0 involve a journal of mathematics

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Abstract

Potentially eventually positive (PEP) sign patterns were introduced by Berman et al. (Electron. J. Linear Algebra 19 (2010), 108-120), where it was noted that a matrix is PEP if its positive part is primitive, and an example was given of a 3×3 PEP sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \geq 3$.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+,-, 0\}$. For a real matrix $A, \operatorname{sgn}(A)$ is the sign pattern having entries that correspond to the signs of the entries in A. If \mathscr{A} is an $n \times n$ sign pattern, the qualitative class of \mathscr{A}, denoted $Q(\mathscr{A})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{sgn}(A)=\mathscr{A}$, where $\operatorname{sgn}(A)=$ $\left[\operatorname{sgn}\left(a_{i j}\right)\right]$; such a matrix A is called a realization of \mathscr{A}. Qualitative matrix problems were introduced by Samuelson [1947] in the mathematical modeling of problems from economics. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern \mathscr{A} is potentially P (or allows P) if there is some $A \in Q(\mathscr{A})$ that has property P.

The spectrum of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the spectral radius of A is defined as $\rho(A)=\max \{|\lambda|: \lambda \in \sigma(A)\}$. Matrix A has the strong Perron-Frobenius property if $\rho(A)>0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is eventually positive if there exists a $k_{0} \in \mathbb{Z}^{+}$such that for all $k \geq k_{0}, A^{k}>0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both A and A^{T} satisfy the strong Perron-Frobenius property. If there exists a k such

[^0]Keywords: potentially eventually positive, PEP, sign pattern, matrix, digraph.
that $A^{k}>0$ and $A^{k+1}>0$, then A is eventually positive [Johnson and Tarazaga 2004]. A sign pattern \mathscr{A} is potentially eventually positive (PEP) if there exists an eventually positive realization $A \in Q(\mathscr{A})$.

For a sign pattern $\mathscr{A}=\left[\alpha_{i j}\right]$, define the positive part of \mathscr{A} to be $\mathscr{A}^{+}=\left[\alpha_{i j}^{+}\right]$and the negative part of \mathscr{A} to be $\mathscr{A}^{-}=\left[\alpha_{i j}^{-}\right]$, where

$$
\alpha_{i j}^{+}=\left\{\begin{array}{ll}
+ & \text { if } \alpha_{i j}=+, \\
0 & \text { if } \alpha_{i j}=0 \text { or } \alpha_{i j}=-,
\end{array} \quad \alpha_{i j}^{-}= \begin{cases}- & \text {if } \alpha_{i j}=-, \\
0 & \text { if } \alpha_{i j}=0 \text { or } \alpha_{i j}=+\end{cases}\right.
$$

Clearly $\mathscr{A}=\mathscr{A}^{+}+\mathscr{A}^{-}$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^{+}of A and negative part A^{-}of A are defined analogously, and $A=A^{+}+A^{-}$.

A digraph $\Gamma=(V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form $(v, v))$ and may have both $\operatorname{arcs}(v, w)$ and (w, v) but not multiple copies of the same arc. Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\left\{(i, j): a_{i j} \neq 0\right\}$. If \mathscr{A} is a sign pattern, then $\Gamma(\mathscr{A})=\Gamma(A)$ where $A \in Q(\mathscr{A})$. A digraph Γ is strongly connected if for any two distinct vertices v and w of Γ, there is a path in Γ from v to w.

A square matrix A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called irreducible. It is well known that for $n \geq 2, A$ is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ, the index of imprimitivity is the greatest common divisor of the lengths of the cycles in Γ. A strongly connected digraph is primitive if its index of imprimitivity is one; otherwise it is imprimitive. The index of imprimitivity of a nonnegative sign pattern \mathscr{A} is the index of imprimitivity of $\Gamma(\mathscr{A})$ and $\mathscr{A} \geq 0$ is primitive if $\Gamma(\mathscr{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathscr{A} is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where it was shown that if \mathscr{A}^{+}is primitive, then \mathscr{A} is PEP, and where the first example of a PEP sign pattern with reducible positive part was given: the 3×3 pattern

$$
\mathscr{B}=\left[\begin{array}{ccc}
+ & - & 0 \\
+ & 0 & - \\
- & + & +
\end{array}\right]
$$

In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3 pattern \mathscr{B} given there to a family of PEP sign patterns having reducible positive part for every order $n \geq 3$.

In Section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing \mathscr{B}

The sign pattern \mathscr{B} from [Berman et al. 2010] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$
\mathscr{B}_{n}=\left[\begin{array}{ccccc}
+ & - & \cdots & - & 0 \\
+ & 0 & \cdots & 0 & - \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
+ & 0 & \cdots & 0 & - \\
- & + & \cdots & + & +
\end{array}\right]
$$

The following result, which is a special case of the Schur-Cohn criterion (see, e.g., [Marden 1949]), will be used in the proof that \mathscr{B}_{n} is PEP.

Lemma 2.1. If the polynomial $f(x)=x^{2}-\beta x+\alpha$ satisfies $|\beta|<1+\alpha<2$, then all zeros of $f(x)$ lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x)=x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ then $a_{n-k}=(-1)^{k} E_{k}(A)$, where $E_{k}(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For $n \geq 3$ the $n \times n$ sign pattern \mathscr{P}_{n} is PEP.
Proof. For $t>0$, let $B_{n}(t)$ be the $n \times n$ matrix

$$
B_{n}(t)=\left[\begin{array}{ccccc}
1+(n-2) t & -t & \cdots & -t & 0 \\
1+t & 0 & \cdots & 0 & -t \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1+t & 0 & \cdots & 0 & -t \\
-(n-2) t-\frac{1}{2} t^{2} & t & \cdots & t & 1+\frac{1}{2} t^{2}
\end{array}\right]
$$

Then $B_{n}(t) \in Q\left(\mathscr{B}_{n}\right)$, and 1 is an eigenvalue of $B_{n}(t)$ with positive right eigenvector $\mathbb{1}$ (the all ones vector) and positive left eigenvector

$$
\boldsymbol{w}=\left[\begin{array}{lllll}
\frac{2 n-5}{t} & 1 & \cdots & 1 & \frac{2 n-4}{t}
\end{array}\right]^{T}
$$

We show that for some choice of $t>0,1$ is a simple strictly dominant eigenvalue of $B_{n}(t)$ and hence $B_{n}(t)$ is eventually positive. Since $1 \in \sigma\left(B_{n}(t)\right)$ and rank $B_{n}(t) \leq 3$, the characteristic polynomial $p_{B_{n}(t)}(x)$ of $B_{n}(t)$ is of the form $p_{B_{n}(t)}(x)=x^{n-3}(x-1)\left(x^{2}-\beta x+\alpha\right)=x^{n}-(1+\beta) x^{n-1}+(\alpha+\beta) x^{n-2}-\alpha x^{n-3}$.

Computing α and β using the sums of principal minors to evaluate the characteristic polynomial gives $\beta=\frac{1}{2} t^{2}+(n-2) t+1$ and $\alpha=(n-2) t\left(1+2 t+\frac{1}{2} t^{2}\right)$. For $n>3$, setting $t=1 /(2(n-2))$ gives $|\beta|<1+\alpha<2$, which, using Lemma 2.1, guarantees that the two nonzero eigenvalues of B_{n} other than 1 have modulus strictly less than 1 (recall that a 3×3 eventually positive matrix $B_{3} \in Q\left(\mathscr{B}_{3}\right)$ was given in [Berman et al. 2010] so we have not been concerned with this case in choosing t).

We illustrate this theorem with an example.
Example 2.3. Let $n=5$. Following the proof of Theorem 2.2, we choose $t=\frac{1}{6}$ and define

$$
B_{5}=B_{5}\left(\frac{1}{6}\right)=\frac{1}{6}\left[\begin{array}{rrrrr}
9 & -1 & -1 & -1 & 0 \\
7 & 0 & 0 & 0 & -1 \\
7 & 0 & 0 & 0 & -1 \\
7 & 0 & 0 & 0 & -1 \\
-\frac{37}{12} & 1 & 1 & 1 & \frac{73}{12}
\end{array}\right]
$$

Moreover, we have

$$
\begin{aligned}
\sigma\left(B_{5}\right) & =\left\{1, \frac{1}{144}(109+i \sqrt{2087}), \frac{1}{144}(109-i \sqrt{2087}), 0,0\right\} \\
& \approx\{1,0.7569+0.3172 i, 0.7569-0.3172 i, 0,0\},
\end{aligned}
$$

and $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{lllll}\frac{5}{6} & \frac{1}{36} & \frac{1}{36} & \frac{1}{36} & 1\end{array}\right]^{T}$ are right and left eigenvectors, respectively, corresponding to $\rho\left(B_{5}\right)=1$. Therefore B_{5} and B_{5}^{T} have the strong PerronFrobenius property, so B_{5} is eventually positive by Handelman's criterion.

In [Berman et al. 2010] it was shown that if the sign pattern \mathscr{A} is PEP, then any sign pattern achieved by changing one or more zero entries of \mathscr{A} to be nonzero is also PEP. Applying this to \mathscr{B}_{n} yields a variety of additional PEP sign patterns having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The Kronecker product of $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ is defined as

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{n 1} B & \cdots & a_{n n} B
\end{array}\right]
$$

It is clear that if $A>0$ and $B>0$, then $A \otimes B>0$. The following facts can be found in many linear algebra books; see [Reams 2006], for example. For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m},(A \otimes B)^{k}=A^{k} \otimes B^{k}$. For A, C, B, D of appropriate dimensions,
we have $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$. There exists a permutation matrix P such that $B \otimes A=P(A \otimes B) P^{T}$.

Proposition 3.1. If A and B are eventually positive matrices, then $A \otimes B$ is eventually positive.

Proof. Assume that A and B are eventually positive matrices. Since A and B are eventually positive, there exists some $s_{0}, t_{0} \in \mathbb{Z}$, with $s_{0}, t_{0}>0$, such that for all $s \geq s_{0}$ and $t \geq t_{0}, A^{s}>0$ and $B^{t}>0$. Set $k_{0}=\max \left\{s_{0}, t_{0}\right\}$. Then for all $k \geq k_{0}$, $(A \otimes B)^{k}=A^{k} \otimes B^{k}>0$.

Corollary 3.2. If \mathscr{A} and \mathscr{B} are PEP sign patterns, then $\mathscr{A} \otimes \mathscr{B}$ is PEP.
If either A or B is a reducible matrix, then $A \otimes B$ is reducible since, without loss of generality, if

$$
P A P^{T}=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]
$$

then

$$
(P \otimes I)(A \otimes B)(P \otimes I)^{T}=\left[\begin{array}{cc}
A_{11} \otimes B & 0 \\
A_{21} \otimes B & A_{22} \otimes B
\end{array}\right]
$$

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.

Example 3.3. Let

$$
B=\frac{1}{100}\left[\begin{array}{ccc}
130 & -30 & 0 \\
130 & 0 & -30 \\
-31 & 30 & 101
\end{array}\right]
$$

In [Berman et al. 2010] it was shown that B is eventually positive, and in fact $B^{k}>0$ for $k \geq 10$.

Let $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$. Then $A^{k}>0$ for $k \geq 2$, hence A is eventually positive.
Then

$$
B \otimes A=\frac{1}{100}\left[\begin{array}{cccccc}
260 & 390 & -60 & -90 & 0 & 0 \\
130 & 0 & -30 & 0 & 0 & 0 \\
260 & 390 & 0 & 0 & -60 & -90 \\
130 & 0 & 0 & 0 & -30 & 0 \\
-62 & -93 & 60 & 90 & 202 & 303 \\
-31 & 0 & 30 & 0 & 101 & 0
\end{array}\right]
$$

Moreover $(B \otimes A)^{10}>0$ and $(B \otimes A)^{11}>0$, so $B \otimes A$ is eventually positive and $\operatorname{sgn}(B \otimes A)$ is a PEP sign pattern with reducible positive part.

Any 0 in $\operatorname{sgn}(B \otimes A)$ from Example 3.3 may be changed to - to get yet another PEP sign pattern with reducible positive part.

References

[Berman et al. 2010] A. Berman, M. Catral, L. M. DeAlba, A. Elhashash, F. J. Hall, L. Hogben, I.-J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, and P. van den Driessche, "Sign patterns that allow eventual positivity", Electron. J. Linear Algebra 19 (2010), 108-120. MR 2011c:15089 Zbl 1190.15031
[Handelman 1981] D. Handelman, "Positive matrices and dimension groups affiliated to C^{*}-algebras and topological Markov chains", J. Operator Theory 6:1 (1981), 55-74. MR 84i:46058 Zbl 0495. 06011
[Horn and Johnson 1985] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 87e:15001 Zbl 0576.15001
[Johnson and Tarazaga 2004] C. R. Johnson and P. Tarazaga, "On matrices with Perron-Frobenius properties and some negative entries", Positivity 8:4 (2004), 327-338. MR 2005k:15020 Zbl 1078. 15018
[Marden 1949] M. Marden, The geometry of the zeros of a polynomial in a complex variable, Mathematical Surveys 3, American Mathematical Society, Providence, RI, 1949. 2nd ed. titled Geometry of polynomials in 1966. MR 37 \#1562 Zbl 0162.37101
[Reams 2006] R. Reams, "Partitioned matrices", Chapter 10, in Handbook of linear algebra, edited by L. Hogben, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR 2007j:15001 Zbl 1122.15001
[Samuelson 1947] P. A. Samuelson, Foundations of economic analysis, Harvard University Press, Cambridge, MA, 1947. MR 10,555b Zbl 0031.17401

Received: 2011-03-03 Accepted: 2011-06-10

mharcher@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States Department of Mathematics, Columbia College, Columbia, SC 29203, United States
catralm@xavier.edu	Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, United States
craig@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
rhaber2010@my.fit.edu	Mathematics Department, Florida Institute of Technology, Melbourne, FL 32901, United States
Ihogben@iastate.edu	Department of Mathematics, lowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States
	American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States
xavier.martinez@upr.edu	Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, P.R. 00681, United States
aochoa@csupomona.edu	California State Polytechnic University, Pomona, Pomona, CA 91768, United States

involve

msp.berkeley.edu/involve

EDITORS

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@ dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A\&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2011 is US $\$ 100 /$ year for the electronic version, and $\$ 130 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

PUBLISHED BY

El mathematical sciences publishers http://msp.org/
A NON-PROFIT CORPORATION
Typeset in IATE $_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Mathematical Sciences Publishers

involve
 2011
 vol. 4
 no. 4

Maximality of the Bernstein polynomials 307Christopher Frayer and Christopher Shafhauser
The family of ternary cyclotomic polynomials with one free prime 317
Yves Gallot, Pieter Moree and Robert Wilms
Preimages of quadratic dynamical systems 343
Benjamin Hutz, Trevor Hyde and Benjamin Krause
The Steiner problem on the regular tetrahedron 365
Kyra Moon, Gina Shero and Denise Halverson
Constructions of potentially eventually positive sign patterns with reducible positive part 405
Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa
Congruence properties of S-partition functions 411
Andrew Gruet, Linzhi Wang, Katherine Yu and Jiangang Zeng

[^0]: MSC2010: 15B35, 15B48, 05C50, 15A18.

