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The Steiner problem involves finding a shortest path network connecting a spec-
ified set of points. In this paper, we examine the Steiner problem for three points
on the surface of a regular tetrahedron. We prove several important properties
about Steiner minimal trees on a regular tetrahedron. There are infinitely many
ways to connect three points on a tetrahedron, so we present a way to eliminate
all but a finite number of possible solutions. We provide an algorithm for finding
a shortest network connecting three given points on a regular tetrahedron. The
solution can be found by direct measurement of the remaining possible Steiner
trees.

1. Introduction

The Steiner problem asks to find a shortest path network to connect a given set of
points on a surface. In this paper we will study the three point Steiner problem on
a regular tetrahedron. We will provide an algorithm in Section 10, Algorithm 10.1,
that determines a solution to the three point Steiner problem on the regular tetra-
hedron.

On the Euclidean plane, the Steiner problem has been studied extensively; see
[Gilbert and Pollak 1968; Hwang et al. 1992; Ivanov and Tuzhilin 1994, Chapter 9;
Melzak 1961; Zacharias 1914–1921]. The Steiner problem for three points on the
Euclidean plane was formally introduced in the seventeenth century by Fermat;
see [Hwang et al. 1992; Kuhn 1974; Zacharias 1914–1921]. A general algorithm
to find the solution to the Steiner problem for n points on the Euclidean plane was
first developed by Melzak [1961] (see also [Hwang et al. 1992]).

The Steiner problem on the surface of the tetrahedron is not as straightforward
as on the plane. In particular, a geodesic segment connecting any two points on
the surface of the tetrahedron is not unique (see top part of Figure 1 on next page).
Consequently, there are infinitely many locally stable shortest-length trees connect-
ing any three points on the surface of the tetrahedron (see Figure 1, bottom). In this
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Figure 1. Candidates for a shortest path (top) and for a shortest
tree (bottom).

paper, we provide an algorithm that eliminates all but a small number of path net-
works that need be considered as possible minimizers. Amongst these remaining
candidates, a shortest path network can be found using direct measurement.

This research contributes to the growing set of strategies for solving Steiner
problems on surfaces in general. Algorithms exist to find the solution for the
Steiner problem on certain surfaces of constant curvature. The problem was studied
in [Weng 2001; Litwhiler and Aly 1980; Brazil et al. 1998] for on curved surfaces,
including spheres. March and Halverson [2005] studied Steiner trees in hyperbolic
space. Lee et al. [2011] studied the Steiner problem on wide and narrow cones.
Penrod [2007] and May and Mitchell [2007] developed algorithms to solve Steiner
problems on the flat torus. Caffarelli et al. [2010] studied the Steiner problem on
surfaces of revolution. Brune and Sipe [2009] developed an algorithm to find a
shortest path between two points on the surface of the regular tetrahedron. This
research about the Steiner problem on the regular tetrahedron may provide further
insight into the Steiner problem on more general piecewise linear surfaces.

2. Preliminaries

We begin by setting up the basic framework for the Steiner problem on a regular
tetrahedron T. Let A = {a1, a2, . . . , an} be a set of given points on T called
terminal points, and let L be a path network (also on T) connecting the points
in A. A path network connects a collection of arcs, only possibly meeting at the
endpoints such that the network contains a path connecting any two points of A.
If L is a shortest path network, the edges must be geodesics. L must also be a tree
since if L contained a cycle, one of the edges could be removed. The goal of the
Steiner problem is to find a shortest path network L connecting the points of A.
A shortest path network may have additional vertices called Steiner points. The
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solution to the Steiner problem is called the Steiner minimal tree, which will be
denoted by SMT(A).

As defined in [Hwang and Weng 1986], a tree with n fixed points is called a
Steiner tree on n fixed points if it satisfies the following conditions:

(1) There are at most n− 2 Steiner points.

(2) Each Steiner point has exactly three incident edges.

(3) Any pair of edges meeting at any vertex of the tree form an angle with measure
at least 120◦.

Note that for a tree with no degree-two Steiner points, the number of edges
minus the number of vertices is 1, which in fact implies condition 1. A tree that
has exactly n− 2 Steiner points is called a full Steiner tree. A tree that has fewer
than n− 2 Steiner points is called a degenerate Steiner tree.

The Steiner problem for n fixed points on the plane can be solved in finite time
using Melzak’s algorithm [1961]. We will utilize these results for the regular tetra-
hedron since the plane can be viewed as a branched cover of the regular tetrahedron.
The Steiner problem on T is more complex than on the plane because there are
infinitely many geodesics that could connect two points. Thus, the process of solv-
ing the Steiner problem on T is initially a problem of narrowing down potential
path networks.

The algorithm used to solve the 3-point Steiner problem in Euclidean space was
developed by Torricelli, Cavalieri, Simpson, Heinen, and Bertrand (see [Hwang
et al. 1992]). For convenience, we repeat it here.

Algorithm 2.1. This algorithm provides a shortest network connecting three given
points in Euclidean space.

(1) Let A, B, and C be given. Label A, B, and C so that m 6 ABC ≥ m 6 AC B
and m 6 ABC ≥ m 6 B AC .

(2) Determine whether Case 1 or 2 applies.

Case 1. If m 6 ABC > 120◦, the Steiner minimal tree is degenerate and it is
AB ∪ BC . The algorithm is complete (see figure for example).

m∠ABC = 121.52°

A

B

C

Case 2. If m 6 ABC ≤ 120◦, proceed to Steps (3)–(6).
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(3) Create an equilateral triangle 4BC E where E is on the opposite side of
←−→

BC
from A.

S
E

A

B

C

(4) Construct EA . This line segment is called the Simpson line. (The length of
the Simpson Line is known to have the same length as the SMT(A, B,C)
[Hwang et al. 1992].)

(5) Next, circumscribe a circle about 4BC E . The point of intersection of that
circle and EA is the Steiner point S.

(6) Connect each of A, B, and C to S to form SMT(A, B,C). By construction,
every two edges of the tree which meet at the Steiner point have angle 120◦

[Gilbert and Pollak 1968]. The algorithm is complete.

m∠ASC = 120°

m∠BSC = 120°

m∠ASB = 120°

S

A

B

C

Another observation relevant to our discussion of the Steiner problem on the
regular tetrahedron is that no geodesic passes through the vertices of a narrow
cone [Lee et al. 2011]. Since a small neighborhood of a vertex is a narrow cone,
no shortest path network will pass through any vertices of T. Hence, a shortest
path network can only meet a vertex of T if a fixed point is placed on that vertex
[Ivanov and Tuzhilin 1994, Chapter 9].

3. Tiling the plane

In this section we will show how to construct a branched covering of the plane
onto the regular tetrahedron. For further reference, see [Ivanov and Tuzhilin 1994,
Chapter 9].

Consider a regular tetrahedron with faces labeled 1, 2, 3, and 4. Cut along the
edges common to faces 1 and 2, 1 and 4, and 2 and 4 and lay it on the plane, as
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shown in the figure. We will use this configuration to tile the plane.

2
3

4

1

Notice that face 1 is adjacent to face 2 on the tetrahedron. Thus, in order to
represent that on the plane, we must place a tile corresponding to face 2 so it
becomes adjacent to a tile corresponding to face 1. This is accomplished by placing
a tile corresponding to face 2 that is an 180◦ rotation about a common vertex.
Similarly, we must place a tile corresponding to face 4 so that the tile corresponding
to face 1 and a tile corresponding to face 4 have a common edge in the plane as
they do on the tetrahedron. Since each face on the tetrahedron is adjacent to the
other three faces, then each face should be adjacent to all of the other faces on
the plane. If copies of each face are placed at 180◦ rotations about each of their
respective vertices, this results in a comprehensive tiling of the Euclidean plane.

Points on T will be represented by lower case letters. The corresponding points
in the tiling will be represented by corresponding capital letters. Assume a is on
face 1 on T. Then for each tile corresponding to face 1, there is a copy of A on
the tile. Two adjacent tiles contain copies of A which are 180◦ rotations about the
common vertex of the tile containing A. A small section of the tiling can be seen
here:
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We introduce a coordinate system to notate the different faces of the tiling. In
the tiling, the horizontal lines that separate the triangles will be known as mi , for
i = . . . ,−2,−1, 0, 1, 2, . . . . Similarly define ni as the lines with the slope equal
to−
√

3. Finally define pi as the lines with slope
√

3. We thus obtain the following
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arrangement:
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Using this coordinate system, we can identify individual tiles. For any tile that is
bounded by mx , ny , and pz , we will denote it as T(x,y,z). Without loss of generality,
we will assume that T(0,0,0) corresponds to face 1, T(1,−1,0) corresponds to face 2,
T(0,−1,1) corresponds to face 3, and T(1,0,1) corresponds to face 4. Though each
face of the tetrahedron is replicated infinitely many times, each tile in the tiling has
a unique labeling according to the lines that bound it.

We now show that this tiling is a branched covering of the plane onto the regular
tetrahedron. Let 5 : R2

→T be the natural continuous map that takes each tile of
the plane to its corresponding face in T homeomorphically. Let V be the vertex set
of T. Note that 5 is a branched covering map with branch set V. Then the map

π : R2
−5−1(V )→ T−V

(which is a restriction of 5) is a covering map of T−V. Since π is a covering
map, it has the following lifting property: Suppose a ∈ T−V and A ∈ 5−1(a).
Then any path α : [0, 1] → T − V so that α(0) = a has a unique lift to a path
α̃ : [0, 1] → R2

−5−1(V) with α̃(a) = A. The map α̃ is a lift in the sense that
π ◦ α̃ = α. It follows that any embedded path network in T−V containing a can
be uniquely lifted to a path network containing A.

Note that in the case that a ∈V and 5(A)= a, for any embedded path network
containing a in T, there are two lifts of the path network containing A. These lifts
are 180◦ rotations of each other about A.

4. The two point problem

This section will briefly describe an algorithm used to construct a shortest path
between any two points on a regular tetrahedron. For further details on this process,
refer to [Brune and Sipe 2009]. The algorithm detailed here will depend heavily
on the following basic geometric property:
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Property 4.1. Given any two points A and B on the plane, construct the perpen-
dicular bisector of AB and call it PAB . If X is on the A side of PAB , then X is
closer to A. If X is on the B side of PAB , then X is closer to B.

Definition 4.2. Given two points P and Q on the plane, define H̃P Q to be the
half-plane cut by the perpendicular bisector of P and Q on the P side; that is,

H̃P Q = {X |P X ≤ Q X}.

HPQ
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The algorithm: a brief synopsis. Suppose there are two points p and q on distinct
faces of the tetrahedron. Suppose R2 is tiled as in Section 3. Recall that 5 :
R2
→ T is the covering map and R2 is tiled as in Section 3. Then 5−1(p) and

5−1(q) contain infinitely many points. Let P ∈5−1(p). We want to find a point
Q ∈ 5−1(q) that realizes a shortest path from p to q. The points of 5−1(q) that
could realize a shortest path to P can be restricted to a star-shaped region. The
region consists of an interior hexagon which contains the point P , outlined by six
tiles which contains points of5−1(q). This region is called an i-star for i = 1, 2, 3,
or 4, where i is the face of the tetrahedron containing q. We illustrate a 4-star when
p is on face 1 and q is on face 4:
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It was proved in [Brune and Sipe 2009] that this i-star always contains a shortest
path between two points.
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Figure 2. Reducing the number of possible points of5−1(q) that
can realize a shortest path.

There is a cutting technique that has been shown to reduce the number of possi-
ble points of 5−1(q) that could realize a shortest path. Begin by constructing the
line segment from point P to the point P ′ ∈5−1(p), also located within the 4-star.
Then, construct the perpendicular bisector of PP ′ , denoted PPP ′ (see Figure 2,
left). Every point of 5−1(q) within the star that falls on the same side of l as
P will now be the only copies of 5−1(q) considered for the shortest path. The
portion of the star-shaped region which is on the P side of PPP ′ is called τ (see
Figure 2, right).

There are three points of5−1(q) in τ which we will label as Q1, Q2, and Q3, as
shown in Figure 2, right. (If PPP ′ contains a point of 5−1(q) in τ , then it contains
another point of5−1(q) and either point in5−1(q) in τ can be discarded.) To find
min{P Qi } where i = 1, 2, 3, we construct H̃Qi Q j for i = 1, 2, 3 and j 6= i .

Note that the boundary of H̃Qi Q j is PQi Q j . If Qi is closest to P , then P must
lie in H̃Qi Q j ∩ H̃Qi Qk . Note that if P is equally close to Qi and Q j , then P lies in
both H̃Qi Q j ∩ H̃Qi Qk and H̃Q j Qi ∩ H̃Q j Qk . In the figure below, a shortest path is
realized by P Q3 . Hence, P lies in H̃Q3 Q1 ∩ H̃Q3 Q2 . In particular, 5(P Q3 ) is the
minimal geodesic connecting p and q and will traverse faces 1, 2, and 4.

PQ2Q3

PQ1Q2

PQ1Q3
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5. Overview

Suppose {x, y, z} ∈ T. Recall that 5 is the branched covering map described
in Section 3. Thus 5−1(x),5−1(y), and 5−1(z) contain infinitely many points.
Hence, there are also infinitely many distinct Steiner trees connecting points x, y
and z. Our goal in this paper is to narrow down the number of combinations in the
tiled plane which may realize the solution.

As stated earlier, we will divide our discussion of this problem into three cases:

Case 1: Three points that can be considered to be on one face of T.

Case 2: Three points that can be considered to be on three distinct faces of T.

Case 3: Any configuration of three points that does not fit into the first two cases
(i.e., three points that can only be considered to be on two distinct faces).

Section 6 will address the simplest case where all three points are on a common
face of the tetrahedron. Section 7 will introduce the strategies needed for Sections
8 and 9. In Section 8, we will discuss case 2, and in Section 9 we will discuss case
3. We will discuss how to solve the problem for any specific positioning of the
points in Section 10.

6. Case 1: Three points on one face

We know by a theorem proved in [Brune and Sipe 2009] that a shortest path network
connecting n points contained on the same face of a regular tetrahedron is contained
within that face. Thus, the Steiner minimal tree for three points on the same face
of a tetrahedron can be constructed in that face using the algorithm described in
Algorithm 2.1.

7. Geometric properties of Steiner minimal trees

Given a, b, c ∈ T and the corresponding point sets on the tiled plane, there are
many ways that points can be selected, each corresponding to a Steiner tree on T.
However, only certain of the combinations realize the Steiner minimal tree on the
tetrahedron. The next several results represent strategies that help eliminate fruit-
less combinations. At this point the reader is encouraged to reread Property 4.1,
describing the situation illustrated here:
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Lemma 7.1 (perpendicular bisector rule I). Suppose A, A′ ∈5−1(a) such that A
is on tile T and A′ is on tile T ′. Then for any point B on T , AB ≤ A′B. If neither
A nor B are a common vertex of T and T ′, then AB < A′B.

Proof. Let b = 5(B). Note that a and b are on the same face. We know from a
theorem proved in [Brune and Sipe 2009] that a shortest path network connecting
n points on the same face is in that same face and here is ab, which is realized by
AB in T . Since AB is a minimum of all paths A′B where A′ ∈5−1(a), then for all
A′ 6= A, AB≤ A′B. If A is not a common vertex of T and T ′, then A 6= A′, so PAA′

is defined. If B is not a common vertex of T , then B ∈ PAA′ . Thus AB < A′B. �

Next, let A, B, and C be points in the tiled plane such that

5(SMT(A, B,C))= SMT(a, b, c).

We will show that the convex hull of the triangular region formed from A, B, and C
cannot contain a vertex of the tiled plane unless that vertex is one of A, B, or
C . However, before we prove this, we introduce a definition and a property of
triangular regions in general.

Definition 7.2. Given two points X and V , let 0X V be the line perpendicular to
X V through V .

Lemma 7.3. Suppose there is a triangular region with vertices A, B, and C that
contains the point V in the interior. Then there is an X ∈ {A, B,C} such that 0X V

separates X from {A, B,C}− {X}.

Proof. If 0AV separates A from BC , the proof is done (left figure):

|AV

A

B

C

V

|AV

A

B

C

V

Otherwise, one of B or C is on the same side of 0AV as A.
Without loss of generality, suppose B is on the same side of 0AV as A (right

figure). Then m 6 AV B ≤ 90◦. Then if 0CV separates C from A and B, the proof
is done.

If not, one of A or B is on the same side of 0CV as C . In the former case we have
m 6 CV A≤ 90◦, while in the latter we have m 6 CV B ≤ 90◦. Here is an illustration
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of the second possibility:
|CV

A B

C

V

Thus, either m 6 AV C +m 6 AV B ≤ 180◦ or m 6 CV B +m 6 AV B ≤ 180◦. In
either case, we are in contradiction with the hypothesis that V is in the interior
of 4ABC . Thus, there exists an X ∈ {A, B,C} such that 0X V separates X from
{A, B,C}− {X}. �

Theorem 7.4 (vertex rule). Suppose a, b, and c ∈ T and

5(SMT(A, B,C))= SMT(a, b, c).

Then the image of the convex hull of 4ABC under 5 cannot contain a vertex v,
unless v is one of a, b, or c.

Proof. By way of contradiction, suppose a vertex V of the tiling is contained in
the interior of the convex hull of 4ABC . Construct SMT(A, B,C), and label the
Steiner point S (the Steiner tree may possibly be degenerate). Using Lemma 7.3,
we may assume without loss of generality that 0CV separates C from both A and
B. Reflect the part of the path on the C side of 0CV across 0CV . Let C ′ be the
reflection of C across 0CV . Note that the partially reflected path connects A, B,
and C ′ and is equal in length to SMT(A, B,C). Thus, there is an alternate choice of
points in5−1(a),5−1(b), and5−1(c) which is at least as short as SMT(A, B,C).
If S is on the opposite side of 0CV as C , we can shorten the tree by replacing SC
with SC ′ (see figure on the left). If S is on the same side of 0CV as C , we can
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shorten the tree by replacing S A with S A′ and SB with SB ′, where A′ and B ′

are the reflections of A and B across 0CV , respectively. If S is on 0CV , then
SC = SC ′, so either tree is the same length. However, the tree containing A, B,
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and C ′ will no longer meet the 120◦ condition for Steiner trees, and will not be
SMT(A, B,C ′). Thus L(SMT(A, B,C ′)) < L(SMT(A, B,C)), which implies
that 5(SMT(A, B,C)) 6= SMT(a, b, c). �

Theorem 7.5 (perpendicular bisector rule II). Let A, A′ ∈ 5−1(a) on the tiled
plane be distinct. If PAA′ separates {B,C} from A, then

L(SMT(A′, B,C)) < L(SMT(A, B,C)).

Hence, 5(SMT(A, B,C)) 6= SMT(a, b, c).

Proof. Let λ be the reflection of the part of SMT(A, B,C) on the A side of PAA′

across PAA′ :

P
AA'

A'

A

B

C

λ

Note that λ uses the point A′ as a terminal, thus it is a path network connecting
A′, B, and C . By a similar argument as in Theorem 7.4, we obtain

L(SMT(A, B,C))= L(λ) > L(SMT(A, B,C ′)). �

Sectors and half-planes.

Definition 7.6. Fix a vertex V of the tiled plane, and let T1 and T2 be tiles (not
necessarily adjacent to V ) that are mapped to one another with respect to 180◦

rotation about V . Define the sector ST2T1 as the intersection of all half-planes
H̃X2 X1 , where X1 runs over all points in T1 and X2 is it image under a 180◦ rotation
about V . Clearly H̃X2 X1 is fully determined by the direction of the vector V X1;
thus by considering two extreme cases for this direction, as here:

H
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we conclude that the ST2T1 is the intersection of the half-planes H̃X2 X1 obtained in
these two cases:

ST2T1

T2

T1

X
2

X
1

Next, if Y and Z are arbitrary points belonging to tiles T1 and T2, respectively, we
set SY Z = ST2T1 .

Definition 7.7. Let T1, T2 be tiles that are translates of each other on the tiled plane,
satisfying 5(T1) = 5(T2). Then the intersection of all half-planes H̃X2 X1 where
X i ∈ Ti and 5(X1)=5(X2), is denoted by HT2T1 .

H
T2T1

T
1 T

2

If Y and Z are arbitrary points belonging to tiles T1 and T2, respectively, we set
SY Z = ST2T1 .

Theorem 7.8 (Steiner point rule). Let A, B, and C be points in the tiled plane such
that 5(SMT(A, B,C)) is a Steiner minimal tree on the tetrahedron. Suppose that
S is the Steiner point of SMT(A, B,C). If S′ is any other point of5−1(5(s)), then
X S ≤ X S′ for X = A, B, and C.

Proof. Without loss of generality, assume that X = C . By way of contradiction,
suppose C S′ < C S. Then there exists a point C ′ ∈ 5−1(c) such that C S′ = C ′S.
This implies that

L(SMT(A, B,C))= AS+ BS+C S > AS+ BS+C ′S

≥ L(SMT(A, B,C ′)),

as needed. (See Figure 3 on next page.) �
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Figure 3. Toward the proof of Theorem 7.8.

8. Case 2: Three points on three distinct faces

When the three points can be viewed to lie on three distinct faces, we use the
following procedure to determine the possible configurations of the points on the
tiled plane which may realize the Steiner minimal tree. Our arguments apply also
when the three points can be viewed to lie on two or one face, as may be the case
if one or more of the points lie on vertices or edges. For example, if one point is in
the interior of a face, another point is in the interior of another face, and the third
point is on a vertex shared by both faces, then we can assign the third point to the
third face which shares that vertex, and the configuration is in the realm of Case 2.

Triple ribbon region. Recall the labeling system introduced in Section 3, in which
mi , ni , and pi represent the horizontal, negative slope, and positive slope lines,
respectively. Also recall that the triangle that is bounded by mx , ny , and pz will be
denoted as T(x,y,z).

Let a, b, and c be points on the tetrahedron such that s is the Steiner point for
SMT(a, b, c). Let τ0 be the shaded region in Figure 4. Since τ0 contains copies of
the tiles corresponding to all four faces, a copy of S ∈5−1(s) must lie within τ0.
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Figure 4. The region τ0.
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Let S∗ = 5−1(5(s))− {S}. We will determine a region R such that given a
point P ∈ R, P S ≤ P S′ for any S′ ∈ S∗. It follows from Theorem 7.8 that any
points not in R cannot be the fixed points of the Steiner minimal tree that contains
S and realizes SMT(a, b, c).

In order to simplify the process, we will first determine the region Ri that con-
tains all points closer to Ti than to any other tile corresponding to face 1. Then
R=

⋃
Ri . We will call R=

⋃
Ri the triple ribbon region.

Reductions. Let i = 1. Let S′ be the 180◦ rotation of S about the vertex V =
T1 ∩ T(2,0,0). Then any point X ∈ ST(2,0,0)T1 is closer to S′ than S. Thus no fixed
point is in ST(2,0,0)T1 :
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Likewise, no fixed points will be found in ST(0,−2,0)T1 or ST(0,0,2)T1 :
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There are also no fixed points to be found in ST(2,−2,−2)T1, ST(−2,−2,2)T1 , and ST(2,2,2)T1 :
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R1 is the closure of the region remaining when the shaded regions in the six
figures of the previous page are cut away. It is shown in white here:
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Regions R2, R3, and R4 are found similarly. The union of all these regions,
R=

⋃4
i=1 Ri , is the triple ribbon region (Figure 5).
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Figure 5. The triple ribbon region (in white).

Regardless of the location of s on the tetrahedron, a copy of5−1(SMT(a, b, c))
is contained within the triple ribbon region. Thus, it is sufficient to check only the
combinations of fixed points in the triple ribbon region.

Although the number of potential path networks needed to be checked to find
SMT(a, b, c) is a finite number, it is still a significant number. Note that there are
six tiles meeting the triple ribbon region corresponding to face i for i = 2, 3, 4.
Thus there are 6×6×6= 216 combinations to consider given the specification of
points in certain faces of τ0. Hence, we continue to make further reductions.

Horn removal. We subdivide the triple ribbon region as follows. The closure of
the bounded white region in Figure 6 (on the next page) is called the badge region.
The small black triangles, which make up the difference between the triple ribbon
region and the badge region, are called the horns.
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Figure 6. The badge region (closure of the polygon in white) and
the horns (in black).

Proposition 8.1. Suppose a, b, and c are three points on distinct faces of T, none
of which are chosen to be face 1. Then there is a copy of

SMT(A, B,C) ∈5−1(SMT(a, b, c))

on the tiled plane which is contained in the badge region centered about a tile
corresponding to face 1 with Steiner point S contained in the triangular region τ0

(see Figure 4).

Proof. Without loss of generality, assume that a is contained on face 3, b is con-
tained on face 4, and c is contained on face 2. Let A ∈ 5−1(a), B ∈ 5−1(b),
and C ∈ 5−1(c) lie in the triple ribbon region such that 5(SMT(A, B,C)) =
SMT(a, b, c). Note that no portion of the horns contains any points of 5−1(a),
5−1(b), or 5−1(c) and therefore cannot contain A, B, or C . Let H1 be the horn
bounded by m2, n0, and p−1 that is outside the badge region.

Suppose an edge of SMT(A, B,C) meets H1 outside the badge region. If the
interior of an edge passes through either side of the horn not on m2, the edge must
meet the shaded region. But by hypothesis, SMT(A, B,C) must lie entirely within
the triple ribbon region. Thus the edge may only pass through the boundary of the
horn on m2. If so, the only possibility is that one of the endpoints of the edges is
contained in H1. Thus a fixed point is contained in the interior of the horn, and
hence contained in the interior of face 1. But by hypothesis, face 1 was not selected
as one of the faces containing fixed points. Therefore, an edge of SMT(A, B,C)
does not meet H1. By a similar argument, SMT(A, B,C) cannot meet any horn.

�

Reduction to the piping region. Using Theorem 7.4 and Theorem 7.5, we will
now demonstrate that a lift of the Steiner minimal tree can be contained in a subset
of the badge region called the piping region (Figure 7). What is left over of the
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Figure 7. The piping region (closure of the polygon in white) and
the flaps (in black).

badge region is called the (top) flaps. We will show that if SMT(A, B,C) realizes
SMT(a, b, c) and is contained in the badge region, then SMT(A, B,C) does not
meet the flaps outside the piping region.

Theorem 8.2. Suppose a, b, and c are three points on distinct faces of T, none
of which chosen to be face 1. Suppose SMT(A, B,C) ∈5−1(a, b, c) is contained
in the badge region. Then SMT(A, B,C) ∈ 5−1(a, b, c) is also contained in the
piping region centered about a tile corresponding to face 1.

Proof. Assume the setup given in the proof of Proposition 8.1. We will show that
the Steiner minimal tree need not meet any of the flaps. By way of contradiction,
suppose that SMT(A, B,C) meets the top flap, the flap contained in T(2,1,−1), out-
side the piping region. If SMT(A, B,C) meets the top flap, then at least one fixed
point or vertex of SMT(A, B,C) must lie above m2. Note that by construction, S
is contained in T0 and cannot be this point. Since the only tile in the badge region
which lies above m2 is a tile corresponding to face 3, the fixed point must lie in the
interior of face 3. Thus, A must lie in the top flap outside the piping region. For the
remainder of the argument, we will denote A by A1 and label the other copies of
5−1(a),5−1(b), and5−1(c) contained in tiles meeting the badge region as shown
in the figure on the top of the next page. We will show either that any Steiner tree
SMT(A1, Bi ,C j ) with S in τ0 contained within the badge region cannot realize
SMT(a, b, c) or that there exists another copy of the tree within the piping region.

We will first determine which combinations cannot realize SMT(a, b, c).Once
those combinations are determined, we will show that the remaining combinations
have an equivalent copy contained in the piping region.

Construct the sector SA2 A1 . If any points Bi and C j are both contained in SA2 A1 ,
they must both be separated from A1 by PA2 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
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By this argument, the combinations (Bi ,C j ), for i = 4, 5 and j = 4, 5, 6, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA3 A1 . If any points Bi and C j are both contained in
HA3 A1 , they must be separated from A1 by PA3 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 4, 6 and j = 3, 4, 5, 6, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA4 A1 . If any points Bi and C j are both contained in
HA4 A1 , they must be separated from A1 by PA4 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 3, 4, 5, 6 and j = 4, 6, cannot
be used with A1 to realize SMT(a, b, c).

Consider SMT(A1, B1,C3). Note that both A1 and B1 must be contained in
SC1C3 . Thus, A1 and B1 must be separated from C3 by PC1C3 . By Theorem 7.5,
5(SMT(A1, B1,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C4). Note that both A1 and B1 must be contained in
SC2C4 . Thus, A1 and B1 must be separated from C4 by PC2C4 . By Theorem 7.5,
5(SMT(A1, B1,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C5). Note that both A1 and B1 must be contained in
HC1C5 . Thus, A1 and B1 must be separated from C5 by PC1C5 . By Theorem 7.5,
5(SMT(A1, B1,C5)) 6= SMT(a, b, c).

Consider SMT(A1, B1,C6). Note that both A1 and B1 must be contained in
SC1C6 . Thus, A1 and B1 must be separated from C3 by PC1C6 . By Theorem 7.5,
5(SMT(A1, B1,C6)) 6= SMT(a, b, c).
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Consider SMT(A1, B2,C2). Let V be the intersection of m1 and n0. Note that
V and A1 are on the same side of

←−−→

B2C2, V and B2 are on the same side of
←−−→

A1C2,
and V and C2 are on the same side of

←−−→

A1 B2. Thus V is contained in 4A1 B2C2.
By Theorem 7.4, 5(SMT(a, b, c)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C3). Note that C3 lies in HA2 A1 and that A1 lies in SC1C3 .
B2 must lie in at least one of SA2 A1 and HC1C3 . Suppose B2 lies in SA2 A1 . Then
both B2 and C3 must be separated from A1 by PA2 A1 . If B2 does not lie in SA2 A1 ,
then B2 must lie in HC1C3 . But then both B2 and A1 must be separated from C3 by
PC1C3 . By Theorem 7.5, 5(SMT(A1, B2,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C4). Note that C4 lies in HA3 A1 and that A1 lies in SC2C4 .
B2 must lie in at least one of HA3 A1 and SC2C4 . Suppose B2 lies in HA3 A1 . Then
both B2 and C4 must be separated from A1 by PA3 A1 . If B2 does not lie in HA3 A1 ,
then B2 must lie in SC2C4 . But then both B2 and A1 must be separated from C4 by
PC2C4 . By Theorem 7.5, 5(SMT(A1, B2,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C5). Note that C5 lies in HA3 A1 and that A1 lies in HC1C5 .
B2 must lie in at least one of HA3 A1 and HC1C5 . Suppose B2 lies in HA3 A1 . Then
both B2 and C5 must be separated from A1 by PA3 A1 . If B2 does not lie in HA3 A1 ,
then B2 must lie in HC1C5 . But then both B2 and A1 must be separated from C5 by
PC1C5 . By Theorem 7.5, 5(SMT(A1, B2,C5)) 6= SMT(a, b, c).

Consider SMT(A1, B2,C6). Note that both A1 and B2 must be contained in
SC1C6 . Thus, A1 and B2 must be separated from C6 by PC1C6 . By Theorem 7.5,
5(SMT(A1, B2,C6)) 6= SMT(a, b, c).

We now consider the combinations (A1, Bi ,C j ) for i = 4, 5, 6 and j = 1, 2. By
arguments of symmetry, 5(SMT(A1, Bi ,C j )) 6= SMT(a, b, c) for i = 4, 5, 6 and
j = 1, 2.

Consider SMT(A1, B3,C3). Let V be the intersection of m1 and n0. Note that
V and A1 are on the same side of

←−−→

B3C3, V and B3 are on the same side of
←−−→

A1C3,
and V and C3 are on the same side of

←−−→

A1 B3. Thus V is contained in 4A1 B3C3.
By Theorem 7.4, 5(SMT(A1, B1,C1)) 6= SMT(a, b, c).

The only remaining cases are (A1, B1,C1), (A1, B1,C2), and (A1, B2,C1). We
will show that copies of these trees exist within the piping region. However, we
will not claim that the Steiner point S must remain in τ0.

For (A1, B1,C1), note that 5(SMT(A1, B1,C1))=5(SMT(A2, B2,C2)) since
SMT(A2, B2,C2) is a rotation of SMT(A1, B1,C1) about V . SMT(A2, B2,C2) is
contained within the piping region.

For (A1, B1,C2), note that 5(SMT(A1, B1,C2))=5(SMT(A2, B2,C1)) since
SMT(A2, B2,C1) is a rotation of SMT(A1, B1,C2) about V . SMT(A2, B2,C1) is
contained within the piping region.

For (A1, B2,C1), note that 5(SMT(A1, B2,C1))=5(SMT(A2, B1,C2)) since
SMT(A2,B1,C2) is a rotation of SMT(A1,B2,C1) about V . Also, SMT(A2,B1,C2)
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is contained within the piping region.
Thus, each possible combination (A1, Bi ,C j ) does not realize SMT(a, b, c) or

has a copy within the piping region. Likewise, each possible combination involving
B5 or C5 does not realize SMT(a, b, c) or has a copy within the piping region.
Therefore, there is a solution contained in the piping region. �

The region resulting from Theorem 8.2 is the piping region, which we illustrated
in Figure 7.

Reduction to the truncated triangle region. We further subdivide the piping re-
gion into the truncated triangle region and the side flaps (Figure 8).
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Figure 8. The truncated triangle region (closure of white polygon)
and the side flaps (in black).

Theorem 8.3. Suppose a, b, and c are three points on distinct faces of T, none
of which are in the interior of face 1. Suppose SMT(A, B,C) ∈ 5−1(a, b, c) is
contained in the piping region. Then either SMT(A, B,C) ∈ 5−1(a, b, c) is also
contained in the truncated triangle region centered about a tile corresponding to
face 1 or there is a copy of SMT(A, B,C) contained within the truncated triangle
region that is a rotation of SMT(A, B,C).

Proof. Assume the setup in the proof of Proposition 8.1. Without loss of generality,
suppose that SMT(A, B,C) is in the piping region. We will show that the Steiner
minimal tree need not meet any of the side flaps. Although the final cases of
the proof of Theorem 8.2 did not guarantee that S was contained in τ0, S must be
contained in the truncated triangle region. This is because all the trees which could
be rotated to lie within the piping region contained fixed points contained within
the truncated triangle region. Because S must be contained in the convex hull of
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the triangular region formed from the fixed points, S must be contained within the
truncated triangle region.

By way of contradiction, suppose the Steiner minimal tree meets the flap con-
tained in T(2,−1,−1). If SMT(A, B,C) meets this side flap, then at least one fixed
point or vertex of SMT(A, B,C) must lie above to the left of p−1 and above m1.
Since S is contained in the truncated triangle region (Figure 8), S cannot be this
point. Since the only tile in the piping region which lies to the left of p−1 and
above m1 is a tile corresponding to face 3, the fixed point must lie in the interior
of face 3. Thus, A must lie in the specified side flap outside the truncated triangle
region. For the remainder of the proof we will denote A by A1 and number the
other points within the piping region as follows:

V1 V2

3
4 1 2 3 4 1 2

3

p-1

p-2

p1 p2 p3p0

m-1

m-2

m1

m2

m0

n-4

n1 n2 n3n-1

n-2

n-3

n0

3 2 3

1

1

12
33

41
2

3

4

1

4

3

2

14

1

4

3
2

2

3
4

1

1 2

3

4
4

3
2

1

B2

B1

B5

B4

C5

C4

C3C2

A5

A4

A3

A2

A1

C1

B3

Construct the sector SA2 A1 . If any points Bi and C j are both contained in SA2 A1 ,
they must both be separated from A1 by PA2 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
By this argument, the combinations (Bi ,C j ), for i = 4, 5 and j = 2, 4, 5, cannot
be used with A1 to realize SMT(a, b, c).

Construct the half-plane HA3 A1 . If any points Bi and C j are both contained in
HA3 A1 , they must both be separated from A1 by PA3 A1 . Thus, by Theorem 7.5, we
know that 5(SMT(A1, Bi ,C j )) 6= SMT(a, b, c) for Bi and C j contained in these
sectors. By this argument, the combinations (Bi ,C j ), for i = 2, 4, 5 and j = 4, 5,
cannot be used with A1 to realize SMT(a, b, c).

Construct the sector SA4 A1 . If any points Bi and C j are both contained in SA4 A1 ,
they must both be separated from A1 by PA4 A1 . Thus, by Theorem 7.5, we know
that5(SMT(A1, Bi ,C j )) 6=SMT(a, b, c) for Bi and C j contained in these sectors.
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By this argument, the combinations (Bi ,C j ), for i = 2, 5 and j = 3, 4, cannot be
used with A1 to realize SMT(a, b, c).

For SMT(A1, B1,C2), note that A1 and B1 are contained in SC1C2 , so they
are both separated from C2 by PC1C2 . By Theorem 7.5, 5(SMT(A1, B1,C2)) 6=

SMT(a, b, c).
For SMT(A1, B1,C4), note that A1 and B1 are contained in SC3C4 , so they

are both separated from C4 by PC3C4 . By Theorem 7.5, 5(SMT(A1, B1,C4)) 6=

SMT(a, b, c).
For SMT(A1, B1,C5), note that A1 and B1 are contained in SC1C5 , so they

are both separated from C5 by PC1C5 . By Theorem 7.5, 5(SMT(A1, B1,C5)) 6=

SMT(a, b, c).
Consider SMT(A1, B3,C2). Let V1 be the intersection of m1 and n−1. Note that

A1 and V1 are on the same side of
←−−→

B3C2, B3 and V are on the same side of
←−−→

A1C2,
and C2 and V are on the same side of

←−−→

A1 B3. Thus, V1 is contained in 4ABC . By
Theorem 7.4, 5(SMT(A1, B3,C2)) 6= SMT(a, b, c).

Consider SMT(A1, B3,C4). Note that A1 lies in SC2C4 and C4 lies in SA2 A1 .
Note that B3 must lie in at least one of SC2C4 and SA2 A1 . If B3 lies in SC2C4 , both
B3 and A1 must be separated from C4 by PC2C4 . If B3 lies in SA2 A1 , both B3 and C4

must be separated from A1 by PA2 A1 . By Theorem 7.5, 5(SMT(A1, B3,C4)) 6=

SMT(a, b, c).
Consider SMT(A1, B3,C5). Note that both A1 and B3 lie in SC1C5 , so they

are both separated from C5 by PC1C5 . By Theorem 7.5, 5(SMT(A1, B3,C5)) 6=

SMT(a, b, c).
Consider SMT(A1, B2,C1). Note that both A1 and C1 lie in SB4 B2 , so they

are both separated from B2 by PB4 B2 . By Theorem 7.5, 5(SMT(A1, B2,C1)) 6=

SMT(a, b, c).
Consider SMT(A1, B2,C2). Note that both A1 and C2 lie in SB4 B2 , so they

are both separated from B2 by PB4 B2 . By Theorem 7.5, 5(SMT(A1, B2,C2)) 6=

SMT(a, b, c).
Consider SMT(A1, B4,C1). Note that both A1 and C1 lie in SB3 B4 , so they

are both separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A1, B4,C1)) 6=

SMT(a, b, c).
Consider SMT(A1, B4,C3). Note that A1 lies in SB3 B4 and B4 lies in HA3 A1 .

Note that C3 must lie in at least one of SB3 B4 and HA3 A1 . If C3 lies in SB3 B4 ,
both A1 and C3 are separated from B4 by PB3 B4 . If C3 lies in HA1 A3 , both B4 and
C3 are separated from A1 by PA3 A1 . By Theorem 7.5, 5(SMT(A1, B4,C3)) 6=

SMT(a, b, c).
Consider SMT(A1, B5,C1). Note that both A1 and C1 lie in SB5 B4 , so they

are both separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A1, B5,C1)) 6=

SMT(a, b, c).
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The only remaining cases are (A1, B1,C1), (A1, B1,C3), and (A1, B3,C3). We
will show that copies of these trees exist within the truncated triangle region.

For SMT(A1, B1,C1), we have 5(SMT(A1, B1,C1)) = 5(SMT(A4, B3,C3))

and SMT(A4, B3,C3) is contained within the truncated triangle region.
For SMT(A1, B1,C3), we have 5(SMT(A1, B1,C3)) = 5(SMT(A4, B3,C1))

and SMT(A4, B3,C1) is contained within the truncated triangle region.
For (A1, B3,C3), we have 5(SMT(A1, B3,C3)) = 5(SMT(A4, B1,C1)) and

SMT(A4, B1,C1) is contained within the truncated triangle region.
Thus, each possible combination (A1, Bi ,C j ) does not realize SMT(a, b, c) or

has a copy within the truncated triangle region. Likewise, each possible combi-
nation involving A5, B2, B5, C5, or C2 cannot realize SMT(a, b, c) or has a copy
within the truncated triangle region. Therefore, there is a solution contained in the
truncated triangle region. �

Final reductions. Within the truncated triangle region, there are three copies of
every face that contains a terminal point (the center of each region does not contain
any points; in this scenario, face 1). That means that there are three copies of each
point:
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If all combinations of three points were considered possible configurations for
the Steiner minimal tree, there would be 27 different Steiner trees that could be
considered. However, some of these possibilities may still be eliminated.

There are three remaining combinations that can be eliminated within the trun-
cated triangle region. Let V1 be the intersection of m0 and n−2, V2 be the intersec-
tion of m0 and n0, and V3 be the intersection of m1 and n0.
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Consider SMT(A1, B3,C2). Since A1 and V1 are on the same side of
←−−→

B3C2, B3

and V1 are on the same side of
←−−→

A1C2, and C2 and V1 are on the same
←−−→

A1 B3, then V1

is contained in the interior of4A1 B3C2. By Theorem 7.4,5(SMT(A1, B3,C2)) 6=

SMT(a, b, c).
Consider SMT(A2, B1,C3). Since A2 and V2 are on the same side of

←−−→

B1C3, B1

and V2 are on the same side of
←−−→

A2C3, and C3 and V2 are on the same
←−−→

A2 B1, then V2

is contained in the interior of4A2 B1C3. By Theorem 7.4,5(SMT(A2, B1,C3)) 6=

SMT(a, b, c).
Consider SMT(A3, B2,C1). Since A3 and V3 are on the same side of

←−−→

B2C1, B2

and V3 are on the same side of
←−−→

A3C1, and C1 and V3 are on the same
←−−→

A3 B2, then V3

is contained in the interior of4A3 B2C1. By Theorem 7.4,5(SMT(A3, B2,C1)) 6=

SMT(a, b, c).

List of potential combinations in case 2. The remaining possibilities are

(A1, B1,C1), (A2, B1,C1), (A3, B1,C1),

(A1, B1,C2), (A2, B1,C2), (A3, B1,C2),

(A1, B1,C3), (A2, B2,C1), (A3, B1,C3),

(A1, B2,C1), (A2, B2,C2), (A3, B2,C2),

(A1, B2,C2), (A2, B2,C3), (A3, B2,C3),

(A1, B2,C3), (A2, B3,C1), (A3, B3,C1),

(A1, B3,C1), (A2, B3,C2), (A3, B3,C2),

(A1, B3,C3), (A2, B3,C3), (A3, B3,C3).

Thus, the Steiner tree which realizes SMT(a, b, c) will be formed from one of
the 24 combinations in this list.

9. Case 3: Three points on two faces

In this section, we consider the cases that haven’t been addressed in the other
sections, namely where three points lie on two faces and cannot be considered to
lie on three faces or a single face. The two remaining possibilities are:

(1) Two of the points are contained in the interior of one face with the third point
anywhere not meeting that face.

(2) One point is contained in the interior of a face f , a second point is contained in
the interior of an edge adjacent to f , and the final point is in the complement
of f .

The arguments for both are the same.
We will assume a and b are on the same face and that at least a is in the interior

of the face. Thus either b is in the interior of the face or in the interior of an edge
of the face.
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On the tiled plane, there are infinitely many copies of A ∈ 5−1(a) and B ∈
5−1(b). Suppose SMT(A, B,C) realizes SMT(a, b, c). Then either A and B
reside on the same tile, or they don’t. We will discuss each case separately. We
will discuss the former case here and the latter starting on page 392.

A and B on the same tile. In this case, the following theorem provides a region
containing the fixed points that can realize SMT(a, b, c):

Theorem 9.1. Let a, b, c ∈ T and assume

A ∈5−1(a), B ∈5−1(b), C ∈5−1(c)

are the points that determine SMT(a, b, c). If A and B are on the same tile, the
Steiner minimal tree must be contained in the ten-triangle region shown here in
white and light gray:
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Proof. We can assume without loss of generality that suppose c is on face 1, while
a and b are on face 3. We suppose that C is contained in the light gray tile in the
figure above.

Case 1: Suppose C is not on a vertex of a tile. The other copies of Ci ∈ 5
−1(c)

are located on the other tiles corresponding to face 1. We number them as in the
figure above. We will now determine the tiles on which A and B could possibly
reside.

Construct SC1C . The points Ai and B j which lie in SC1C must be separated from
C by PC1C . By Theorem 7.5, SMT(Ai , B j ,C) cannot realize SMT(a, b, c). Thus,
we can eliminate from consideration as a candidate for containing A and B any
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tiles whose interior overlaps the region SC1C , which we show in dark gray (left):
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Construct SC2C . Again, using Theorem 7.5, we can eliminate any tile contained
in SC2C , which is the reason shown in dark gray in the figure above and to the right.

Continue the process by constructing the sectors SCi C , where i=3, . . . , 9. Three
of these are shown below, while the other four are obtainable by reflection in a
vertical line (through the central triangle) from others already illustrated: SC3C

from SC1C , SC6C from SC5C , SC7C from SC4C , and SC9C from SC8C .
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The only copies of tile 3 not completely covered by the union of the shaded
regions are those contained in the white region in the statement of Theorem 9.1.
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By hypothesis, A and B are contained on the same tile. The convex hull of4ABC
contains the tree realizing SMT(a, b, c). The white region is the minimal collec-
tion of tiles containing all such possible convex hulls. Since there are five tiles
containing copies of A and B in this region, there are five potential Steiner trees
which must be tested within this region.

Case 2: Suppose C is a vertex of a tile. It can only be the vertex at the intersection
of m1 and n0, because the other vertices are adjacent to tiles containing A and B,
and this case has already been addressed in Section 6.

Construct H̃Ci C for i = 1, 3, 4, 5, 6, 7. The union of the added “union of the”
shaded regions H̃Ci C is shown here:
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If both A j and Bk lie in any H̃Ci C , they must both be separated from C by PCi C .
By Theorem 7.5, A j and B j cannot be used with C to realize SMT(a, b, c). Note
that at least one of A and B must lie in the unshaded region, and A and B are on
the same tile by hypothesis. Thus, there are six possible path networks that connect
C with a pair of points A j and Bk which are contained on the same tile where at
least one is not in the shaded region. Since each path has one identical path by
reflection across C , there are only three distinct paths, and there exists a copy of
each in the region stated in Theorem 9.1. �

A and B not on the same tile. We now study the case that A and B are not on
the same tile. This will occupy us through page 399. We will determine the faces
where the Steiner point can reside in Theorem 9.2. We will then find the region
that must contains the fixed points. We will eliminate possibilities for fixed points
in Theorems 9.3–9.6. We will then make final reductions and list the combinations
that could realize SMT(a, b, c).

Theorem 9.2. Assume the setup in Theorem 9.1. Suppose that s is the Steiner point
for SMT(a, b, c). If A and B are not found on the same tile, then s can not be on
the face containing a and b, including the interior of its edges.
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Proof. By way of contradiction, suppose s is on the same face as a and b. Suppose
S ∈5−1(s) is contained in the region bounded by n−1,m1, and p1. Without loss
of generality, c is on face 4, and a and b are on face 3.

Case 1: Suppose S is not on the same tile as B. Then there exists a distinct point
S′ ∈5−1(s) on the same tile as B. By Lemma 7.1, S′B< SB. Then PSS′ separates
B from S. By Theorem 7.8, S cannot be the Steiner point.

Case 2: Suppose S is on the same tile as B, but S is not a vertex. Then there exists
an S′ ∈5−1(s) on the same tile as A. Since S is not a vertex, S′ 6= S. Then PSS′

separates A from S. By Theorem 7.8, S cannot be the Steiner point. �

It follows from Theorem 9.2 that s must be contained on at least one of faces 1,
2, or 4. Since S cannot be on any tile corresponding to face 3, we can fix S in the
shaded region bounded by m1, m0, n−1, and p1, which we call the key trapezoid:
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By a similar procedure to that discussed on pages 378 and following, we can
eliminate all points lying in the sectors SS′S or half-planes HS′S for all S′ 6= S,
where S′ ∈5−1(s). The resulting region is this:
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Because no terminals are located on faces 1 or 2, the Steiner tree will never
cross the copies of face 1 or 2 whose interior meets the edge of this region. We can
eliminate these to obtain the region shaded in the figure below. Within this region,
there are a maximum of four copies of A, four copies of B, and five copies of C ,
resulting in a maximum of 80 possible Steiner trees. However, we can reduce the
region even further.

Theorem 9.3. Suppose S is contained in the key trapezoid (page 393). Let C1 and
Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in this diagram:
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Then 5(SMT(Ai , B j ,C1)) 6= SMT(a, b, c) for all i, j with i 6= j . Hence, the tile
containing C1 can be removed from the region of interest.

Proof. The last assertion follows immediately once we show that no combination
(Ai , B j ,C1) which can be used to realize SMT(a, b, c). We analyze each case:

Consider SMT(A1, B2,C1). Both B2 and C1 are contained in SA2 A1 . Thus B2

and C1 are separated from A1 by PA2 A1 . By Theorem 7.5, 5(SMT(A1, B2,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A2, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C1). Both B3 and C1 are contained in HA3 A1 . Thus B3

and C1 are separated from A1 by PA3 A1 . By Theorem 7.5, 5(SMT(A1, B3,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C1). Both B4 and C1 are contained in HA4 A1 . Thus B4

and C1 are separated from A1 by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B4,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A4, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C1). Both A1 and B5 are contained in SC5C1 . Thus A1

and B5 are separated from C1 by PC5C1 . By Theorem 7.5, 5(SMT(A1, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B1,C1)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C1). Both B3 and C1 are contained in SA3 A2 . Thus B3

and C1 are separated from A1 by PA3 A2 . By Theorem 7.5, 5(SMT(A2, B3,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B2,C1)) 6= SMT(a, b, c).
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Consider SMT(A2, B4,C1). We claim that V3 is contained in the interior of
4A2 B4C1. Note that V3 and C1 are on the same side of

←−−→

A2 B4, V3 and B4 are
on the same side of

←−−→

A2C1, and V3 and A2 are on the same side of
←−−→

A2 B4. Thus
4A2 B4C1 contains V3. By Theorem 7.4, 5(SMT(A2, B4,C1)) 6= SMT(a, b, c).
Similarly, 5(SMT(A4, B2,C1)) 6= SMT(a, b, c).

Consider SMT(A2, B5,C1). Both A2 and C1 are contained in HB3 B5 . Thus A2

and C1 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A2, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B2,C1)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C1). Both A3 and C1 are contained in SB3 B4 . Thus A3

and C1 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A3, B4,C1)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C1). Both A3 and C1 are contained in HB3 B5 . Thus A3

and C1 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B2,C1)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C1). Both A4 and C1 are contained in SB4 B5 . Thus A4

and C1 are separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A4, B5,C1)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B4,C1)) 6= SMT(a, b, c). �

Theorem 9.4. Suppose S is contained in the key trapezoid (page 393). Let C2

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C2)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C2 can be removed from the region of interest.

Proof. Again we apply a case-by-case analysis.
Consider SMT(A1, B2,C2). Both B2 and C2 are contained in SA2 A1 . Thus, B2

and C2 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C2)) 6=

(SMT(a, b, c)). By a similar argument, 5(SMT(A2, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C2). Both B3 and C2 are contained in HA3 A1 . Thus, B3

and C2 are separated from A1 by PA1 A3 . By Theorem 7.5, 5(SMT(A1, B3,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C2). Both B4 and C2 are contained in HA3 A1 . Thus, B4

and C2 are separated from A1 by PA1 A3 . By Theorem 7.5, 5(SMT(A1, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C2). We claim that V1 is contained in the interior of
4A1 B5C2. Both C2 and V1 lie on the same side of

←−−→

A1 B5, B5 and V1 lie on the
same side of

←−−→

A1C2, and A1 and V1 lie on the same side of
←−−→

B5C2. Thus V1 must be
contained in the interior of 4A1 B5C2. By Theorem 7.4, 5(SMT(A1, B5,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C2)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C2). Recall that S are contained in the convex hull of
4A2 B3C2. By hypothesis, S is contained in the key trapezoid (page 393). These
two conditions are satisfied only if A2 B3 lies above the vertex V2. Thus, C2 and
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V2 lie on the same side of
←−−→

A2 B3, B3 and V2 lie on the same side of
←−−→

A2C2, and
A2 and V2 lie on the same side of

←−−→

B3C2. Thus V2 are contained in the interior of
4A2 B3C2. By Theorem 7.4, 5(SMT(A2, B3,C2)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A3, B2,C2)) 6= SMT(a, b, c).

Consider SMT(A2, B4,C2). Both A2 and C2 are contained in SB3 B4 . Thus, A2

and C2 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A2, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C2)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C2). Both A2 and C2 are contained in HB3 B4 . Thus, A2

and C2 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C2)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C2). Both A3 and C2 are contained in SB3 B4 . Thus, A3

and C2 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C2)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C2)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C2). Both A3 and C2 are contained in HB3 B5 . Thus, A3

and C2 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C2)) 6=

SMT(a, b, c). By a similar argument,5(SMT(A5, B3,C2)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C2). Both A4 and C2 are contained in SB4 B5 . Thus, A4

and C2 are separated from B5 by PB4 B5 . By Theorem 7.5, 5(SMT(A4, B5,C2)) 6=

SMT(a, b, c). By a similar argument,5(SMT(A5, B4,C2)) 6= SMT(a, b, c). �

Theorem 9.5. Suppose S is contained in the key trapezoid (page 393). Let C4

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C4)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C4 can be removed from the region of interest.

Proof. Consider SMT(A1, B2,C4). Both B2 and C4 are contained in SA2 A1 , so B2

and C4 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C4)) 6=

SMT(a, b, c)). By a similar argument, 5(SMT(A2, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C4). Let V4 be the intersection of m1 and p1. Note that

C4 and V4 lie on the same side of
←−−→

A1 B3, B3 and V4 lie on the same side of
←−−→

A1C4,
and A1 and V4 lie on the same side of

←−−→

B3C4. Thus V4 are contained in the interior of
4A1 B3C4. By Theorem 7.4, 5(SMT(A1, B3,C4)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A3, B1,C4)) 6= SMT(a, b, c).

Consider SMT(A1, B4,C4). Both A1 and C4 are contained in HB1 B4 . Thus, A1

and C4 are separated from B4 by PB1 B4 . By Theorem 7.5, 5(SMT(A1, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C4). Both A1 and C4 are contained in HB1 B5 . Thus, A1

and C4 are separated from B5 by PB1 B5 . By Theorem 7.5, 5(SMT(A1, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C4). Both A2 and C4 are contained in SB2 B3 . Thus, A2
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and C4 are separated from B3 by PB2 B3 . By Theorem 7.5, 5(SMT(A2, B3,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B4,C4). Both A2 and C4 are contained in HB2 B4 . Thus, A2

and C4 are separated from B4 by PB2 B4 . By Theorem 7.5, 5(SMT(A2, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C4). Both A2 and C4 are contained in HB2 B5 . Thus, A2

and C4 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C4)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C4). Both A3 and C4 are contained in SB3 B4 . Thus, A3

and C4 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C4)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C4). Both A3 and C4 are contained in HB3 B5 . Thus, A3

and C4 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B3,C4)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C4). Both A4 and B5 are contained in HC5C4 . Thus, A4

and B5 are separated from C4 by PC5C4 . By Theorem 7.5, 5(SMT(A4, B5,C4)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B4,C4)) 6= SMT(a, b, c). �

Theorem 9.6. Suppose S is contained in the key trapezoid (page 393). Let C3

and Ai , B j (with i, j = 1, . . . , 5) lie in the triangles specified in the diagram of
Theorem 9.3. Then 5(SMT(Ai , B j ,C3)) 6= SMT(a, b, c) for all i, j with i 6= j .
That is, the tile containing C4 can be removed from the region of interest.

Proof. Consider SMT(A1, B2,C3). Both B2 and C3 are contained in SA2 A1 , so B2

and C3 are separated from A1 by PA1 A2 . By Theorem 7.5, 5(SMT(A1, B2,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A2, B1,C3)) 6= SMT(a, b, c).
Consider SMT(A1, B3,C3). Assume B3 is not a vertex. We claim that V2 is

contained in 4A1 B3C2. Let V2 be the intersection of m0 and p1. Note that V2

and C3 are on the same side of
←−−→

A1 B3, V2 and B3 are on the same side of
←−−→

A1C3,
and V2 and A1 are on the same side of

←−−→

B3C3. Thus 4A1 B3C3 must contain V2.
By Theorem 7.4, 5(SMT(A1, B3,C3)) 6= SMT(a, b, c). By a similar argument,
5(SMT(A3, B1,C3)) 6= SMT(a, b, c).

Consider SMT(A1, B4,C3). Both A1 and B4 are contained in HC6C3 . Thus, A1

and B4 are separated from C3 by PC6C3 . By Theorem 7.5, 5(SMT(A1, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C3)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C3). Both A1 and C3 are contained in HB1 B5 . Thus, A1

and C3 are separated from B5 by PB1 B5 . By Theorem 7.5, 5(SMT(A1, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A1, B5,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B3,C3). Recall that S are contained in the convex hull of
4A2 B3C3. By hypothesis, S is contained in the key trapezoid (page 393). These
two conditions are satisfied only if A2 B3 lies above the vertex V2, the intersection
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of m0 and p1. Thus, C3 and V2 lie on the same side of
←−−→

A2 B3, B3 and V2 lie on
the same side of

←−−→

A2C3, and A2 and V2 lie on the same side of
←−−→

B3C3. Thus V2 are
contained in the interior of 4A2 B3C3. By Theorem 7.4, 5(SMT(A2, B3,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A3, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B4,C3). Both A2 and C3 are contained in HB2 B4 . Thus, A2

and C3 are separated from B4 by PB2 B4 . By Theorem 7.5, 5(SMT(A2, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C3). Both A2 and C3 are contained in HB2 B5 . Thus A2

and C3 are separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C3)) 6= SMT(a, b, c).
Consider SMT(A3, B4,C3). Both A3 and C3 are contained in SB3 B4 . thus, A3

and C3 are separated from B4 by PB3 B4 . By Theorem 7.5, 5(SMT(A3, B4,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C3)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C1). Both A3 and C3 are contained in HB3 B5 . Thus, A3

and C3 are separated from B5 by PB3 B5 . By Theorem 7.5, 5(SMT(A3, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B3,C3)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C3). Both A4 and B5 are contained in HC1C3 . Thus A4

and B5 are separated from C3 by PC1C3 . By Theorem 7.5, 5(SMT(A4, B5,C3)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B3,C3)) 6= SMT(a, b, c). �

The final region of interest, after the removal of the tiles containing C1,C2,C3

and C4, is shown in Figure 9. This region also contains each of the five Steiner
trees that can be considered when A and B are on the same tile (see Theorem 9.1).

Final reductions. The region shown in Figure 9 must contain at least one copy
of the tree SMT(A, B,C) that realizes SMT(a, b, c) where A and B come from
different tiles. Within this region, there are still combinations that can never realize
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SMT(a, b, c) and thus do not need to be considered. In this section we will elim-
inate these combinations and then provide a list of all the trees SMT(Ai , B j ,Ck)
that must be considered to determine the SMT(A, B,C) realizing SMT(a, b, c).

Consider SMT(A1, B5,C6). Both B5 and C6 lie in HA1 A5 . Thus, B5 and C6

must be separated from A5 by PA1 A5 . By Theorem 7.5, 5(SMT(A1, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B1,C6)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C6). Both A2 and C6 lie in SB2 B5 . Thus, A2 and C6

must be separated from B5 by PB2 B5 . By Theorem 7.5, 5(SMT(A2, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C6)) 6= SMT(a, b, c).
Consider SMT(A3, B5,C6), and let V1 = m1 ∩ n0. Then A3 and V1 are on the

same side of
←−−→

B5C6, B5 and V1 on the same side of
←−−→

A3C6, and C6 and V1 on the same
side of

←−−→

A3 B5. Thus, V1 ⊂ 4A3 B5C6. By Theorem 7.4, 5(SMT(A3, B5,C6)) 6=

SMT(a, b, c). Similarly, 5(SMT(A5, B3,C6)) 6= SMT(a, b, c).
Consider SMT(A4, B5,C6). Note that if B5 is within the shaded region (which

is required for it to even be considered), then both B5 and A4 lie in SC5C6 . Thus, B5

and A4 are separated from C6 by PC5C6 . By Theorem 7.5, 5(SMT(A4, B5,C6)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B4,C6)) 6= SMT(a, b, c).
Consider SMT(A1, B4,C5). Both B4 and C5 lie in SA4 A1 . Thus, both B4 and C5

must be separated from A1 by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B4,C5)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A4, B1,C6)) 6= SMT(a, b, c).
Consider SMT(A2, B5,C5). Both B5 and C5 lie in SA5 A2 . Thus, both B5 and C5

must be separated from A2 by PA5 A2 . By Theorem 7.5, 5(SMT(A2, B5,C5)) 6=

SMT(a, b, c). By a similar argument, 5(SMT(A5, B2,C6)) 6= SMT(a, b, c).
Consider SMT(A1, B5,C5). Note that if B5 is within the shaded region, then

both B5 and C5 are contained in SA4 A1 . Thus, B5 and C5 are separated from A1

by PA4 A1 . By Theorem 7.5, 5(SMT(A1, B5,C5)) 6= SMT(a, b, c). By a similar
argument, 5(SMT(A5, B1,C6)) 6= SMT(a, b, c).

List of potential combinations in Case 3. The remaining combinations (Ai ,B j ,Ck)

for both A and B on the same tile and A and B not on the same tile are

(A1, B2,C6)∼= (A4, B5,C5), (A2, B1,C6)∼= (A5, B4,C5), (A1, B3,C6),

(A3, B1,C6), (A1, B4,C6), (A4, B1,C6),

(A2, B3,C6), (A3, B2,C6), (A2, B4,C6),

(A4, B2,C6), (A3, B4,C6), (A4, B3,C6),

(A2, B1,C5), (A1, B2,C5), (A1, B3,C5),

(A3, B1,C5), (A2, B3,C5), (A3, B2,C5),

(A2, B4,C5), (A4, B2,C5), (A3, B4,C5),

(A4, B3,C5), (A3, B5,C5), (A5, B3,C5),

(A2, B2,C5), (A3, B3,C5), (A4, B4,C5)∼= (A1, B1,C6),

(A5, B5,C5)∼= (A2, B2,C6), (A3, B3,C6).
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Thus, the Steiner tree which realizes SMT(a, b, c) will be formed from one of
the 29 combinations included in this list.

10. An algorithm for finding a shortest network on three points

At the end of Sections 8 and 9 we provided lists of combinations which could
realize SMT(a, b, c) for the different cases. In this section we discuss how these
lists can be further reduced by considerations of the specific positioning of the
points within the faces. We provide two principles upon which the reductions are
based. We also provide an algorithm that uses these principles. When the algorithm
is applied, we have found that most point combinations can be eliminated.

Two principles allow us to eliminate potential combinations of points from
consideration:

• We demonstrated that for Case 2 a solution must reside in the truncated tri-
angle region (Figure 8) and for Case 3 it must resided in the shaded region in
Figure 9. In either case, if a point lies outside the corresponding region, no
combinations involving that particular point need to be considered.

• If any two points of a combination are separated from the third point by
the perpendicular bisector of the third point and a rotation and/or transla-
tion of the third point, that combination does not need to be considered (see
Theorem 7.5). Recall from Definition 4.2 that for any points P and Q, H̃P Q=

{X | P X ≤ Q X}. Thus, equivalently, if A and B are contained in H̃C ′C for
some C,C ′ ∈5−1(c), then (A, B,C) does not need to be considered.

Using these principles, point combinations within the list can be eliminated
from consideration. A systematic approach to the elimination is introduced in the
following algorithm.

Algorithm 10.1. The following algorithm provides a shortest network connecting
three given points on a regular tetrahedron T.

(1) Determine whether Case 1, 2, or 3 applies.

Case 1: If all three points can be considered to lie on a common face, the
Steiner tree is just a shortest network on that face (Section 6), and the Steiner
tree can be constructed using Algorithm 2.1. The algorithm is complete.

Case 2: If the three points can be considered to lie on distinct faces of T,
define the region of interest to be the truncated triangle region (Figure 8).
Define the list of potential combinations to be the list on page 389. Label the
faces so that the face not considered to contain any points is face 1. Proceed
to Steps (2)–(4).
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Case 3: Otherwise, define the shaded region to be that shown in Figure 9.
Define the list of potential combinations to be the list on page 399. Label the
faces so that the face considered to contain two points is face 3, and the face
considered to contain one point is face 4. Proceed to Steps (2)–(4).

(2) Eliminate any combinations within the list of potential combinations that con-
tain points which are not contained within the shaded region.

(3) For all Cm contained in the shaded region:
(a) For all Ci 6= Cm in the shaded region, construct H̃Ci Cm . Eliminate any

combinations (Ak, Bl,Cm) where Ak and Bl are both contained in H̃Ci Cm .
(b) For the remaining Bl that appear in combinations which have not yet been

eliminated:
(i) For all Bi 6= Bl in the shaded region, construct H̃Bi Bl . If both Cm

and Ak are contained in H̃Bi Bl for any Bl , eliminate the combination
(Ak, Bl,Cm).

(ii) For the Ak that appear in a remaining combination with Bl and Cm :
For all Ai 6= Ak in the shaded region construct H̃Ai Ak . If both Cm and
Bl are contained in H̃Ai Ak , eliminate the combination (Ak, Bl,Cm).

(4) Measure the lengths of the Steiner minimal trees formed from the remaining
combinations using Algorithm 2.1. The Steiner minimal tree with shortest
length realizes SMT(a, b, c). The algorithm is complete.

We will now demonstrate how to apply the algorithm for the configuration shown
in Figure 9, which clearly corresponds to Case 3.

B5,A1 and A5 are not contained within the shaded region, so none of (A1,B2,C5),
(A1,B3,C6), (A1,B4,C6), (A5,B4,C5), (A5,B3,C5), (A3,B5,C5) and (A4,B5,C5)

need to be considered.
Construct H̃C6C5 :
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Since both A2 and B2 are contained in H̃C6C5 , the combination (A2, B2,C5) can
be eliminated.

Construct H̃Bi B1 for all i 6= 1 (left diagram). Since C5 and A3 are contained in
H̃B3 B1 , the combination (A3, B1,C5) can be eliminated. There are no remaining
combinations which use both B1 and C5.
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Construct H̃Bi B2 for all i 6= 2 (right diagram above). Since both C5 and A3 are
contained in H̃B3 B2 , the combination (A3, B2,C5) can be eliminated. Since both
C5 and A4 are contained in H̃B4 B2 , the combination (A4, B2,C5) can be eliminated.
There are no remaining combinations which use both B2 and C5.

Construct H̃Bi B3 for all i 6= 3 (left diagram below). Since both C5 and A4

are contained in H̃B4 B3 , the combination (A4, B3,C5) can be eliminated. The only
remaining combinations the list are (A2, B3,C5) and (A3, B3,C5). However, since
both C5 and B3 are contained in H̃A3 A2 , (A2, B3,C5) can be eliminated.
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Construct H̃Bi B4 for all i 6= 4. Since C5 is not contained in any H̃Bi B4 with i 6= 4,
the remaining possibilities from the above list are (A2, B4,C5), (A3, B4,C5), and
(A4, B4,C5). Since both C5 and B4 are contained in H̃A4 A2 , (A2, B4,C5) can be
eliminated (right diagram immediately above). Since both C5 and B4 are contained
in H̃A4 A3 , (A3, B4,C5) can be eliminated.
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We have shown that the only remaining combinations in the list containing C5

are (A3, B3,C5) and (A4, B4,C5). Using a similar procedure, we can show that the
only remaining combination containing C6 is (A2, B2,C6). Assuming T has edge-
length 1, we construct the Steiner trees associated with each of these combinations,
with the following results:
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L(SMT(A3, B3,C5))= 1.04
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L(SMT(A4, B4,C5))= 0.87
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L(SMT(A2, B2,C6))= 1.43

Hence, SMT(A4, B4,C5) realizes SMT(a, b, c) with length 0.87, and the algo-
rithm is complete with only three actual measurements.
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