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Potentially eventually positive (PEP) sign patterns were introduced by Berman
et al. (Electron. J. Linear Algebra 19 (2010), 108–120), where it was noted that
a matrix is PEP if its positive part is primitive, and an example was given of a
3× 3 PEP sign pattern with reducible positive part. We extend these results by
constructing n×n PEP sign patterns with reducible positive part, for every n≥3.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in {+,−, 0}. For
a real matrix A, sgn(A) is the sign pattern having entries that correspond to the
signs of the entries in A. If A is an n× n sign pattern, the qualitative class of A,
denoted Q(A), is the set of all A ∈ Rn×n such that sgn(A) = A, where sgn(A) =
[sgn(ai j )]; such a matrix A is called a realization of A. Qualitative matrix problems
were introduced by Samuelson [1947] in the mathematical modeling of problems
from economics. Sign pattern matrices have useful applications in economics,
population biology, chemistry and sociology. If P is a property of a real matrix,
then a sign pattern A is potentially P (or allows P) if there is some A ∈ Q(A) that
has property P .

The spectrum of a square matrix A, denoted σ(A), is the multiset of the eigen-
values of A, and the spectral radius of A is defined as ρ(A)=max{|λ| : λ∈ σ(A)}.
Matrix A has the strong Perron–Frobenius property if ρ(A) > 0 is a simple strictly
dominant eigenvalue of A that has a positive eigenvector. A matrix A ∈ Rn×n is
eventually positive if there exists a k0 ∈ Z+ such that for all k ≥ k0, Ak > 0, where
the inequality is entrywise. Handelman developed the following test for eventual
positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both
A and AT satisfy the strong Perron–Frobenius property. If there exists a k such
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that Ak > 0 and Ak+1 > 0, then A is eventually positive [Johnson and Tarazaga
2004]. A sign pattern A is potentially eventually positive (PEP) if there exists an
eventually positive realization A ∈ Q(A).

For a sign pattern A=
[
αi j
]
, define the positive part of A to be A+ =

[
α+i j

]
and

the negative part of A to be A− =
[
α−i j

]
, where

α+i j =

{
+ if αi j =+,

0 if αi j = 0 or αi j =−,
α−i j =

{
− if αi j =−,

0 if αi j = 0 or αi j =+.

Clearly A = A+ +A−. For a matrix A ∈ Rn×n , the positive part A+ of A and
negative part A− of A are defined analogously, and A = A++ A−.

A digraph 0 = (V, E) consists of a finite, nonempty set V of vertices, together
with a set E ⊆ V × V of arcs. Note that a digraph allows loops (arcs of the form
(v, v)) and may have both arcs (v,w) and (w, v) but not multiple copies of the
same arc. Let A =

[
ai j
]
∈ Rn×n . The digraph of A, denoted 0(A), has vertex set

{1, . . . , n} and arc set
{
(i, j) : ai j 6= 0

}
. If A is a sign pattern, then 0(A)= 0(A)

where A∈ Q(A). A digraph 0 is strongly connected if for any two distinct vertices
v and w of 0, there is a path in 0 from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

P APT
=

[
A11 0
A21 A22

]
where A11 and A22 are nonempty square matrices and 0 is a (possibly rectangular)
block consisting entirely of zero entries, or A is the 1× 1 zero matrix. If A is not
reducible, then A is called irreducible. It is well known that for n ≥ 2, A is irre-
ducible if and only if 0(A) is strongly connected. For a strongly connected digraph
0, the index of imprimitivity is the greatest common divisor of the lengths of the
cycles in 0. A strongly connected digraph is primitive if its index of imprimitivity
is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign
pattern A is the index of imprimitivity of 0(A) and A ≥ 0 is primitive if 0(A) is
primitive, or equivalently, if the index of imprimitivity of A is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where
it was shown that if A+ is primitive, then A is PEP, and where the first example of
a PEP sign pattern with reducible positive part was given: the 3× 3 pattern

B=

+ − 0
+ 0 −
− + +

 .
In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3
pattern B given there to a family of PEP sign patterns having reducible positive
part for every order n ≥ 3.
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In Section 3 we examine the effect of the Kronecker product on PEP sign pat-
terns and obtain another method of constructing PEP sign patterns with reducible
positive part.

2. A family of sign patterns generalizing B

The sign pattern B from [Berman et al. 2010] was the first PEP sign pattern with a
reducible positive part. This sign pattern may be generalized by defining the n×n
sign pattern

Bn =


+ − · · · − 0
+ 0 · · · 0 −
...
...
. . .

...
...

+ 0 · · · 0 −
− + · · · + +

 .

The following result, which is a special case of the Schur–Cohn criterion (see,
e.g., [Marden 1949]), will be used in the proof that Bn is PEP.

Lemma 2.1. If the polynomial f (x)= x2
−βx +α satisfies |β|< 1+α < 2, then

all zeros of f (x) lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is p(x) = xn
+

an−1xn−1
+ · · · + a1x + a0 then an−k = (−1)k Ek(A), where Ek(A) is the sum

of the k× k principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For n ≥ 3 the n× n sign pattern Bn is PEP.

Proof. For t > 0, let Bn(t) be the n× n matrix

Bn(t)=


1+ (n− 2)t −t · · · −t 0

1+ t 0 · · · 0 −t
...

...
. . .

...
...

1+ t 0 · · · 0 −t
−(n− 2)t − 1

2 t2 t · · · t 1+ 1
2 t2

 .
Then Bn(t)∈Q(Bn), and 1 is an eigenvalue of Bn(t)with positive right eigenvector
1 (the all ones vector) and positive left eigenvector

w =
[2n−5

t
1 · · · 1 2n−4

t

]T
.

We show that for some choice of t > 0, 1 is a simple strictly dominant eigenvalue
of Bn(t) and hence Bn(t) is eventually positive. Since 1 ∈ σ(Bn(t)) and rank
Bn(t)≤ 3, the characteristic polynomial pBn(t)(x) of Bn(t) is of the form

pBn(t)(x)= xn−3(x−1)(x2
−βx+α)= xn

− (1+β)xn−1
+ (α+β)xn−2

−αxn−3.
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Computing α and β using the sums of principal minors to evaluate the characteristic
polynomial gives β = 1

2 t2
+(n−2)t+1 and α= (n−2)t

(
1+2t+ 1

2 t2
)
. For n> 3,

setting t = 1/(2(n−2)) gives |β|< 1+α< 2, which, using Lemma 2.1, guarantees
that the two nonzero eigenvalues of Bn other than 1 have modulus strictly less than 1
(recall that a 3× 3 eventually positive matrix B3 ∈ Q(B3) was given in [Berman
et al. 2010] so we have not been concerned with this case in choosing t). �

We illustrate this theorem with an example.

Example 2.3. Let n = 5. Following the proof of Theorem 2.2, we choose t = 1
6

and define

B5 = B5

(1
6

)
=

1
6


9 –1 –1 –1 0
7 0 0 0 –1
7 0 0 0 –1
7 0 0 0 –1

– 37
12 1 1 1 73

12

 .
Moreover, we have

σ(B5)=
{
1, 1

144

(
109+ i

√
2087

)
, 1

144

(
109− i

√
2087

)
, 0, 0

}
≈ {1, 0.7569+ 0.3172i, 0.7569− 0.3172i, 0, 0},

and
[
1 1 1 1 1

]T
and

[5
6

1
36

1
36

1
36 1

]T
are right and left eigenvectors, respec-

tively, corresponding to ρ(B5)= 1. Therefore B5 and BT
5 have the strong Perron–

Frobenius property, so B5 is eventually positive by Handelman’s criterion.

In [Berman et al. 2010] it was shown that if the sign pattern A is PEP, then any
sign pattern achieved by changing one or more zero entries of A to be nonzero
is also PEP. Applying this to Bn yields a variety of additional PEP sign patterns
having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for
generating larger eventually positive matrices and thus PEP sign patterns. The
Kronecker product of A = [ai j ] and B = [bi j ] is defined as

A⊗ B =

a11 B · · · a1n B
...

. . .
...

an1 B · · · ann B

 .
It is clear that if A > 0 and B > 0, then A⊗ B > 0. The following facts can be

found in many linear algebra books; see [Reams 2006], for example. For A∈Rn×n

and B ∈ Rm×m , (A⊗ B)k = Ak
⊗ Bk . For A,C, B, D of appropriate dimensions,
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we have (A⊗ B)(C ⊗ D) = (AC)⊗ (B D). There exists a permutation matrix P
such that B⊗ A = P(A⊗ B)PT .

Proposition 3.1. If A and B are eventually positive matrices, then A⊗ B is even-
tually positive.

Proof. Assume that A and B are eventually positive matrices. Since A and B are
eventually positive, there exists some s0, t0 ∈ Z, with s0, t0 > 0, such that for all
s ≥ s0 and t ≥ t0, As > 0 and B t > 0. Set k0 = max{s0, t0}. Then for all k ≥ k0,
(A⊗ B)k = Ak

⊗ Bk > 0. �

Corollary 3.2. If A and B are PEP sign patterns, then A⊗B is PEP.

If either A or B is a reducible matrix, then A⊗ B is reducible since, without
loss of generality, if

P APT
=

[
A11 0
A21 A22

]
then

(P ⊗ I )(A⊗ B)(P ⊗ I )T =
[

A11⊗ B 0
A21⊗ B A22⊗ B

]
.

Thus Corollary 3.2 provides another way to construct PEP sign patterns having
reducible positive part.

Example 3.3. Let

B = 1
100

 130 –30 0
130 0 –30
–31 30 101

.
In [Berman et al. 2010] it was shown that B is eventually positive, and in fact
Bk > 0 for k ≥ 10.

Let A =
[ 2

1
3
0

]
. Then Ak > 0 for k ≥ 2, hence A is eventually positive.

Then

B⊗ A =
1

100



260 390 –60 –90 0 0
130 0 –30 0 0 0
260 390 0 0 –60 –90
130 0 0 0 –30 0
–62 –93 60 90 202 303
–31 0 30 0 101 0


.

Moreover (B⊗ A)10 > 0 and (B⊗ A)11 > 0, so B⊗ A is eventually positive and
sgn(B⊗ A) is a PEP sign pattern with reducible positive part.

Any 0 in sgn(B⊗ A) from Example 3.3 may be changed to − to get yet another
PEP sign pattern with reducible positive part.
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