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We prove a transformation equation satisfied by a set of holomorphic functions
with rational Fourier coefficients of cardinality 2ℵ0 arising from modular forms.
This generalizes the classical transformation property satisfied by modular forms
with rational coefficients, which only applies to a set of cardinality ℵ0 for a given
weight.

Modular forms play a crucial role in number theory, complex analysis, and ge-
ometry. However, from a set-theoretic point of view, the Q-vector space Mr (0) of
holomorphic modular forms of a given weight r on 0 = SL(2,Z) is only a small
subset of the meromorphic functions of q = e2π i z on the open unit disc D centered
at the origin of the complex plane with rational power series coefficients. This
is because the set of all modular forms of a given weight r with rational Fourier
coefficients is countable (has cardinality ℵ0), as can be seen from the fact that
the algebra of all modular forms on 0 over Q is finitely generated by modular
forms with rational coefficients [Ono 2004]. In contrast, since every meromorphic
function of q = e2π i z on the unit disc D with a pole having at most finite order at
q = 0 can be represented as a power series of the form

g(z)=
∞∑

n=−m

a(n)e2π inz (1)

uniformly convergent on compact subsets of D and conversely, it is clear that the
cardinality of the set of meromorphic or holomorphic functions of q = e2π i z with
rational power series coefficients is 2ℵ0 . We discuss this in more detail in the proof
of Corollary 4 and Proposition 5.

Since modular forms are only a small subset of the set of all meromorphic func-
tions, it is interesting to ask whether or not it is possible to generalize the definition
of modularity so as to encompass a set of functions with cardinality 2ℵ0 , while still
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preserving some of the remarkable transformation properties of modular forms.
This can be done by allowing the level of the modular form to become infinite.

To be specific, we consider sequences of elements of SL(2,Z), that is, integer
matrices

(a
c

b
d

)
such that |ad − bc| = 1, where the entries depend on a positive

integer k, which will be suppressed from the notation. We will assume that c
is an increasing (and therefore unbounded) function of k, and that the quotient
d/c approaches a finite limit as k →∞. Note that

(a
c

b
d

)
belongs to the modular

group 00(c)— by definition, 00(N ) consists of the matrices in SL(2,Z) whose
lower left entry is a multiple of N . We let SL(2,Z) act on the upper half-plane
{z ∈ C : Im z > 0} in the usual way:(

a b
c d

)
z = az+b

cz+d
.

Let r be a positive integer. Let g be a meromorphic function on the upper half-
plane with a pole of at most finite order at z = i∞. Suppose there is a sequence
c= c(k)with the property that, for any sequence

(a
c

b
d

)
of the form above consistent

with this choice of c, the function g satisfies the transformation equation(
z+ lim

k→∞

d
c

)r
g(z)= lim

k→∞
c−r g

((
a b
c d

)
z
)
. (2)

In that case we say that g is a generalized modular form of weight r , or a modular
form of weight r and level infinity.

To see that this notion is a generalization of traditional modular forms, consider
a modular form g of weight r and level N , and take for c the sequence given by
c(k)= Nk. Any element of any sequence

(a
c

b
d

)
consistent with this choice of c is

an element of 00(N ); therefore, by the definition of a modular form, g satisfies

(cz+ d)r g(z)= g
((

a b
c d

)
z
)

for all k. Dividing both sides by cr and taking the limit as k→∞ we see that (2)
is satisfied.

We will now see how to create uncountably many generalized modular forms
with rational coefficients. We recall the definition of Dirichlet multiplication for
two sequences {h(n)} and {C(n)}:

(h ∗C)n =
∑
d|n

h(d)C
(n

d

)
We will assume C(1) 6= 0 in order to guarantee the existence of the Dirichlet in-
verse {C−1(n)}, the inverse of the sequence {C(n)} under the operation of Dirichlet
multiplication. For efficient notation, we use {An} and {A(n)} interchangeably for
any sequence {An}. Here is our main result.
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Theorem 1. Let
∞∑

n=1

C(n)e2π inz

be a cusp form of even weight r > 0 on 0 with C(1) 6= 0 and {|h(n)|} ∈ `1 (i.e.,∑
∞

n=1 h(n) is absolutely convergent). Then any holomorphic function on the upper
half-plane of the form

g(z)=
∞∑

n=1

(h ∗C)ne2π inz
=

∞∑
n=1

∑
d|n

h(d)C
(n

d

)
e2π inz (3)

is a holomorphic generalized modular form of weight r and level infinity that sat-
isfies the transformation equation(

z+ lim
c(k)→∞

d
c

)r
g(z)= lim

c(k)→∞
c−r g

((
a b
c d

)
z
)
; (4)

here
(a

c
b
d

)
∈ 00(c) with c(k)= lcm(1, 2, 3, . . . , k). Thus g(z) satisfies an approxi-

mate modular transformation equation, with its accuracy increasing as c(k)→∞.
Here we define (4) to be such an approximate modular transformation equation.

This theorem generalizes the result

f
(az+b

cz+d

)
= (cz+ d)r f (z)

when h(n) in (3) is the identity element of Dirichlet multiplication I (n), since in
this case g(z) is a cusp form by definition:

g(z)=
∞∑

n=1

(I ∗C)ne2π inz
=

∞∑
n=1

C(n)e2π inz,

(
z+ d

c

)r
g(z)= c−r g

((
a b
c d

)
z
)
.

Of course, in this case {|I (n)|}∈`1 since I (n)=0 for n>1, and thus the hypotheses
of Theorem 1 are satisfied. We also note that

(a
c

b
d

)
z approaches the real line as

c(k)→∞, since
(a

c
b
d

)
∈ 00(c) implies

az+b
cz+d

=
a
c
−

1
c(cz+d)

, lim
c(k)→∞

Im az+b
cz+d

= 0.

Proof. We prove Theorem 1 using series of modular forms. In particular we use
the cusp form of weight r on 0 given by

f (z)=
∞∑

n=1

C(n)e2π inz,
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where {C(n)} is any cusp form coefficient sequence. It is well known that there
exist functions that are analytic in the upper half-plane and satisfy the functional
equation

f
(az+ b

cz+ d

)
= (cz+ d)r f (z),

where
(a

c
b
d

)
∈0 and ad−bc= 1 (0 being the modular group). From this property,

it is easy to see that if n divides c, that is, if
(a

c
b
d

)
∈00(n), then for positive integer

n we have
f
(

n
az+ b
cz+ d

)
= (cz+ d)r f (nz).

The Fourier expansion for f (mz)

f (mz)=
∞∑

n=1

C(n)e2π imnz

is absolutely convergent in the upper half-plane, since C(n) = O(nr/2) by a stan-
dard argument of Hecke [Apostol 1990]. Assuming Am = O(m p) for some natural
number p we note that the double series

∞∑
m=1

Am f (mz)=
∞∑

m=1

∞∑
n=1

AmCne2π imnz

is absolutely convergent, since both sequences Am and Cn are bounded by poly-
nomials, while of course e2π imnz decays exponentially in absolute value as m or n
increases. Hence rearrangement is justified and we can write

∞∑
m=1

Am f (mz)=
∞∑

n=1

∑
d|n

A(d)C
(n

d

)
e2π inz

=

∞∑
n=1

(A ∗C)ne2π inz.

We also need the identity

e2π i z
=

∞∑
m=1

C−1(m) f (mz) (5)

where C−1(m) is the Dirichlet inverse of the cusp form coefficients. Assuming
absolute convergence, identity (5) follows easily from the following rearrangement:

∞∑
m=1

C−1(m) f (mz)=
∞∑

m=1

∞∑
n=1

C−1(m)C(n)e2π imnz

=

∞∑
n=1

(C−1
∗C)ne2π inz

= e2π i z.
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To prove absolute convergence it is sufficient to prove that C−1(m) is bounded by
a polynomial in m. This follows from the fact that C(n)= O(nr/2) [Apostol 1990],
together with the following lemma:

Lemma 2. If a sequence {C(n)} ⊆ C with C(1) 6= 0 is bounded by a polynomial
in n, then its Dirichlet inverse C−1(m) is also bounded by a polynomial in n.
In symbols, if |C(n)| = O(nd1) for some d1 ∈ R, there exists d2 ∈ R such that
|C−1(n)| = O(nd2).

Proof. We prove this by induction. If |C(n)| = O(nd1), then letting |C(1)| = P ,
we find that there exists k ∈ R such that |C(n)| ≤ Pnk for any positive integer n.
We use the standard recursive definition

C−1(n)=−
1

C(1)

∑
d|n
d<n

C
(n

d

)
C−1(d), (6)

which is equivalent to (C ∗ C−1)n = I (n), where I (n) is the identity element of
Dirichlet multiplication. We find that |C(1)| = P implies |C−1(1)| = 1/P . We
make the inductive hypothesis

|C−1(d)| ≤
1
P

dk+2 for all d < n, d ∈ N.

Using the recursive definition (6) we obtain

|C−1(n)| ≤
∣∣∣ 1
C(1)

∣∣∣ ∑
d |n
d<n

∣∣∣C(n
d

)∣∣∣|C−1(d)| ≤
∣∣∣ 1
C(1)

∣∣∣ ∑
d |n
d<n

(n
d

)k
dk+2
≤

1
P

nk
∑
d |n
d<n

d2.

So,

|C−1(n)| ≤
1
P

nk
∑
d |n
d<n

d2
=

1
P

nk+2
∑
d|n
d>1

1
d2 ≤

1
P

nk+2(ζ(2)− 1)≤
1
P

nk+2,

where ζ(s) is the Riemann zeta function. It follows that

|C−1(n)| ≤
1
P

nk+2,

and this completes the induction. �

Any complex analytic function J (q) can be written as a power series for q in
the open unit disc D centered at q = 0:

J (q)=
∞∑

n=0

Anqn.

Making the substitution q = e2π i z with J (e2π i z) = g(z) and assuming J (0) = 0
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for convenience, we find

g(z)=
∞∑

n=1

Ane2π inz.

Using the absolute convergence of

e2π inz
=

∞∑
m=1

C−1(m) f (mnz)

in the upper half-plane, and assuming An is bounded by a polynomial in n, we use
rearrangement of series to write

∞∑
n=1

(A ∗C−1)n f (nz)=
∞∑

m=1

∞∑
n=1

(A ∗C−1)nCme2π imnz

=

∞∑
n=1

(A ∗C−1
∗C)ne2π inz

=

∞∑
n=1

Ane2π inz
= g(z).

This is justified by the discussion above and Lemma 2, which imply that all the
series above are absolutely convergent. Now consider the partial sums of the series

gk(z)=
k∑

n=1

(A ∗C−1)n f (nz).

From this definition, assuming z = x + iy, we have

|g(z)− gk(z)| = O(e−2πky). (7)

This is because the cusp forms f (nz) decay exponentially as n increases [Shimura
2007], so there exists M ∈ R+ such that | f (nz)| < Me−2πny for all n. Hence, as
k→∞ we have by the triangle inequality:

|g(z)− gk(z)| =
∣∣∣∣ ∞∑
n=k+1

(A ∗C−1)n f (nz)
∣∣∣∣

< Me−2πky
∞∑

n=1

(A ∗C−1)ne−2πny
= O(e−2πky).

From the functional equation f
(

n az+b
cz+d

)
= (cz+d)r f (nz), valid if n|c and ad−

bc = 1, we obtain(
z+ d

c

)r
gk(z)= c−r

k∑
n=1

(A ∗C−1)n f
(

n az+b
cz+d

)
, ad − bc = 1,

by choosing c(k) = lcm[1, 2, 3, . . . , k].
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Given this c, we can always choose a, b, d such that
(a

c
b
d

)
∈ 00(n) for all n ≤ k

and with d/c approaching a finite limit as k→∞. For example, one can take
( 1

c
0
1

)
or, more generally, (

a b
c d

)
=

(
cν+ 1 −cν2

c −cν+ 1

)
for some integer ν. Hence, we can write(

z+ d
c

)r
gk(z)= c−r

k∑
n=1

(A ∗C−1)n f
(

n
(

a b
c d

)
z
)
. (8)

This approach, however, does not work for arbitrary holomorphic functions f (z)
since the error term

c−r
∞∑

n=k+1

(A ∗C−1)n f
(

n
(

a b
c d

)
z
)

diverges as k and c approach∞. One way to circumvent this difficulty is to choose
an sequence of real numbers h(n) with {|h(n)|} ∈ `1, and set

An = (h ∗C)n, or, equivalently, (A ∗C−1)n = h(n), (9)

so that

g(z)=
∞∑

n=1

(h ∗C)ne2π inz. (10)

In this case, An is bounded by a polynomial in n and the error term is

c−r
∞∑

n=k+1

h(n) f
(

n
(

a b
c d

)
z
)
.

Lemma 3. Let
(a

c
b
d

)
be a sequence as on page 16. As c→∞, we have∣∣∣∣ f

(
n
(

a b
c d

)
z
)∣∣∣∣< Mn−r/2 |cz+ d|r

(Im z)r/2
,

where the constant M does not depend on n, a, b, d.

Proof. Since f is a cusp form of weight r , we have

| f (z)| (Im z)r/2 < M (11)

in the upper half-plane, for some bound M > 0. We sketch the proof; see [Apostol
1990] for details. Let ϕ(z)= | f (z)| (Im z)r/2 First, ϕ(z)→ 0 as Im z→+∞, since
f decays exponentially with Im z, and therefore faster than any polynomial. By
compactness, then, ϕ(z) must be bounded in the fundamental region{

z : Im z > 0, |z| ≥ 1, Re z ≤ 1
2

}
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for the action of the modular group 0 on the upper half-plane. But ϕ is invariant
under 0 (basically because Im z acts like the absolute value of a modular form of
weight −2, so the weights cancel out). Thus the value of ϕ at any point z equals
its value at some point in the fundamental domain, and is therefore bounded.

From (11) we can write∣∣∣∣ f
(

n
(

a b
c d

)
z
)∣∣∣∣(Im

(
n
(

a b
c d

)
z
))r/2

< M.

Since (
Im
(

n
(

a b
c d

)
z
))r/2

= |cz+ d|−r nr/2(Im z)r/2,

we obtain the desired inequality. �

We recall that r > 0 for holomorphic cusp forms [Apostol 1990]. Thus, if
{|h(n)|} ∈ `1, the error term

c−r
∞∑

n=k+1

h(n) f
(

n
(

a b
c d

)
z
)

is clearly absolutely convergent and approaches 0 as k→∞. Hence, from (7), (8),
and (9), we have successively(

z+ d
c

)r
gk(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k)), , (12)

for some function ε(k) satisfying limk→∞ ε(k)= 0. This leads to(
z+ d

c

)r
g(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k))+ O(e−2πky),

(
z+ d

c

)r
g(z)= c−r

∞∑
n=1

h(n) f
(

n
(

a b
c d

)
z
)
+ O(ε(k)).

From (12) we obtain, using the Fourier expansion f (nz) =
∞∑

m=1
C(m)e2π imnz

and absolute convergence to justify rearrangements,(
z+ d

c

)r
g(z)= c−r

∞∑
m=1

∞∑
n=1

h(n)C(m)e2π imn
(

a
c

b
d
)

z
+ O(ε(k))

= c−r
∞∑

n=1

(h ∗C)ne2π in
(

a
c

b
d
)

z
+ O(ε(k)).

From (10) we have(
z+ lim

c(k)→∞

d
c

)r
g(z)= lim

c(k)→∞
c−r g

((
a b
c d

)
z
)
,



A GENERALIZATION OF MODULAR FORMS 23

with c(k)= lcm(1, 2, 3, . . . , k), which completes the proof of Theorem 1. We note
that g(z) is holomorphic in the upper half-plane since |h(n)|} ∈ `1 and C(n) =
O(nr/2) result in uniform convergence of the series (10) on compact subsets. �

Corollary 4. If there exists a cusp form of even weight r over Q with C(1) 6= 0,
then the set G of generalized modular forms of weight r and level infinity with
rational coefficients has cardinality 2ℵ0 :

|G| = 2ℵ0 .

Proof. This follows from Theorem 1, which implies that, for all {h(n)} such that
{|h(n)|} ∈ `1,

g(z)=
∞∑

n=1

(h ∗C)ne2π inz

is a generalized modular form of weight r over Q, assuming that {C(n)} is the
rational Fourier coefficient sequence of a weight r cusp form with C(1) 6= 0.

Now let
A = (Q[0, 1])N =

{
(a : N→Q[0, 1])

}
be the set of sequences {a(n)} with a(n) ∈ Q[0, 1] for n ∈ N. We recall from set
theory that |Q[0, 1]| = ℵ0 and |(Q[0, 1])N| = ℵℵ0

0 = 2ℵ0 [Jech 1997]. Further, let

B =
{
{h(n)} ∈ A : {|h(n)|} ∈ `1}

be the subset of A consisting of sequences whose sum converges absolutely. We
know that {a(n)}∈ A implies {a(n)/n2

}∈ B, since |a(n)|≤1 and by the comparison
test for series and the absolute convergence of

∑
∞

n=1 1/n2. Thus the mapping
{a(n)} → {a(n)/n2

} defines an injection β : A→ B.
Next, Theorem 1 implies that there exists an injection γ : B→ G, which sends

a sequence {h(n)} ∈ B to

g(z)=
∞∑

n=1

(h ∗C)ne2π inz,

with g(z) ∈ G. The composite map γβ : A→ G thus defines an injection from
A to G, as long as

∑
∞

n=1 C(n)e2π inz is a cusp form of weight r with C(1) 6= 0.
Hence |G| ≥ 2ℵ0 = |A|.

At the same time, there is an injection from G into the set S of all formal power
series of q = e2π i z over Q. This set has the same cardinality as the set QN of maps
N→ Q. Hence |S| = |QN

| = ℵ
ℵ0
0 = 2ℵ0 . We conclude that |G| ≤ 2ℵ0 . Hence

|G| = 2ℵ0 . �

We note that Corollary 4 holds for r = 12 and all even r ≥ 16. This is because
the standard 1(z) function is a cusp form of weight 12 with C(1) 6= 0, and for
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even r ≥ 16 an example of such a cusp form is 1(z)Er−12(z) with Er−12(z) an
Eisenstein series.

Proposition 5. Mr (0) has cardinality ℵ0 as a vector space over Q.

Proof. This follows from the result that every entire modular form f ∈ Mr (0) is a
polynomial of the form [Ono 2004]

f =
∑

4a+6b=r

ca,bGa
4Gb

6,

where G4 and G6 are Eisenstein series with integer coefficients, ca,b ∈ C, and
a, b ∈ Z+. If f has rational coefficients, then we conclude ca,b ∈Q since G4 and
G6 have integer coefficients. Algebraically, this implies the following vector space
isomorphism over Q:

Mr (0)∼=Qdim Mr (0).

It is a well-known theorem in set theory that Q is countable, and in general the
Cartesian products of any finite number of countable sets is countable [Jech 1997].
Thus, we conclude Mr (0) over Q has cardinality ℵ0. These results allow us to
gauge the strength of Theorem 1, which generalizes the notion of modularity to
encompass a much larger set of holomorphic functions than the classical entire
modular forms. �
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