

a journal of mathematics

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

mathematical sciences publishers

2011 vol. 4, no. 4

Constructions of potentially eventually positive sign patterns with reducible positive part

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

Potentially eventually positive (PEP) sign patterns were introduced by Berman et al. (*Electron. J. Linear Algebra* **19** (2010), 108–120), where it was noted that a matrix is PEP if its positive part is primitive, and an example was given of a 3×3 PEP sign pattern with reducible positive part. We extend these results by constructing $n \times n$ PEP sign patterns with reducible positive part, for every $n \ge 3$.

1. Introduction

A sign pattern matrix (or sign pattern) is a matrix having entries in $\{+, -, 0\}$. For a real matrix A, $\operatorname{sgn}(A)$ is the sign pattern having entries that correspond to the signs of the entries in A. If \mathcal{A} is an $n \times n$ sign pattern, the *qualitative class* of \mathcal{A} , denoted $Q(\mathcal{A})$, is the set of all $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{sgn}(A) = \mathcal{A}$, where $\operatorname{sgn}(A) = [\operatorname{sgn}(a_{ij})]$; such a matrix A is called a *realization* of \mathcal{A} . Qualitative matrix problems were introduced by Samuelson [1947] in the mathematical modeling of problems from economics. Sign pattern matrices have useful applications in economics, population biology, chemistry and sociology. If P is a property of a real matrix, then a sign pattern \mathcal{A} is *potentially* P (or *allows* P) if there is some $A \in Q(\mathcal{A})$ that has property P.

The *spectrum* of a square matrix A, denoted $\sigma(A)$, is the multiset of the eigenvalues of A, and the *spectral radius* of A is defined as $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$. Matrix A has the *strong Perron–Frobenius property* if $\rho(A) > 0$ is a simple strictly dominant eigenvalue of A that has a positive eigenvector. A matrix $A \in \mathbb{R}^{n \times n}$ is *eventually positive* if there exists a $k_0 \in \mathbb{Z}^+$ such that for all $k \geq k_0$, $A^k > 0$, where the inequality is entrywise. Handelman developed the following test for eventual positivity in [Handelman 1981]: a matrix A is eventually positive if and only if both A and A^T satisfy the strong Perron–Frobenius property. If there exists a k such

MSC2010: 15B35, 15B48, 05C50, 15A18.

Keywords: potentially eventually positive, PEP, sign pattern, matrix, digraph.

that $A^k > 0$ and $A^{k+1} > 0$, then A is eventually positive [Johnson and Tarazaga 2004]. A sign pattern \mathcal{A} is *potentially eventually positive* (PEP) if there exists an eventually positive realization $A \in Q(\mathcal{A})$.

For a sign pattern $\mathcal{A} = [\alpha_{ij}]$, define the *positive part* of \mathcal{A} to be $\mathcal{A}^+ = [\alpha_{ij}^+]$ and the *negative part* of \mathcal{A} to be $\mathcal{A}^- = [\alpha_{ij}^-]$, where

$$\alpha_{ij}^+ = \begin{cases} + & \text{if } \alpha_{ij} = +, \\ 0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = -, \end{cases} \qquad \alpha_{ij}^- = \begin{cases} - & \text{if } \alpha_{ij} = -, \\ 0 & \text{if } \alpha_{ij} = 0 \text{ or } \alpha_{ij} = +. \end{cases}$$

Clearly $\mathcal{A} = \mathcal{A}^+ + \mathcal{A}^-$. For a matrix $A \in \mathbb{R}^{n \times n}$, the positive part A^+ of A and negative part A^- of A are defined analogously, and $A = A^+ + A^-$.

A digraph $\Gamma = (V, E)$ consists of a finite, nonempty set V of vertices, together with a set $E \subseteq V \times V$ of arcs. Note that a digraph allows loops (arcs of the form (v, v)) and may have both arcs (v, w) and (w, v) but not multiple copies of the same arc. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix} \in \mathbb{R}^{n \times n}$. The digraph of A, denoted $\Gamma(A)$, has vertex set $\{1, \ldots, n\}$ and arc set $\{(i, j) : a_{ij} \neq 0\}$. If \mathcal{A} is a sign pattern, then $\Gamma(\mathcal{A}) = \Gamma(A)$ where $A \in Q(\mathcal{A})$. A digraph Γ is strongly connected if for any two distinct vertices v and w of Γ , there is a path in Γ from v to w.

A square matrix A is *reducible* if there exists a permutation matrix P such that

$$PAP^T = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are nonempty square matrices and 0 is a (possibly rectangular) block consisting entirely of zero entries, or A is the 1×1 zero matrix. If A is not reducible, then A is called *irreducible*. It is well known that for $n \geq 2$, A is irreducible if and only if $\Gamma(A)$ is strongly connected. For a strongly connected digraph Γ , the *index of imprimitivity* is the greatest common divisor of the lengths of the cycles in Γ . A strongly connected digraph is *primitive* if its index of imprimitivity is one; otherwise it is *imprimitive*. The *index of imprimitivity* of a nonnegative sign pattern \mathcal{A} is the index of imprimitivity of $\Gamma(\mathcal{A})$ and $\mathcal{A} \geq 0$ is *primitive* if $\Gamma(\mathcal{A})$ is primitive, or equivalently, if the index of imprimitivity of \mathcal{A} is one.

The study of PEP sign patterns was introduced in [Berman et al. 2010], where it was shown that if \mathcal{A}^+ is primitive, then \mathcal{A} is PEP, and where the first example of a PEP sign pattern with reducible positive part was given: the 3×3 pattern

$$\mathfrak{B} = \begin{bmatrix} + & - & 0 \\ + & 0 & - \\ - & + & + \end{bmatrix}.$$

In Section 2 we extend the results of [Berman et al. 2010] by generalizing the 3×3 pattern \Re given there to a family of PEP sign patterns having reducible positive part for every order $n \ge 3$.

In Section 3 we examine the effect of the Kronecker product on PEP sign patterns and obtain another method of constructing PEP sign patterns with reducible positive part.

2. A family of sign patterns generalizing \Re

The sign pattern \Re from [Berman et al. 2010] was the first PEP sign pattern with a reducible positive part. This sign pattern may be generalized by defining the $n \times n$ sign pattern

$$\mathcal{B}_{n} = \begin{bmatrix} + & - & \cdots & - & 0 \\ + & 0 & \cdots & 0 & - \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ + & 0 & \cdots & 0 & - \\ - & + & \cdots & + & + \end{bmatrix}.$$

The following result, which is a special case of the *Schur-Cohn criterion* (see, e.g., [Marden 1949]), will be used in the proof that \mathcal{B}_n is PEP.

Lemma 2.1. If the polynomial $f(x) = x^2 - \beta x + \alpha$ satisfies $|\beta| < 1 + \alpha < 2$, then all zeros of f(x) lie strictly inside the unit circle.

It is well known that if the characteristic polynomial of A is $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ then $a_{n-k} = (-1)^k E_k(A)$, where $E_k(A)$ is the sum of the $k \times k$ principal minors of A (see, e.g., [Horn and Johnson 1985]).

Theorem 2.2. For $n \ge 3$ the $n \times n$ sign pattern \Re_n is PEP.

Proof. For t > 0, let $B_n(t)$ be the $n \times n$ matrix

$$B_n(t) = \begin{bmatrix} 1 + (n-2)t & -t & \cdots & -t & 0\\ 1+t & 0 & \cdots & 0 & -t\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 1+t & 0 & \cdots & 0 & -t\\ -(n-2)t - \frac{1}{2}t^2 & t & \cdots & t & 1 + \frac{1}{2}t^2 \end{bmatrix}.$$

Then $B_n(t) \in Q(\mathcal{B}_n)$, and 1 is an eigenvalue of $B_n(t)$ with positive right eigenvector $\mathbb{1}$ (the all ones vector) and positive left eigenvector

$$\mathbf{w} = \left[\frac{2n-5}{t} \quad 1 \quad \cdots \quad 1 \quad \frac{2n-4}{t} \right]^T.$$

We show that for some choice of t > 0, 1 is a simple strictly dominant eigenvalue of $B_n(t)$ and hence $B_n(t)$ is eventually positive. Since $1 \in \sigma(B_n(t))$ and rank $B_n(t) \leq 3$, the characteristic polynomial $p_{B_n(t)}(x)$ of $B_n(t)$ is of the form

$$p_{B_n(t)}(x) = x^{n-3}(x-1)(x^2 - \beta x + \alpha) = x^n - (1+\beta)x^{n-1} + (\alpha+\beta)x^{n-2} - \alpha x^{n-3}.$$

Computing α and β using the sums of principal minors to evaluate the characteristic polynomial gives $\beta = \frac{1}{2}t^2 + (n-2)t + 1$ and $\alpha = (n-2)t\left(1+2t+\frac{1}{2}t^2\right)$. For n > 3, setting t = 1/(2(n-2)) gives $|\beta| < 1+\alpha < 2$, which, using Lemma 2.1, guarantees that the two nonzero eigenvalues of B_n other than 1 have modulus strictly less than 1 (recall that a 3×3 eventually positive matrix $B_3 \in Q(\mathfrak{B}_3)$ was given in [Berman et al. 2010] so we have not been concerned with this case in choosing t).

We illustrate this theorem with an example.

Example 2.3. Let n = 5. Following the proof of Theorem 2.2, we choose $t = \frac{1}{6}$ and define

$$B_5 = B_5 \left(\frac{1}{6}\right) = \frac{1}{6} \begin{bmatrix} 9 & -1 & -1 & -1 & 0 \\ 7 & 0 & 0 & 0 & -1 \\ 7 & 0 & 0 & 0 & -1 \\ 7 & 0 & 0 & 0 & -1 \\ -\frac{37}{12} & 1 & 1 & 1 & \frac{73}{12} \end{bmatrix}.$$

Moreover, we have

$$\sigma(B_5) = \left\{ 1, \frac{1}{144} \left(109 + i\sqrt{2087} \right), \frac{1}{144} \left(109 - i\sqrt{2087} \right), 0, 0 \right\}$$

 $\approx \left\{ 1, 0.7569 + 0.3172i, 0.7569 - 0.3172i, 0, 0 \right\},$

and $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} \frac{5}{6} & \frac{1}{36} & \frac{1}{36} & \frac{1}{36} & 1 \end{bmatrix}^T$ are right and left eigenvectors, respectively, corresponding to $\rho(B_5) = 1$. Therefore B_5 and B_5^T have the strong Perron–Frobenius property, so B_5 is eventually positive by Handelman's criterion.

In [Berman et al. 2010] it was shown that if the sign pattern \mathcal{A} is PEP, then any sign pattern achieved by changing one or more zero entries of \mathcal{A} to be nonzero is also PEP. Applying this to \mathcal{B}_n yields a variety of additional PEP sign patterns having reducible positive part.

3. Kronecker products

The Kronecker product (sometimes called the tensor product) is a useful tool for generating larger eventually positive matrices and thus PEP sign patterns. The Kronecker product of $A = [a_{ij}]$ and $B = [b_{ij}]$ is defined as

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}.$$

It is clear that if A > 0 and B > 0, then $A \otimes B > 0$. The following facts can be found in many linear algebra books; see [Reams 2006], for example. For $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$, $(A \otimes B)^k = A^k \otimes B^k$. For A, C, B, D of appropriate dimensions,

we have $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$. There exists a permutation matrix P such that $B \otimes A = P(A \otimes B)P^T$.

Proposition 3.1. If A and B are eventually positive matrices, then $A \otimes B$ is eventually positive.

Proof. Assume that *A* and *B* are eventually positive matrices. Since *A* and *B* are eventually positive, there exists some $s_0, t_0 \in \mathbb{Z}$, with $s_0, t_0 > 0$, such that for all $s \ge s_0$ and $t \ge t_0$, $A^s > 0$ and $B^t > 0$. Set $k_0 = \max\{s_0, t_0\}$. Then for all $k \ge k_0$, $(A \otimes B)^k = A^k \otimes B^k > 0$.

Corollary 3.2. If A and B are PEP sign patterns, then $A \otimes B$ is PEP.

If either A or B is a reducible matrix, then $A \otimes B$ is reducible since, without loss of generality, if

$$PAP^T = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$$

then

$$(P \otimes I)(A \otimes B)(P \otimes I)^T = \begin{bmatrix} A_{11} \otimes B & 0 \\ A_{21} \otimes B & A_{22} \otimes B \end{bmatrix}.$$

Thus Corollary 3.2 provides another way to construct PEP sign patterns having reducible positive part.

Example 3.3. Let

$$B = \frac{1}{100} \begin{bmatrix} 130 - 30 & 0 \\ 130 & 0 & -30 \\ -31 & 30 & 101 \end{bmatrix}.$$

In [Berman et al. 2010] it was shown that B is eventually positive, and in fact $B^k > 0$ for $k \ge 10$.

Let $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$. Then $A^k > 0$ for $k \ge 2$, hence A is eventually positive. Then

$$B \otimes A = \frac{1}{100} \begin{bmatrix} 260 & 390 & -60 & -90 & 0 & 0 \\ 130 & 0 & -30 & 0 & 0 & 0 \\ 260 & 390 & 0 & 0 & -60 & -90 \\ 130 & 0 & 0 & 0 & -30 & 0 \\ -62 & -93 & 60 & 90 & 202 & 303 \\ -31 & 0 & 30 & 0 & 101 & 0 \end{bmatrix}.$$

Moreover $(B \otimes A)^{10} > 0$ and $(B \otimes A)^{11} > 0$, so $B \otimes A$ is eventually positive and $sgn(B \otimes A)$ is a PEP sign pattern with reducible positive part.

Any 0 in $sgn(B \otimes A)$ from Example 3.3 may be changed to – to get yet another PEP sign pattern with reducible positive part.

References

[Berman et al. 2010] A. Berman, M. Catral, L. M. DeAlba, A. Elhashash, F. J. Hall, L. Hogben, I.-J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, and P. van den Driessche, "Sign patterns that allow eventual positivity", *Electron. J. Linear Algebra* **19** (2010), 108–120. MR 2011c:15089 Zbl 1190.15031

[Handelman 1981] D. Handelman, "Positive matrices and dimension groups affiliated to C*-algebras and topological Markov chains", *J. Operator Theory* **6**:1 (1981), 55–74. MR 84i:46058 Zbl 0495. 06011

[Horn and Johnson 1985] R. A. Horn and C. R. Johnson, *Matrix analysis*, Cambridge University Press, Cambridge, 1985. MR 87e:15001 Zbl 0576.15001

[Johnson and Tarazaga 2004] C. R. Johnson and P. Tarazaga, "On matrices with Perron–Frobenius properties and some negative entries", *Positivity* **8**:4 (2004), 327–338. MR 2005k:15020 Zbl 1078. 15018

[Marden 1949] M. Marden, *The geometry of the zeros of a polynomial in a complex variable*, Mathematical Surveys **3**, American Mathematical Society, Providence, RI, 1949. 2nd ed. titled *Geometry of polynomials* in 1966. MR 37 #1562 Zbl 0162.37101

[Reams 2006] R. Reams, "Partitioned matrices", Chapter 10, in *Handbook of linear algebra*, edited by L. Hogben, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2007j:15001 Zbl 1122.15001

[Samuelson 1947] P. A. Samuelson, *Foundations of economic analysis*, Harvard University Press, Cambridge, MA, 1947. MR 10,555b Zbl 0031.17401

Received: 2011-03-03 Accepted: 2011-06-10

mharcher@iastate.edu Department of Mathematics,

Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

Department of Mathematics, Columbia College,

Columbia, SC 29203, United States

catralm@xavier.edu Department of Mathematics and Computer Science,

Xavier University, Cincinnati, OH 45207, United States

craig@iastate.edu Department of Mathematics,

Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

rhaber2010@my.fit.edu Mathematics Department, Florida Institute of Technology,

Melbourne, FL 32901, United States

Ihogben@iastate.edu Department of Mathematics,

Iowa State University of Science and Technology, 396 Carver Hall, Ames, IA 50011-2064, United States

American Institute of Mathematics, 360 Portage Avenue,

Palo Alto, CA 94306, United States

xavier.martinez@upr.edu Department of Mathematical Sciences, University of Puerto

Rico, Mayagüez, P.R. 00681, United States

aochoa@csupomona.edu California State Polytechnic University, Pomona,

Pomona, CA 91768, United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu		
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu		
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz		
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu		
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com		
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu		
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir		
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu		
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu		
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu		
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu		
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com		
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch		
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu		
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu		
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu		
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu		
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu		
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu		
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu		
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu		
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu		
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu		
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com		
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu		
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu		
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com		
David Larson	Texas A&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu		
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu		
PRODUCTION					

RODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2011 is US \$100/year for the electronic version, and \$130/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

A NON-PROFIT CORPORATION

Typeset in LATEX

Copyright ©2011 by Mathematical Sciences Publishers

CHRISTOPHER FRAYER AND CHRISTOPHER SHAFHAUSER	
The family of ternary cyclotomic polynomials with one free prime YVES GALLOT, PIETER MOREE AND ROBERT WILMS	317
Preimages of quadratic dynamical systems BENJAMIN HUTZ, TREVOR HYDE AND BENJAMIN KRAUSE	343
The Steiner problem on the regular tetrahedron Kyra Moon, Gina Shero and Denise Halverson	365
Constructions of potentially eventually positive sign patterns with reducible positive part Marie Archer, Minerva Catral, Craig Erickson, Rana Haber, Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa	405
Congruence properties of S-partition functions ANDREW GRUET, LINZHI WANG, KATHERINE YU AND JIANGANG ZENG	411

307

Maximality of the Bernstein polynomials