(k-1) \int_a^{r_1} (r_1 - x)^{k-2} |s(x)| \, dx$$

and

$$\frac{d^2}{dr_1^2} \int_{r_1}^b (x - r_1)^k |s(x)| \, dx = k(k - 1) \int_{r_1}^b (x - r_1)^{k - 2} |s(x)| \, dx.$$

Therefore.

$$\frac{d^2}{dr_1^2} A_1(q)(r_1) = k(k-1) \int_a^b |(x-r_1)^{k-2} s(x)| \, dx > 0$$

and $A_1(q)(r_1)$ is concave up on $[r_0, r_2]$.

Corollary 3.2. One of the Bernstein polynomials

$$b_i(x) = (x-a)^{n-i}(x-b)^i, \quad i = 1, \dots, n-1,$$

is the member of Q_n that encloses the largest area on [a, b].

Theorem 3.1, along with Lemma 2.1, tells us that we can always find a polynomial in Q_n with a larger L^1 norm by "dragging" r_1 to either r_0 or r_2 . Playing this game a finite number of times leaves us a polynomial with roots only at a and b. So, one of the Bernstein polynomials,

$$b_i(x) = (x-a)^{n-i}(x-b)^i, \quad i = 1, ..., n-1,$$

will be the member of Q_n that encloses the largest area.

4. Other values of p

We now extend the method of the previous section to values of p > 1. Let

$$q(x) = (x - r_1)^k s(x),$$

where

$$s(x) = (x - r_0)^l (x - r_2) \cdots (x - r_{m-1})$$

with $r_0 < r_1 < r_2 \le r_3 \le \cdots \le r_{m-1}$, and consider

$$A_p(q)(r_1) = \int_a^{r_1} (r_1 - x)^{kp} |s(x)|^p dx + \int_{r_1}^b (x - r_1)^{kp} |s(x)|^p dx.$$
 (1)

If we can show that $A_p(q)(r_1)$ is concave up on $[r_0, r_2]$, then one of the Bernstein polynomials will be the member of Q_n with the largest L^p norm. Using the same argument as the p = 1 case, two applications of Leibniz's formula yields

$$\frac{d^2}{dr_1^2} A_p(q)(r_1) = kp(kp-1) \int_a^b |(x-r_1)^{kp-2}| |s(x)|^p dx > 0,$$

and $A_p(q)(r_1)$ is concave up on the interval $[r_0, r_2]$ when p > 1.

In the above calculation, we have to be careful when kp-2 < 0. Since kp-1 > 0 ($k \ge 1$ and p > 1) the hypothesis of Leibniz's formula are satisfied for the first application with

$$\frac{d}{dr_1}A_p(q)(r_1) = kp \int_a^{r_1} (r_1 - x)^{kp-1} |s(x)|^p dx - kp \int_{r_1}^b (x - r_1)^{kp-1} |s(x)|^p dx.$$
 (2)

When applying Leibniz's formula to the first term on the right-hand side, we need

$$\frac{\partial}{\partial r_1}(r_1-x)^{kp-1}|s(x)|^p$$

to be continuous in both x and r_1 in some region including $a \le x \le r_1$. Although this may not be true at $x = r_1$, we can still justify the application of Leibniz's formula by considering the interval $[a, r_1 - \epsilon]$ and letting $\epsilon \to 0^+$. That is,

$$\frac{d^2}{dr_1^2} \int_a^{r_1} (r_1 - x)^{kp} |s(x)|^p dx = \lim_{\epsilon \to 0^+} \left(\frac{d}{dr_1} kp \int_a^{r_1 - \epsilon} (r_1 - x)^{kp - 1} |s(x)|^p dx \right).$$

Because the integrand is positive, the result will follow if the limit exists.

The polynomial s(x) does not change sign on the interval (a, r_2) , so we may assume without loss of generality that $s(x) \ge 0$ on $[a, r_1 - \epsilon]$, with s(x) = 0 only at x = a. Applying Leibniz's formula on $[a, r_1 - \epsilon]$ yields

$$\lim_{\epsilon \to 0^{+}} \left(\frac{d}{dr_{1}} kp \int_{a}^{r_{1}-\epsilon} (r_{1}-x)^{kp-1} s(x)^{p} dx \right) \\
= \lim_{\epsilon \to 0^{+}} kp(kp-1) \int_{a}^{r_{1}-\epsilon} (r_{1}-x)^{kp-2} s(x)^{p} dx + \lim_{\epsilon \to 0^{+}} (\epsilon)^{kp-1} s(r_{1}-\epsilon)^{p} \\
= \lim_{\epsilon \to 0^{+}} kp(kp-1) \int_{a}^{r_{1}-\epsilon} (r_{1}-x)^{kp-2} s(x)^{p} dx.$$

In order to see that this limit exists, we integrate by parts to get

$$kp(kp-1)\lim_{\epsilon \to 0^{+}} \left(-s(r_{1} - \epsilon)^{p} \frac{(\epsilon)^{kp-1}}{kp-1} + \frac{p}{kp-1} \int_{a}^{r_{1} - \epsilon} (r_{1} - x)^{kp-1} s(x)^{p-1} s'(x) dx \right)$$

$$= kp^{2} \int_{a}^{r_{1}} (r_{1} - x)^{kp-1} s(x)^{p-1} s'(x) dx,$$

where equality follows as kp - 1 > 0 and the integrand is a continuous function of x on $[a, r_1]$. Hence the limit exists and is positive from an earlier observation. A similar argument applied to the second term on the right in (2) shows that

$$\frac{d^2}{dr_1^2} \int_{r_1}^b (x - r_1)^{kp} |s(x)|^p dx = \lim_{\epsilon \to 0^+} \frac{d}{dr_1} \left(-kp \int_{r_1 + \epsilon}^b (x - r_1)^{kp - 1} |s(x)|^p dx \right)$$

exists and is positive. Therefore, $\frac{d^2}{dr_1^2}A_p(q)(r_1) > 0$.

From an argument similar to Theorem 3.1, we have the following result:

Theorem 4.1. If $p \ge 1$, one of the Bernstein polynomials is the member of Q_n that has the largest L^p norm on [a, b].

Finally, we consider the case $p = \infty$. Since [a, b] has finite measure,

$$\lim_{n \to \infty} \|f(x)\|_{L^p_{[a,b]}} = \|f(x)\|_{L^\infty_{[a,b]}};\tag{3}$$

see [Wheeden and Zygmund 1977, p. 126].

Corollary 4.2. One of the Bernstein polynomials is the member of Q_n that has the largest L^{∞} norm on [a, b].

Proof. Let $m(x) \in Q_n$ with $m(x) \neq b_i(x)$ for i = 1, ..., n - 1. If we restrict p to the positive integers, it follows from (3) that the sequences

$$\left\{\|m(x)\|_{L^p_{[a,b]}}\right\}_p \to \|m(x)\|_{L^\infty_{[a,b]}} \quad \text{and} \quad \left\{\|b_i(x)\|_{L^p_{[a,b]}}\right\}_p \to \|b_i(x)\|_{L^\infty_{[a,b]}}$$

as $p \to \infty$. Theorem 4.1 implies that for each $p \in \mathbb{N}$

$$||m(x)||_{L^p_{[a,b]}} \le ||b_i(x)||_{L^p_{[a,b]}},$$

so that

$$\lim_{p \to \infty} \|m(x)\|_{L^p_{[a,b]}} \le \lim_{p \to \infty} \|b_i(x)\|_{L^p_{[a,b]}}.$$

Therefore $||m(x)||_{L^{\infty}_{[a,b]}} \le ||b_i(x)||_{L^{\infty}_{[a,b]}}$ and we have the desired result.

5. Evaluating the maximum

The process of increasing the L^p norm lead us to a finite class of polynomials that must contain the "largest" polynomial in Q_n . Specifically, we arrived at the class of Bernstein polynomials

$$b_i(x) = (x-a)^{n-i}(x-b)^i, \quad i = 1, ..., n-1.$$

We would like to determine which of these polynomials will maximize the L^p norm. To do so, we recall (from [Dennery and Krzywicki 1996, pp. 94–98], for example) the beta function, defined by

$$B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ satisfies the property $\Gamma(n+1) = n!$.

Initially, we answer the question when a = 0 and b = 1, and then translate the result back to general a and b by the appropriate substitution. We observe that

$$\int_0^1 x^{n-i} (x-1)^i dx = (-1)^i B(n-i+1, i+1) = (-1)^i \frac{\Gamma(n-i+1)\Gamma(i+1)}{\Gamma(n+2)}.$$

Since the polynomials $b_i(x)$ are either entirely positive or entirely negative on [0, 1], we have

$$\|b_i(x)\|_{L^1_{[0,1]}} = \left| \int_0^1 x^{n-i} (x-1)^i dx \right| = \frac{\Gamma(n-i+1)\Gamma(i+1)}{\Gamma(n+2)} = \frac{1}{n+1} \frac{i! (n-i)!}{n!}.$$

Note that $\frac{i!(n-i)!}{n!}$ is the reciprocal of the binomial coefficient $\binom{n}{i}$. Since n is fixed, we need to pick the value of i that minimizes this binomial coefficient. Clearly this happens when i=1 or i=n-1. Therefore, the maximum value of the norm is obtained for $b_1(x)$ and $b_{n-1}(x)$:

$$||b_1(x)||_{L^1_{[0,1]}} = ||b_{n-1}(x)||_{L^1_{[0,1]}} = \frac{1}{n+1} \binom{n}{1}^{-1} = \frac{1}{n(n+1)}.$$
 (4)

This can be generalized to the interval [a, b] by using the substitution u = (x - a)/(b - a); for any monic degree-n polynomial q(x) with all real zeros in [a, b] such that q(x) has roots at a and b, we have

$$||q(x)||_{L^1_{[a,b]}} \le (b-a)^{n+1} \frac{1}{n(n+1)}.$$

If $p \in \mathbb{N}$, the same method can be used to evaluate the L^p norm of the Bernstein polynomials. We have

$$||b_{i}(x)||_{L_{[0,1]}^{p}}^{p} = \left[\frac{\Gamma(pn-pi+1)\Gamma(pi+1)}{\Gamma(pn+2)}\right]^{1/p} = \left[\frac{1}{pn+1} \frac{(pn-pi)!(pi)!}{(pn)!}\right]^{1/p}. (5)$$

The maximum value is still achieved by $b_1(x)$ and $b_{n-1}(x)$. Inequality (5) can be generalized to the interval [a, b] by using the substitution u = (x - a)/(b - a); for any monic degree-n polynomial q(x) with all real zeros in [a, b] such that q(x) has roots at a and b,

$$\|q(x)\|_{L^p_{[a,b]}} \le \left[(b-a)^{pn+1} \frac{1}{pn+1} \frac{(pn-pi)! (pi)!}{(pn)!} \right]^{1/p}.$$

If p is not a natural number, the first equality in (5) is still valid, though we can no longer express the result in terms of factorials. Therefore (again passing to the case of [a, b]) we can write

$$||b_i(x)||_{L^p_{[a,b]}} = \left[(b-a)^{pn+1} \frac{\Gamma(pn-pi+1)\Gamma(pi+1)}{\Gamma(pn+2)} \right]^{1/p}.$$
 (6)

To find the values of i that maximize this expression, we can differentiate it with respect to i. (Although only integer values of i make sense in our context, the quotient in (6) makes sense for all real i in the range of interest, $1 \le i \le n-1$. The domain of definition and differentiability of the gamma function includes $(0, \infty)$.) The derivative of the gamma function involves another transcendental function, known as polygamma. The upshot is that the quotient in (6) has only one critical point in the interval $1 \le i \le n-1$, and it is a minimum rather than a maximum. It follows that, once more, the local maxima in this interval must be at the endpoints of the interval, that is, i = 1 and i = n-1.

6. Recovering the supremum norm

As mentioned in the introduction, it was established in [Boelkins et al. 2006] that the Bernstein polynomials $b_1(x)$ and $b_{n-1}(x)$ are the members of Q_n with the largest L^{∞} norm on [a, b]. In fact, they found that

$$||b_1(x)||_{L^{\infty}_{[a,b]}} = \frac{(b-a)^n}{n} \left(\frac{n-1}{n}\right)^{n-1},$$

a result that we now reproduce as a consequence of the work in the previous section. We have seen that, for $p \in \mathbb{N}$,

$$||b_1(x)||_{L^p_{[a,b]}} = \left\lceil \frac{(b-a)^{pn+1}}{pn+1} \left(\frac{(pn-p)! \, p!}{(pn)!} \right) \right\rceil^{1/p}.$$

Applying Sterling's approximation, $\lim_{n\to\infty} \left(n! - \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right) = 0$, we obtain

$$\begin{split} \|b_1(x)\|_{L^{\infty}_{[a,b]}} &= \lim_{p \to \infty} \|b_1(x)\|_{L^{p}_{[a,b]}} \\ &= \lim_{p \to \infty} \left[\frac{(b-a)^{pn+1}}{pn+1} \frac{(pn-p)!}{(pn)!} \right]^{1/p} \\ &= \lim_{p \to \infty} \left[\frac{(b-a)^{pn+1}}{pn+1} \frac{\sqrt{2\pi p(n-1)} {p(n-1) \choose e}^{p(n-1)} \sqrt{2\pi p} {p \choose e}^{p}}{\sqrt{2\pi pn} {p \choose e}^{pn}} \right]^{1/p}. \end{split}$$

After simplification, this becomes

$$||b_{1}(x)||_{L_{[a,b]}^{\infty}} = \frac{(b-a)^{n}}{n} \left(\frac{n-1}{n}\right)^{n-1} \lim_{p \to \infty} \left[\frac{(b-a)}{pn+1} \left(\frac{\sqrt{2\pi p(n-1)}}{\sqrt{n}}\right)\right]^{1/p}$$

$$= \frac{(b-a)^{n}}{n} \left(\frac{n-1}{n}\right)^{n-1} \lim_{p \to \infty} \left(\frac{b-a}{\sqrt{n}}\right)^{1/p} \lim_{p \to \infty} \left(\frac{\sqrt{2\pi p(n-1)}}{pn+1}\right)^{1/p}$$

$$= \frac{(b-a)^{n}}{n} \left(\frac{n-1}{n}\right)^{n-1} \lim_{p \to \infty} \left(\frac{\sqrt{2\pi p(n-1)}}{pn+1}\right)^{1/p}.$$

L'Hopital's rule implies

$$\lim_{p \to \infty} \left(\frac{\sqrt{2\pi p(n-1)}}{pn+1} \right)^{1/p} = 1$$

and it follows that

$$||b_1(x)||_{L^{\infty}_{[a,b]}} = \frac{(b-a)^n}{n} \left(\frac{n-1}{n}\right)^{n-1}.$$

We can now reasonably claim that the Bernstein polynomials are the largest monic polynomials with all real roots in [a, b] in the full sense of all possible L^p norms.

References

[Boelkins et al. 2006] M. Boelkins, J. Miller, and B. Vugteveen, "From Chebyshev to Bernstein: a tour of polynomials small and large", College Math. J. 37:3 (2006), 194-204. MR 2007i:12001

[Dennery and Krzywicki 1996] P. Dennery and A. Krzywicki, Mathematics for physicists, Dover, Mineola, NY, 1996. MR 42 #1376 Zbl 1141.00003

[Wheeden and Zygmund 1977] R. L. Wheeden and A. Zygmund, Measure and integral: an introduction to real analysis, Pure and Applied Mathematics 43, Marcel Dekker, New York, 1977. MR 58 #11295 Zbl 0362.26004

Revised: 2011-05-04 Received: 2010-05-05 Accepted: 2011-07-12

frayerc@uwplatt.edu Mathematics Department, University of Wisconsin-Platteville,

1 University Plaza, Platteville, WI 53818, United States

shafhauserc@uwplatt.edu Department of Mathematics, University of Nebraska-Lincoln,

Lincoln, NE 68588, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu		
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu		
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz		
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu		
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com		
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu		
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir		
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu		
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu		
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu		
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu		
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com		
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch		
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu		
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu		
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu		
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu		
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu		
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu		
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu		
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu		
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu		
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu		
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com		
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu		
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu		
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com		
David Larson	Texas A&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu		
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu		
PRODUCTION					

RODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2011 is US \$100/year for the electronic version, and \$130/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

A NON-PROFIT CORPORATION

Typeset in LATEX

Copyright ©2011 by Mathematical Sciences Publishers

CHRISTOPHER FRAYER AND CHRISTOPHER SHAFHAUSER	
The family of ternary cyclotomic polynomials with one free prime YVES GALLOT, PIETER MOREE AND ROBERT WILMS	317
Preimages of quadratic dynamical systems BENJAMIN HUTZ, TREVOR HYDE AND BENJAMIN KRAUSE	343
The Steiner problem on the regular tetrahedron Kyra Moon, Gina Shero and Denise Halverson	365
Constructions of potentially eventually positive sign patterns with reducible positive part Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa	405
Congruence properties of S-partition functions ANDREW GRUET, LINZHI WANG, KATHERINE YU AND JIANGANG ZENG	411

307

Maximality of the Bernstein polynomials