0 involve a journal of mathematics

Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors

Blake Allen, Erin Martin, Eric New and Dane Skabelund

Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors

Blake Allen, Erin Martin, Eric New and Dane Skabelund
(Communicated by Scott Chapman)

We explore the properties of $\Gamma_{E}(R)$, the graph of equivalence classes of zerodivisors of a commutative Noetherian ring R. We determine the possible combinations of diameter and girth for the zero-divisor graph $\Gamma(R)$ and the equivalence class graph $\Gamma_{E}(R)$, and examine properties of cut-vertices of $\Gamma_{E}(R)$.

Introduction

The zero-divisor graph of a commutative ring R, was first introduced in [Beck 1988] and has since been investigated in various forms. It was shown in [Anderson and Livingston 1999] that the zero-divisor graph of any ring is connected with diameter less than or equal to 3. Mulay [2002] proved many interesting results about cycles in the zero-divisor graph.

In 2009, Spiroff and Wickham [2011] introduced $\Gamma_{E}(R)$, the graph of equivalence classes of zero-divisors, which is a simplification of the zero-divisor graph $\Gamma(R)$. The vertices of $\Gamma_{E}(R)$ are, instead of individual zero-divisors of R, equivalence classes of zero-divisors determined by annihilator ideals. The graph $\Gamma_{E}(R)$ provides a more succinct view of the zero-divisor activity of the ring. In many cases, the equivalence class graph is finite even though the zero-divisor graph is infinite. For example, for $S=\mathbb{Z}[X, Y] /\left(X^{4}, X Y\right)$, the graph $\Gamma(S)$ is infinite, while the graph $\Gamma_{E}(S)$ has only 6 vertices. Specifically, the vertices corresponding to $X^{3}, 2 X^{3}, 3 X^{3}, \ldots$ are all distinct in $\Gamma(S)$. However, since they all have the same annihilator, they all belong to the same equivalence class, and so are represented by a single vertex $\left[X^{3}\right]$ in $\Gamma_{E}(S)$.

The equivalence class graph also lets us view the interplay between the annihilator ideals of R and helps to easily identify the associated primes of the ring. The vertices of $\Gamma_{E}(R)$ which correspond to associated primes have special properties which will help us to prove several interesting results related to $\Gamma_{E}(R)$. In

[^0]Keywords: zero-divisor graph, diameter, girth, cut vertices.

Section 1, we provide basic definitions and background. In Section 2, we determine all possible diameter combinations of $\Gamma(R)$ and $\Gamma_{E}(R)$, and do the same for the girth of the two graphs in Section 3. In Section 4, we look at properties of the cut-vertices of $\Gamma_{E}(R)$. Throughout, R will denote a commutative Noetherian ring.

1. Background and basic results

Graph theory. We briefly review basic graph theory terms that we will use throughout the paper. All graphs we deal with will be simple graphs in the sense that they contain no loops or double edges. We will denote the set of vertices of a graph Γ by $V(\Gamma)$. If two vertices x and y are joined by an edge, we say x and y are adjacent, and write $x-y$. A path is defined as an alternating sequence of distinct vertices and edges, and the length of a path is the number of edges in the path. If x and y are two vertices, then the distance between x and y, denoted $d(x, y)$, is the length of the shortest path from x to y. If there is no path connecting x to y, we say that $d(x, y)=\infty$, and we define $d(x, x)=0$. The diameter of a graph is the maximum distance between any two vertices of the graph. We will denote the diameter of a graph Γ by diam Γ. A cycle is a closed path, or a path that starts and ends on the same vertex. The girth of a graph is the length of its smallest cycle. We denote the girth of a graph Γ by $g(\Gamma)$ and say that $g(\Gamma)=\infty$ if the graph Γ contains no cycle. Note that the smallest possible cycle length is 3 , so if Γ contains a cycle, $g(\Gamma) \geq 3$.

A graph is said to be connected if every pair of vertices is joined by a path and complete if every pair of vertices is joined by an edge. A connected component of a graph Γ is a maximal connected subgraph of Γ. If removing a vertex v from a graph along with all its incident edges increases the number of connected components in the graph, then v is called a cut vertex. A graph is complete bipartite if its vertices can be partitioned into two subsets, V_{1} and V_{2}, such that every vertex of V_{1} is adjacent to every vertex of V_{2}, but no two vertices of V_{1} are adjacent and no two vertices of V_{2} are adjacent. Such a graph will be denoted $K_{n, m}$, where $n=\left|V_{1}\right|$ and $m=\left|V_{2}\right|$. If the vertices of a graph can be partitioned into r subsets in a similar fashion, then the graph is said to be r-partite.

Zero-divisor graphs. Let $Z(R)$ denote the set of zero-divisors of R and $Z^{*}(R)$ denote the set $Z(R) \backslash\{0\}$. We define the zero-divisor graph of R as the simple graph $\Gamma(R)$ where the vertices of $\Gamma(R)$ are the elements of $Z^{*}(R)$, and there is an edge between $x, y \in \Gamma(R)$ whenever $x y=0$.

Recall that the annihilator ideal associated to an element $x \in R$ is the set ann $x=$ $\{r \in R: x r=0\}$. We define an equivalence relation \sim on R such that for all $x, y \in R$, we say $x \sim y$ if ann $x=$ ann y. Let $[x]$ denote the equivalence class of x. Notice
that $[0]=\{0\},[1]=R \backslash Z(R)$ and the relation \sim partitions the remaining zerodivisors into distinct classes. Furthermore, it follows that the multiplication of these equivalence classes $[x] \cdot[y]=[x y]$ is well-defined.

The graph of equivalence classes of zero-divisors of $R, \Gamma_{E}(R)$, is the graph whose vertices are the classes of nonzero zero-divisors of R determined by the relation \sim, where there is an edge between two vertices $[x]$ and $[y]$ if $[x] \cdot[y]=[0]$.

Here, as an example, are the zero-divisor graph of \mathbb{Z}_{12} and the graph of its equivalence classes:

$$
\Gamma\left(\mathbb{Z}_{12}\right)
$$

$$
\Gamma_{E}\left(\mathbb{Z}_{12}\right)
$$

We see that since ann $2=$ ann 10 , the elements 2 and 10 are in the same equivalence class, and therefore collapse to the single vertex [2] in $\Gamma_{E}(R)$.

Previous results. Spiroff and Wickham [2011] have several interesting results linking the associated primes of R with the structure of $\Gamma_{E}(R)$. These will be useful in furthering our investigation of $\Gamma_{E}(R)$. Remember that a prime ideal \mathfrak{p} of R is an associated prime if it is the annihilator of some element of R. The set of associated primes is denoted ass R. It is well known that if R is a Noetherian ring, then ass R is nonempty and finite and that any maximal element of the family of annihilator ideals $\mathfrak{F}=\{$ ann $x: 0 \neq x \in R\}$ is an associated prime. Note also that since every zero divisor is contained in an annihilator ideal and maximal annihilators are associated primes, the set of zero-divisors of R equals the union of all associated primes of R. Since there is exactly one vertex of $\Gamma_{E}(R)$ for each distinct annihilator ideal of R, we have a natural injection of ass R into the vertex set of $\Gamma_{E}(R)$ given by $\mathfrak{p} \mapsto[y]$ where $\mathfrak{p}=$ ann y. We adopt the conventions of Spiroff and Wickham and by a slight abuse of terminology will refer to the vertex $[y]$ as an associated prime if ann $y \in$ ass R. It will be clear from context whether $[y]$ refers to an equivalence class, a vertex, or a specific annihilator.

Lemma 1.1 [Spiroff and Wickham 2011, Lemma 1.2]. Any two distinct elements of ass R are connected by an edge. Furthermore, every vertex $[v]$ of $\Gamma_{E}(R)$ is either an associated prime or adjacent to an associated prime maximal in \mathfrak{F}.

Lemma 1.2 [Spiroff and Wickham 2011, Proposition 1.7]. Let R be a ring such that $\Gamma_{E}(R)$ is complete r-partite. Then $r=2$ and $\Gamma_{E}(R)=K_{n, 1}$ for some $n \geq 1$.

2. Diameter

In this section, we explore the relationship between the diameters of the graphs $\Gamma(R)$ and $\Gamma_{E}(R)$. It is shown in [Anderson and Livingston 1999] that $\Gamma(R)$ has diameter at most 3 for any commutative ring R. In [Spiroff and Wickham 2011] it is shown that diam $\Gamma_{E}(R) \leq 3$ for R commutative and Noetherian. The following results further demonstrate the relationship between the diameters of the two graphs.
Proposition 2.1. If R is a commutative ring, then $\operatorname{diam} \Gamma_{E}(R) \leq \operatorname{diam} \Gamma(R)$.
Proof. Let $[a],[b] \in \Gamma_{E}(R)$ with $d([a],[b])=n$, and let $[a]=\left[x_{1}\right]-\left[x_{2}\right]-\cdots-$ $\left[x_{n+1}\right]=[b]$ be a path of minimal length from $[a]$ to $[b]$. From each $\left[x_{i}\right]$, choose one $y_{i} \in\left[x_{i}\right]$. Then $y_{1}-y_{2}-\cdots-y_{n+1}$ is a path in $\Gamma(R)$ of length n. We claim that this path is minimal, and thus $d\left(y_{1}, y_{n+1}\right)=n$. If this path is not minimal, there is some shorter path $y_{1}=z_{1}-z_{2}-\cdots-z_{m+1}=y_{n+1}$, with $m<n$. Since either $\left[z_{i}\right]=\left[z_{i+1}\right]$ or $\left[z_{i}\right]-\left[z_{i+1}\right]$, the path $\left[y_{1}\right]=\left[z_{1}\right]-\left[z_{2}\right]-\cdots-\left[z_{m+1}\right]=\left[y_{n+1}\right]$ has length less than or equal to m, a contradiction.
Theorem 2.2. If diam $\Gamma_{E}(R)=0$, then $\operatorname{diam} \Gamma(R)=0$ or 1 .
Proof. Let $\Gamma_{E}(R)$ have diameter 0 . Since $\Gamma_{E}(R)$ has only one vertex, $[x]=[y]$ for every $x, y \in Z^{*}(R)$. Since the graph $\Gamma(R)$ is connected and every element in $\Gamma(R)$ has the same annihilator, $x y=0$ for every $x, y \in Z^{*}(R)$. Thus the graph $\Gamma(R)$ is complete and $\operatorname{diam} \Gamma(R)=0$ or 1 .
Theorem 2.3. If $\operatorname{diam} \Gamma(R)=3$, then $\operatorname{diam} \Gamma_{E}(R)=3$.
Proof. Let $\Gamma(R)$ have diameter 3. Then for some elements $x, w \in \Gamma(R), d(x, w)=$ 3 in $\Gamma(R)$. Let $x-y-z-w$ be a path from x to w of minimal length. Since this path is minimal, $x z \neq 0$, but $z w=0$, so ann $x \neq$ ann w. By similar reasoning we see that each of ann x, ann y, ann z, and ann w are distinct. Hence $[x],[y],[z]$, and $[w]$ are distinct equivalence classes in $\Gamma_{E}(R)$. Thus $[x]$ is not adjacent to $[w]$ and there exist no paths $[x]-[y]-[w]$ or $[x]-[z]-[w]$ in $\Gamma_{E}(R)$. Now suppose there is some other $[v]$ such that $[x]-[v]-[w]$. This is impossible because it implies that there is a path $x-v-w$ in $\Gamma(R)$, contradicting the supposition that $x-y-z-w$ is a minimal path. Therefore $d([x],[w])=3$ and since diam $\Gamma_{E}(R) \leq 3$, diam $\Gamma_{E}(R)=3$.

We summarize with Table 1, which shows all possible combinations of diameter for $\Gamma(R)$ and $\Gamma_{E}(R)$.

We see from our examples that it is possible for the diameter of the zero-divisor graph to shrink under the equivalence relation. We consider the situations where this happens.

If $\operatorname{diam} \Gamma(R)=1$ and $\operatorname{diam} \Gamma_{E}(R)=0$, then R has a unique annihilator ideal ann x. This annihilator is maximal in \mathfrak{F} and an associated prime of the ring. Since $Z(R)=\bigcup_{\mathfrak{p} \in \text { ass } R} \mathfrak{p}=\operatorname{ann} x, Z(R)$ forms an ideal of R.

	$\operatorname{diam} \Gamma_{E}(R)=$			
$\operatorname{diam} \Gamma(R)$	0	1	2	3
0	$\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right)$	-	-	-
1	$\mathbb{Z}_{9}, \mathbb{Z}_{25}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	-	-
2	impossible (Theorem 2.2)	$\mathbb{Z}_{6}, \mathbb{Z}_{21}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$	\mathbb{Z}_{16}	-
3	impossible (Theorem 2.3)			

Table 1. Possibilities for $\operatorname{diam} \Gamma(R)$ and $\operatorname{diam} \Gamma_{E}(R)$, with examples.

Next we consider the situation in which the diameter reduces from 2 to 1 . Since there are no complete equivalence class graphs on 3 or more vertices, by [Spiroff and Wickham 2011, Proposition 1.5], $\Gamma_{E}(R)$ must have exactly two vertices, and R must have exactly 2 distinct annihilator ideals, ann x and ann y. Let ann x be maximal in \mathfrak{F}. If ann $y \subseteq \operatorname{ann} x$, then $Z(R)=\bigcup_{\mathfrak{p} \in \operatorname{ass} R} \mathfrak{p}=\operatorname{ann} x$ forms an ideal of R. Otherwise, both ann x and ann y are maximal in \mathfrak{F} and ann $x \cap$ ann $y=\{0\}$. If we have nonzero a, b with $a \in \operatorname{ann} x$ and $b \in \operatorname{ann} y$ such that $a+b \in \operatorname{ann} x$, then $b \in \operatorname{ann} x$, a contradiction. So in this case $Z(R)=\bigcup_{\mathfrak{p} \in \operatorname{ass} R} \mathfrak{p}=\operatorname{ann} x \cup$ ann y does not form an ideal of R.

Therefore we see that if the diameter shrinks in the equivalence class graph, R has 1 or 2 associated primes. If R is a finite ring, this corresponds to R being the direct product of 1 or 2 local rings, since every finite ring R is expressible as the product of finite local rings, with the number of factors equal to the number of associated primes of R.

We show below examples of graphs of rings with shrinking diameter, one from each of the situations considered above. Note that \mathbb{Z}_{25} has a unique annihilator,
$\Gamma\left(\mathbb{Z}_{25}\right)$

$\Gamma_{E}\left(\mathbb{Z}_{25}\right)$
[5]

$$
\Gamma\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)
$$

$$
\Gamma_{E}\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)
$$

$\Gamma_{E}\left(\mathbb{Z}_{15}\right)$

ann $5=(5), \mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$ has two annihilators, ann $x=(2) \subseteq(2, x)=$ ann 2 , and \mathbb{Z}_{15} has two annihilators, ann $3=(5)$ and ann $5=(3)$, which intersect trivially.

3. Girth

Mulay [2002] proved that if the zero-divisor graph, $\Gamma(R)$, contains a cycle then $\mathrm{g}(\Gamma(R)) \leq 4$. In this section we will demonstrate an even stronger restriction on the girth of the equivalence class graph, and find all possible combinations of girth for $\Gamma(R)$ and $\Gamma_{E}(R)$. The following result gives a girth restriction for $\Gamma_{E}(R)$ similar to that shown by Mulay for $\Gamma(R)$.

Theorem 3.1. If R is a commutative Noetherian ring, and if $\Gamma_{E}(R)$ contains a cycle, then $\mathrm{g}\left(\Gamma_{E}(R)\right) \leq 4$.

Proof.

Case 1: If R has at least 3 distinct associated primes, say ann x, ann y, and ann z, then the vertices $[x],[y]$, and $[z]$ in $\Gamma_{E}(R)$ are all adjacent to each other by Lemma 1.1, and therefore span a complete subgraph of $\Gamma_{E}(R)$. Hence $\Gamma_{E}(R)$ contains a 3-cycle, so $\mathrm{g}\left(\Gamma_{E}(R)\right)=3$.

Case 2: If R has exactly one associated prime, ann y, then every other vertex in $\Gamma_{E}(R)$ is adjacent to [y] by Lemma 1.1. If there is any cycle in $\Gamma_{E}(R)$, then there are some vertices $\left[x_{1}\right],\left[x_{2}\right]$ distinct from $[y]$ with $\left[x_{1}\right]-\left[x_{2}\right]$. But these are both adjacent to $[y]$, creating the 3-cycle $[y]-\left[x_{1}\right]-\left[x_{2}\right]-[y]$. So $g\left(\Gamma_{E}(R)\right)=3$.

Case 3: Now assume that R has exactly 2 associated primes, and let ass $R=$ $\{$ ann x, ann $y\}$. Let $\left[x_{1}\right]$ and $\left[x_{2}\right]$ be two vertices distinct from $[x]$ and $[y]$ such that $\left[x_{1}\right]-\left[x_{2}\right]$. By Lemma 1.1, $\left[x_{1}\right]$ is adjacent to an associated prime. Without loss of generality, let $\left[x_{1}\right]-[x]$. Also, $\left[x_{2}\right]$ is adjacent to either $[x]$ or $[y]$. In the first case, we have a 3-cycle $[x]-\left[x_{1}\right]-\left[x_{2}\right]-[x]$ and in the second case, we have a 4 -cycle $[x]-\left[x_{1}\right]-\left[x_{2}\right]-[y]$. Now assume that given any two vertices of $\Gamma_{E}(R)$, at least one is an associated prime. Let $\left[x_{1}\right]-\left[x_{2}\right]-\cdots-\left[x_{n}\right]-\left[x_{1}\right]$ be a cycle in $\Gamma_{E}(R)$ of minimal length, and let $n \geq 4$. Since at least one of $\left[x_{1}\right]$ and $\left[x_{2}\right]$ is an associated prime, without loss of generality let $\left[x_{1}\right]$ be an associated prime. Also, at least one of $\left[x_{3}\right]$ and $\left[x_{4}\right]$ is an associated prime. If $\left[x_{3}\right]$ is an associated prime, we have the 3-cycle $\left[x_{1}\right]-\left[x_{2}\right]-\left[x_{3}\right]-\left[x_{1}\right]$, and if $\left[x_{4}\right]$ is an associated prime, we have the 4 -cycle $\left[x_{1}\right]-\left[x_{2}\right]-\left[x_{3}\right]-\left[x_{4}\right]-\left[x_{1}\right]$.

The following corollary is a direct result of the proof of Theorem 3.1.
Corollary 3.2. If $\Gamma_{E}(R)$ has girth 4 , then R must have exactly 2 associated primes.
The following proposition gives a relationship between the girths of the two graphs. Note that the inequality is opposite that of the diameter relationship stated in the previous section.

Proposition 3.3. If $\Gamma_{E}(R)$ contains a cycle, then $\mathrm{g}\left(\Gamma_{E}(R)\right) \geq \mathrm{g}(\Gamma(R))$.

Proof. Let $\left[x_{1}\right]-\left[x_{2}\right]-\cdots-\left[x_{n}\right]-\left[x_{1}\right]$ be a cycle in $\Gamma_{E}(R)$. For each $\left[x_{i}\right]$, choose one $y_{i} \in\left[x_{i}\right]$. Then by the definition of multiplication of our equivalence classes, $y_{1}-y_{2}-\cdots-y_{n}-y_{1}$ is a cycle in $\Gamma(R)$ of equal length. So $g\left(\Gamma_{E}(R)\right) \geq \mathrm{g}(\Gamma(R))$.

Corollary 3.4. If $\mathrm{g}\left(\Gamma_{E}\right)=3$, then $\mathrm{g}(\Gamma)=3$.
We now examine the situation in which $\Gamma_{E}(R)$ has girth 4 and conclude that it is impossible.
Theorem 3.5. For R a commutative Noetherian ring, $g\left(\Gamma_{E}(R)\right) \neq 4$.

Proof.

Suppose that $\Gamma_{E}(R)$ has girth 4. By Corollary 3.2, R has exactly two associated primes, so let ass $R=\{\operatorname{ann} x$, ann $y\}$.

Since ann x and ann y are associated primes, $[x]-[y]$ by Lemma 1.1. Let $[z]$ be some other vertex of $\Gamma_{E}(R)$. Then $[z]$ must be adjacent to at least one of $[x]$ or [y]. But if it is adjacent to both $[x]$ and $[y]$ we have a 3-cycle, so $[z]$ is adjacent to exactly one of $[x]$ or $[y]$. Thus the vertex set of $\Gamma_{E}(R)$ minus $\{[x],[y]\}$ can be partitioned into two disjoint subsets, one adjacent to $[x]$ and one adjacent to $[y]$. We refer to these subsets as X and Y, respectively.

As mentioned earlier, since R is Noetherian, there is at least one maximal element of \mathfrak{F}, and this annihilator is an associated prime. Without loss of generality, let ann x be maximal in \mathfrak{F}. We claim that ann y is also maximal in \mathfrak{F}. Now if ann $y \subseteq$ ann w for some w, then ann $w \subseteq$ ann m for some maximal element ann $m \in \mathfrak{F}$, but since ann m is an associated prime, ann $m=$ ann y or ann $m=\operatorname{ann} x$. In the latter case, ann $y \subseteq$ ann x, so $[x]$ and $[y]$ are both adjacent to a common vertex. This creates a 3-cycle, contradicting that $\mathrm{g}\left(\Gamma_{E}(R)\right)=4$. So both ann y and ann x are maximal in \mathfrak{F}.

Suppose that $[x]^{2}=[0]$ and $[y]^{2}=[0]$, and consider the class $[x+y]$. This class is annihilated by both $[x]$ and $[y]$, so either $[x+y]=[0]$ or $[x+y]$ is in the vertex set of $\Gamma_{E}(R)$. If $[x+y]=[0]$, then $[x]=[y]$, contrary to our assumption. So $[x+y]$ is in the vertex set of $\Gamma_{E}(R)$. Since $[y]$ is adjacent to no vertex of X, $[x+y] \neq[x]$. Similarly, since $[x]$ is adjacent to no vertex of $Y,[x+y] \neq[y]$. So $\Gamma_{E}(R)$ contains the 3-cycle $[x+y]-[x]-[y]-[x+y]$, a contradiction.

Now suppose that $[x]^{2} \neq[0]$ and $[y]^{2} \neq[0]$. Then ann $x \cap$ ann $y=\{0\}$. Now multiplying any $\left[x_{j}\right] \in X$ and $\left[y_{i}\right] \in Y$, we see that since $\left[x_{j}\right] \in$ ann x and $\left[y_{i}\right] \in$ ann $y,\left[x_{j} y_{i}\right] \in \operatorname{ann} x \cap$ ann $y=\{0\}$. If we break up the vertex set of $\Gamma_{E}(R)$ into $X \cup\{[y]\}$ and $Y \cup\{[x]\}$, we see that $\Gamma_{E}(R)$ is complete bipartite, and $\Gamma_{E}(R)=K_{n, m}$ with $n, m \neq 1$, which contradicts Lemma 1.2.

Without loss of generality, let $[x]^{2}=[0]$ and $[y]^{2} \neq[0]$. Let $[x]-[y]-[z]-$ $[w]-[x]$ be a 4-cycle in $\Gamma_{E}(R)$, with $[w] \in X,[z] \in Y$. Then there is a 4-cycle $x-y-z-w-x$ in $\Gamma(R)$. By the previous discussion, $x^{2}=0$ and $y^{2} \neq 0$.

	$\operatorname{diam} \gamma_{E}(R)=$		
$\operatorname{diam} \gamma(R)$	∞	3	4
∞	\mathbb{Z}_{4}	impossible (Proposition 3.3)	
3	\mathbb{Z}_{12}	\mathbb{Z}_{24}	impossible (Theorem 3.5)
4	\mathbb{Z}_{15}	impossible (Corollary 3.2)	impossible (Theorem 3.5)

Table 2. Possibilities for $\mathrm{g}(\Gamma(R))$ and $\mathrm{g}\left(\Gamma_{E}(R)\right)$, with examples.

Since ann y is maximal in the set of annihilators of R, there is some m in ann y but not in ann w. Note that $m w \neq 0$, but ann $m w \supseteq\{x, z, y\}$. Since $m w-y$ but $y^{2} \neq 0$, ann $m w \neq$ ann y. Also since $m w$ is adjacent to both x and z, and x and z are not adjacent, ann $m w \neq \operatorname{ann} x$ and ann $m w \neq$ ann z. So we have the 3 -cycles $x-y-m w-x$ and $z-y-m w-z$ that do not reduce under the equivalence relation. So $\Gamma_{E}(R)$ contains a 3-cycle and $g\left(\Gamma_{E}(R)\right) \neq 4$.

We summarize with Table 2, which shows all possible combinations of girths for $\Gamma(R)$ and $\Gamma_{E}(R)$. We illustrate the case $(3,3)$ with the graphs of the ring \mathbb{Z}_{24}, which does not have shrinking girth:

4. Cut-vertices

In this section, we examine the properties of cut-vertices of $\Gamma_{E}(R)$. Since $\Gamma_{E}(R)$ is connected, the vertex $[a]$ is a cut-vertex of $\Gamma_{E}(R)$ exactly when removing the vertex [a] and its incident edges causes $\Gamma_{E}(R)$ to no longer be connected.

We begin with an interesting result concerning cut-vertices and ideals of the ring. The following theorem is very similar to [Axtell et al. 2009, Theorem 4.4], which deals with cut-vertices of the original zero-divisor graph $\Gamma(R)$.

Theorem 4.1. If $[a]$ is a cut-vertex of $\Gamma_{E}(R)$, then $[a] \cup\{0\}$ forms an ideal of R.

Proof. Let $[a]$ be a cut-vertex of $\Gamma_{E}(R)$ and let $[a]$ partition $\Gamma_{E}(R)$ into Γ_{b} and Γ_{c}. Let $[b] \in \Gamma_{b}$ with $[a]-[b]$ and $[c] \in \Gamma_{c}$ with $[a]-[c]$. Let $a_{1}, a_{2} \in[a] \cup\{0\}$. Since $a_{1}+a_{2} \in \operatorname{ann} b \cap \operatorname{ann} c, a_{1}+a_{2} \in[a] \cup\{0\}$. If $r \in R$, then $c(r a)=r(c a)=0$, so $r a \in \operatorname{ann} c$. Similarly, $r a \in \operatorname{ann} b$. So $r a \in \operatorname{ann} b \cap \operatorname{ann} c=[a] \cup\{0\}$. This shows that $[a] \cup\{0\}$ is an ideal of R.

Theorem 4.2. If $[a]$ is a cut-vertex of $\Gamma_{E}(R)$, then ann a is maximal in \mathfrak{F}.
Proof. Let $[a]$ be a cut-vertex of $\Gamma_{E}(R)$, and let X and Y be mutually separated subgraphs of $\Gamma_{E}(R)$ with $V(X \cup Y)=V\left(\Gamma_{E}(R)\right) \backslash[a]$. Let $[x] \in X$ and $[y] \in Y$. Then for any $\left[x_{1}\right] \in X$ we have $y \in \operatorname{ann} a \backslash$ ann x_{1}, and for any $\left[y_{1}\right] \in Y$ we have $x \in \operatorname{ann} a \backslash$ ann y_{1}. Thus ann $a \nsubseteq$ ann x_{1} and ann $a \nsubseteq$ ann y_{1}, and so ann a is maximal in \mathfrak{F}.

The converse of this theorem does not hold. We may have ann x maximal in \mathfrak{F}, yet not have $[x]$ be a cut-vertex. For example, here are two equivalence graphs, one on 6 vertices and one on 8 , each with no cut vertex:

$$
\Gamma_{E}\left(\mathbb{Z}_{2}[x, y, z] /\left(x^{3}, y^{2}, z^{2}, x y, x z\right)\right) \quad \Gamma_{E}\left(\mathbb{Z}_{2}[x, y] /\left(x^{4}, x y, x^{3}+y^{2}\right)\right)
$$

Both of these rings contains an annihilator ideal which maximal in \mathfrak{F}, and therefore an associated prime.

The next corollary follows immediately from Theorem 4.2:
Corollary 4.3. If $[a]$ is a cut-vertex of $\Gamma_{E}(R)$, then ann a is an associated prime.
Theorem 4.4. If $[a]$ is a cut-vertex of $\Gamma_{E}(R)$, then all other associated primes of $\Gamma_{E}(R)$ are contained in only one connected component of $\Gamma_{E}(R) \backslash[a]$.

Proof. Suppose that X and Y are two mutually separated connected components of $\Gamma_{E}(R) \backslash[a]$, and that each contains an associated prime. By Lemma 1.1, these associated primes are adjacent, and so X and Y are connected, a contradiction.

Theorem 4.5. If $\Gamma_{E}(R)$ has at least 2 cut-vertices, then it has diameter 3 .
Proof. Let $[a]$ and $[b]$ be cut-vertices of $\Gamma_{E}(R)$. Since $[a]$ is a cut-vertex, there is some $\left[x_{a}\right]$ such that any path connecting $\left[x_{a}\right]$ and $[b]$ must include $[a]$. Similarly, since $[b]$ is a cut-vertex, there is some $\left[x_{b}\right]$ such that any path connecting $\left[x_{b}\right]$ and $[a]$ must include $[b]$. Therefore any path from $\left[x_{a}\right]$ to $\left[x_{b}\right]$ must include both $[a]$ and $[b]$ and so $d([a],[b]) \geq 3$. Since $\Gamma_{E}(R)$ is connected, $\operatorname{diam} \Gamma_{E}(R)=3$.

Acknowledgements

This paper was written during the Research Experience for Undergraduates conducted at Brigham Young University in the summer of 2010. This research was funded by the National Science Foundation (DMS-0453421) and Brigham Young University. We would like to especially acknowledge the help of fellow REU students Cathryn Holm and Kaylee Kooiman, as well as TAs Chelsea Johnson and Donald Sampson.

References

[Anderson and Livingston 1999] D. F. Anderson and P. S. Livingston, "The zero-divisor graph of a commutative ring", J. Algebra 217:2 (1999), 434-447. MR 2000e: 13007 Zbl 0941.05062
[Axtell et al. 2009] M. Axtell, J. Stickles, and W. Trampbachls, "Zero-divisor ideals and realizable zero-divisor graphs", Involve 2:1 (2009), 17-27. MR 2010b:13011 Zbl 1169.13301
[Beck 1988] I. Beck, "Coloring of commutative rings", J. Algebra 116:1 (1988), 208-226. MR 89i: 13006 Zbl 0654.13001
[Mulay 2002] S. B. Mulay, "Cycles and symmetries of zero-divisors", Comm. Algebra 30:7 (2002), 3533-3558. MR 2003j:13007a Zbl 1087.13500
[Spiroff and Wickham 2011] S. Spiroff and C. Wickham, "A zero divisor graph determined by equivalence classes of zero divisors", Comm. Algebra 39:7 (2011), 2338-2348. MR 2821714 Zbl 1225.13007

Received: 2011-01-19 Revised: 2011-08-02 Accepted: 2011-08-18

blakej2@hotmail.com	Department of Mathematics, Utah Valley University, Orem, UT 84058, United States
martine@william.jewell.edu	Department of Physics and Mathematics, William Jewell College, Liberty, MO 64068, United States
new4@tcnj.edu	Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ 08628, United States dane.skabelund@gmail.com
Department of Mathematics, Brigham Young University, Provo, UT 84602, United States	

involve

msp.berkeley.edu/involve

EDITORS

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@ dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@ sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@ math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@ math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A\&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

PUBLISHED BY

El mathematical sciences publishers http://msp.org/
A NON-PROFIT CORPORATION
Typeset in IATE $_{\mathrm{E}} \mathrm{X}$
Copyright ©2012 by Mathematical Sciences Publishers

involve

Elliptic curves, eta-quotients and hypergeometric functions1David Pathakjee, Zef RosnBrick and Eugene YoongTrapping light rays aperiodically with mirrors 9Zachary Mitchell, Gregory Simon and Xueying Zhao
A generalization of modular forms 15
Adam Haque
Induced subgraphs of Johnson graphs 25
Ramin Naimi and Jeffrey Shaw
Multiscale adaptively weighted least squares finite element methods for 39convection-dominated PDEsBridget Kraynik, Yifei Sun and Chad R. Westrhal
Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors 51Blake Allen, Erin Martin, Eric New and Dane Skabelund
Total positivity of a shuffle matrix 61
Audra McMillanBetti numbers of order-preserving graph homomorphisms67
Lauren Guerra and Steven KleePermutation notations for the exceptional Weyl group F_{4}81Patricia Cahn, Ruth HaAs, Aloysius G. Helminck, Juan Li and JeremySchwartz
Progress towards counting D_{5} quintic fields 91Eric Larson and Larry RolenOn supersingular elliptic curves and hypergeometric functions99
Keenan Monks

[^0]: MSC2010: 13A99.

