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For graphs G and H with totally ordered vertex sets, a function mapping the
vertex set of G to the vertex set of H is an order-preserving homomorphism
from G to H if it is nondecreasing on the vertex set of G and maps edges of G
to edges of H . In this paper, we study order-preserving homomorphisms whose
target graph H is the complete graph on n vertices. By studying a family of
graphs called nonnesting arc diagrams, we are able to count the number of order-
preserving homomorphisms (and more generally the number of order-preserving
multihomomorphisms) mapping any fixed graph G to the complete graph Kn .

1. Introduction

The study of graph homomorphisms has been the subject of a great deal of recent
work in the fields of enumerative, algebraic, and topological combinatorics. The
recent survey [Borgs et al. 2006] is an excellent source on the many facets of enu-
merating graph homomorphisms, while [Kozlov 2008] outlines a more topological
approach. In this paper, we study combinatorial properties of order-preserving
homomorphisms between two graphs G and H as introduced by Braun, Browder
and Klee [Braun et al. 2011].

Throughout this paper, V (G) and E(G) will denote the vertex set and edge set
respectively of a graph G. All graphs are assumed to be simple, meaning that loops
and multiple edges are not allowed.

Let G be a graph on vertex set [m] = {1, 2, . . . ,m} and let H be a graph on
vertex set {x1, x2, . . . , xn}. We order the vertex set of G naturally, and we order
the vertex set of H by declaring that x1 < x2 < · · · < xn . An order-preserving
homomorphism from G to H is a function ϕ : V (G)→ V (H) such that

(1) if 1≤ i < j ≤ m, then ϕ(i)≤ ϕ( j), and

(2) if (i, j) ∈ E(G), then (ϕ(i), ϕ( j)) ∈ E(H).
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An order-preserving homomorphism ϕ : G → H may be presented as a vector
[ϕ(i)]mi=1 = [ϕ(1), . . . , ϕ(m)].

Example 1.1. Let G and H be as follows:

1 2 3 x1 x2 x3 x4

G : H :

Define functions ϕ1, ϕ2, ϕ3 : V (G)→ V (H) by

ϕ1 : [x1, x2, x2], ϕ2 : [x1, x2, x4], ϕ3 : [x1, x3, x4].

The functions ϕ1 and ϕ2 are order-preserving homomorphisms from G to H .
Notice that since (2, 3) is not an edge in G, having ϕ1(2)= ϕ1(3) does not violate
the definition of an order-preserving homomorphism. The function ϕ3 is order-
preserving, but it is not a homomorphism since (1, 2) ∈ E(G), but (ϕ(1), ϕ(2))=
(x1, x3) /∈ E(H).

Rather than view each order-preserving homomorphism from G to H as a sin-
gle function, it is often more convenient to encode several homomorphisms as
a single object. An (order-preserving) multihomomorphism from G to H is a
function η : V (G) → 2V (H)

\ ∅ with the property that [ϕ(i)]mi=1 is an order-
preserving homomorphism from G to H for all possible choices of ϕ(i) ∈ η(i)
and 1 ≤ i ≤ m. The complex of order-preserving homomorphisms from G to H ,
denoted OHOM(G, H), is the collection of all multihomomorphisms from G to H .

For any graphs G and H , there is a geometric cell complex corresponding to
OHOM(G, H) whose faces are labeled by multihomomorphisms from G to H .
While the geometry of OHOM(G, H) is very interesting in its own right, it is not
the primary focus of this paper, and we will not spend any further time discussing
it. For reasons that are motivated by this underlying geometry, we define the di-
mension of a multihomomorphism η ∈ OHOM(G, H) to be

dim η :=

m∑
i=1

(|η(i)| − 1).

A zero-dimensional multihomomorphism is an order-preserving homomorphism.
In this paper, we are primarily interested in a family of combinatorial invariants of
OHOM(G, H) called its Betti numbers.

Definition 1.2. The r-th Betti number of the complex OHOM(G, H), denoted
βr (G, H), counts the number of multihomomorphisms η ∈ OHOM(G, H) with
dim η = r .
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Example 1.3. Let G and H be as in Example 1.1. The following table encodes a
one-dimensional multihomomorphism η ∈ OHOM(G, H):

η(1) η(2) η(3)
x1 x2 x2

x4

The two distinct choices of elements [ϕ(1), ϕ(2), ϕ(3)] correspond to the order-
preserving homomorphisms ϕ1 and ϕ2 of Example 1.1.

The following proposition is a consequence of from our definitions of order-
preserving homomorphisms. We introduce the following notation, which will be
used for the remainder of the paper. If X and Y are subsets of some totally ordered
set (for our purposes, either [m] or {x1, . . . , xn}), we write X ≤ Y (or X < Y ) to
indicate that x ≤ y (similarly x < y) for all x ∈ X and all y ∈ Y .

Proposition 1.4. Let G and H be graphs with

V (G)= [m] and V (H)= {x1, . . . , xn}.

If η∈OHOM(G, H), then η(1)≤ η(2)≤ · · · ≤ η(m). Moreover, if (i, j) is an edge
in G, then η(i) < η( j).

The purpose of this paper is to determine the Betti numbers βr (G, Kn) of the
complex of order-preserving homomorphisms between a fixed graph G and the
complete graph on n vertices. In order to more easily compute the Betti numbers
βr (G, Kn), we use the following series of reductions outlined in [Braun et al. 2011,
Section 5]. All relevant definitions are deferred to Section 2.

(1) We show that for any graph G, there is a nonnesting partition P of [m] and a
corresponding graph 0P on [m], called an arc diagram, such that

OHOM(G, Kn)= OHOM(0P, Kn).

(2) We define a weight function ωr (0P, Kn) that counts the number of r -dimen-
sional multihomomorphisms in OHOM(0P, Kn) “minimally” determined by
P. These weights are ultimately easier to compute than the Betti numbers of
OHOM(0P, Kn).

(3) We define a partial order, denoted �, on the family of nonnesting partitions
of [m] and show that

βr (0P, Kn)=
∑
Q�P

ωr (0Q, Kn).

In Section 3, we provide an explicit (and simple) closed formula for the weight
function ωr (0P, Kn) for any nonnesting partition P.
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2. Nonnesting partition graphs

Nonnesting partitions. A partition P= {P1, . . . , Pt } of the set [m] is a collection
of nonempty subsets Pi ⊆ [m] (called blocks) such that Pi ∩ Pj = ∅ for all i 6= j
and P1 ∪ · · · ∪ Pt = [m]. We say that two blocks Pi and Pj nest if there exist
1 ≤ a < b < c < d ≤ m with {a, d} ⊆ Pi and {b, c} ⊆ Pj and there does not exist
e ∈ Pi with b< e< c. If no pair of blocks of P nest, we say that P is a nonnesting
partition of [m]. The family of nonnesting partitions was originally introduced and
studied by Postnikov; see [Reiner 1997, Remark 2].

Example 2.1. The partition P1 = {{1, 4}, {2, 5, 6}, {3}} of [6] is a nonnesting par-
tition. The partition P2={{1, 3, 5}, {2, 6}, {4}} is nesting since the blocks {1, 3, 5}
and {2, 6} nest.

It is more illuminating to represent a partition P of [m] as a graph 0P as follows.

Definition 2.2. Let P be a partition of [m] and let Pi = {i1, . . . , ik} be a block of
P with i1 < · · · < ik . The arc diagram 0P is the graph on vertex set [m] whose
edges are given by (i j , i j+1) for consecutive elements of Pi taken over all blocks
of P.

The name “arc diagram” is natural when the graph0P is drawn so that its vertices
are placed in a line and its edges are drawn as upper semicircular arcs, as shown
in Example 2.3. In this representation, a partition P is nonnesting exactly when no
arc of 0P is nested below another.

Example 2.3. Let P1 = {{1, 4}, {2, 5, 6}, {3}} and P2 = {{1, 3, 5}, {2, 6}, {4}} be
the partitions of [6] discussed in Example 2.1. The arc diagrams 0P1 and 0P2 are
as follows:

{{1, 4}, {2, 5, 6}, {3}} {{1, 3, 5}, {2, 6}, {4}}

1 2 3 4 5 6 1 2 3 4 5 6

The next proposition shows that in order to compute Betti numbers βr (G, Kn)

for arbitrary graphs G, we need only study the Betti numbers of nonnesting arc
diagrams.

Proposition 2.4 [Braun et al. 2011, Proposition 5.6]. For any graph G on vertex set
[m], there exists a unique nonnesting partition P of [m] such that 0P is a subgraph
of G and OHOM(G, Kn)=OHOM(0P, Kn). We call 0P the reduced arc diagram
for G.

Suppose there exist vertices 1 ≤ a ≤ b < c ≤ d ≤ m in G such that (a, d)
and (b, c) lie in E(G) (so that the edge (b, c) is nested below the edge (a, d)),
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and let G ′ be the graph obtained from G by removing the edge (a, d). The proof
of Proposition 2.4 uses the observation that OHOM(G, Kn)=OHOM(G ′, Kn) so
that the reduced graph 0P is obtained from G by inductively removing the “top”
arc in any pair of nested edges in G.

The goal for the remainder of this section is to describe a natural partial order on
the family of nonnesting partitions of [m]. We then describe how to use this partial
order to compute the Betti numbers βr (0P, Kn) of an arc diagram. For further
information on posets and definitions of any undefined terms, we refer the reader
to [Stanley 1997].

Definition 2.5. The m-th diagram poset, denoted Dm = (Dm,�), is the poset
whose elements are arc diagrams of nonnesting partitions of [m], partially ordered
by P� Q if every arc of Q lies above an arc of P.

The minimal element of Dm is the path of length m−1 on [m], and the maximal
element of Dm is the empty graph.

For example, there are five nonnesting partitions of [3]:

P1 = {{1}, {2}, {3}},

P2 = {{1, 3}, {2}},

P3 = {{1, 2}, {3}},

P4 = {{1}, {2, 3}},

P5 = {{1, 2, 3}}.

Let 01, . . . , 05 denote their corresponding arc diagrams, as shown in Figure 1.
If (P,≤) is a poset, a subset U ⊆ P is a upper order ideal if y ∈ U whenever

x ∈ U and y ≥ x . An upper order ideal U ⊆ P is principal if there is an element

1 2 3

1 2 3

1 2 3 321

1 2 3

Γ1:

Γ2:

Γ3: Γ4:

Γ5:

Figure 1. The Hasse diagram for D3.
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α ∈ P such that U = {y ∈ P : y ≥ α}. The importance of the partial order on Dm

is illustrated in the following proposition.

Proposition 2.6 [Braun et al. 2011, Proposition 5.8]. If P� Q in Dm , then

OHOM(0P, Kn)⊆ OHOM(0Q, Kn).

Further, for each multihomomorphism η ∈OHOM(Ge, Kn), where Ge denotes the
empty graph on vertex set [m], the upper order ideal U (η) ⊆ Dm of arc diagrams
whose OHOM complexes contain η is principal.

Proof. Fix a multihomomorphism η∈OHOM(0P, Kn). We need to show that each
choice [ϕ(i) ∈ η(i)]mi=1 yields an order-preserving homomorphism from 0Q to Kn

so that η ∈ OHOM(0Q, Kn) as well.
Let (a, d) be an edge in 0Q with a < d. Since P� Q, there is an edge (b, c) in

0P such that a ≤ b < c ≤ d . Since ϕ is an order-preserving homomorphism from
0P to Kn and (b, c) is an arc in 0P, we see that ϕ(a) ≤ ϕ(b) < ϕ(c) ≤ ϕ(d). The
arc (a, d) was arbitrary, and hence ϕ(a) < ϕ(d) for all arcs (a, d) in 0Q. Thus ϕ
is an order-preserving homomorphism from 0Q to Kn and η ∈OHOM(0Q, Kn), as
desired.

Suppose next that η ∈ OHOM(Ge, Kn). Consider the graph G on [m] obtained
as the union of all arc diagrams 0Q such that η ∈ OHOM(0Q, Kn), and let 0P

denote the reduced arc diagram of G. Clearly P � Q for all nonnesting partitions
Q whose OHOM complexes contain η. Thus U (η) is generated by P. �

Example 2.7. We illustrate Proposition 2.6 for the following multihomomorphism
η ∈ OHOM(01, K9), using the notation from Figure 1:

η(1) η(2) η(3)
x1 x4 x7

x3 x6 x9

x7

Since η(2)∩ η(3) is nonempty, the nonnesting partitions P for which η lies in
OHOM(0P, K9) are P1, P2 and P3. The corresponding graphs 01, 02, and 03

form an upper order ideal in D3 that is generated by 03.

Weights of nonnesting partition graphs. Proposition 2.6 gives a well defined no-
tion of the minimal arc diagram 0Q whose OHOM complex supports a given multi-
homomorphism η ∈OHOM(Ge, Kn). We make this more precise in the following
definition.

Definition 2.8. Let P be a nonnesting partition of [m]. The r-th weight of P for
n, denoted ωr (P, n), counts the number of r -dimensional multihomomorphisms
η ∈ OHOM(Ge, Kn) such that P generates U (η).
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To be more specific, Proposition 2.6 says that for each nonnesting partition Q

and each multihomomorphism η ∈ OHOM(0Q, Kn), there is a unique minimal
nonnesting partition P � Q such that η ∈ OHOM(0P, Kn). This allows us to
partition the r -dimensional multihomomorphisms of OHOM(0Q, Kn) according
to the poset Dm , as the following proposition indicates.

Proposition 2.9 [Braun et al. 2011, Proposition 5.10]. For any nonnesting parti-
tion Q,

βr (0Q, Kn)=
∑
P�Q

ωr (P, n). (2-1)

Recall that a collection of vertices W in a graph G is independent if there are
no edges in G among the vertices in W . The following lemma provides a converse
to Proposition 1.4 when computing weights.

Lemma 2.10. Let η be a multihomomorphism of OHOM(Ge, Kn), and let P be the
nonnesting partition whose arc diagram generates U (η). Suppose I = [a, c] ⊆ [m]
is independent in 0P. Then

(1) η(a)∩ η(c) 6=∅,

(2) |η(a)∩ η(c)| = 1, and

(3) if η(a)∩ η(c)= {xi }, then η(b)= {xi } for all a < b < c.

Proof. To prove (1), suppose by way of contradiction that η(a)∩ η(c) = ∅. Con-
sider the arc diagram 0Q obtained from 0P by adding the arc (a, c). Since I is
independent in 0P, the graph 0Q is the arc diagram of a nonnesting partition Q.

First, we observe that Q≺P since 0P is a subgraph of 0Q, and hence every arc
of 0P lies above an arc of 0Q. Next, we claim that η ∈ OHOM(0Q, Kn). Since
(a, c) is the only edge in E(0Q) \ E(0P), we only need to check that (x, y) is an
edge of Kn for any choice of x ∈ η(a) and y ∈ η(c). This follows immediately
from our assumption that η(a)∩ η(c)=∅.

Thus η ∈ OHOM(0Q, Kn) and Q ≺ P, contradicting our assumption that the
nonnesting partition P generates U (η). This proves that η(a) ∩ η(c) 6= ∅. Parts
(2) and (3) follow immediately from the requirement that η(a) ≤ η(b) ≤ η(c) for
all a < b < c, together with the fact that η(a)∩ η(c) 6=∅. �

Lemma 2.11 [Braun et al. 2011, Theorem 5.11]. If 0P contains an arc (a, c)where
c− a > 2, then ωr (P, n)= 0.

Proof. Suppose to the contrary that 0P contains such an arc and that ωr (P, n) 6= 0.
Let η be an r -dimensional multihomomorphism of OHOM(Ge, Kn) such that 0P

generates U (η).
Consider the intervals I = [a, c−1] and I ′ = [a+1, c]. Since P is nonnesting,
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I and I ′ are independent in 0P. By Lemma 2.10, there is an element

xi ∈ η(a)∩ η(c− 1)

and moreover, η(b) = {xi } for all a < b < c − 1. In particular, η(a + 1) = {xi }

since a + 1 < c − 1. By applying Lemma 2.10 to the interval I ′, we see that
η(a+1)∩η(c) 6=∅ and hence xi ∈ η(c). Thus xi ∈ η(a)∩η(c), which contradicts
Proposition 1.4. �

Following [Braun et al. 2011], we call an arc diagram 0P containing no arcs of
the form (i, j)with j−i>2 a small arc diagram, and we say that the corresponding
nonnesting partition P is a small nonnesting partition. In light of Lemma 2.11, we
need only compute the weights ωr (P, Kn) for which 0P is a small arc diagram.
The following two results are interesting enumerative results in their own right.

Proposition 2.12 ([Stanley 1997]). The number of nonnesting arc diagrams on
[m] is enumerated by the m-th Catalan number

Cm =
1

m+ 1

(
2m
m

)
.

Proposition 2.13 ([Braun et al. 2011, Theorem 5.12]). Let Fm be the m-th Fi-
bonacci number with F0 = F1 = 1. The number of small arc diagrams on [m] is
F2m−2.

An example. As a more complicated example, we exhibit the weights and corre-
sponding Betti numbers for all nonnesting partitions of {1, 2, 3}. We recall the arc
diagrams 01, . . . , 05 used in Figure 1.

Proposition 2.14. For all r, n ≥ 0,

ωr (01, Kn)=

(
n

r + 1

)
(r + 1).

Proof. Let η ∈OHOM(01, Kn) be a multihomomorphism whose upper order ideal
U (η) is generated by 01. By Lemma 2.10, there is a single element xi ∈η(1)∩η(3)
and η(2)= {xi }. In order to compute ωr (01, Kn), we first determine that there are
r + 1 distinct elements in η(1)∪ η(2)∪ η(3). Indeed, by the inclusion-exclusion
principle,∣∣η(1)∪ η(2)∪ η(3)∣∣
=
∣∣η(1)∣∣+ ∣∣η(2)∣∣+ ∣∣η(3)∣∣− ∣∣η(1)∩ η(2)∣∣− ∣∣η(1)∩ η(3)∣∣− ∣∣η(2)∩ η(3)∣∣

+
∣∣η(1)∩ η(2)∩ η(3)∣∣

= (r + 3)− 3+ 1= r + 1.
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In order to describe any such multihomomorphism η, we must choose a subset
X ⊆ {x1, . . . , xn} of the r + 1 distinct elements in η(1) ∪ η(2) ∪ η(3), together
with the single element xi ∈ X that is common to all three sets. Certainly there are( n

r+1

)
(r + 1) ways to make these choices. Having chosen X and xi ∈ X , we take

η(1)= {x ∈ X : x ≤ xi }, η(2)= {xi }, and η(3)= {x ∈ X : x ≥ xi }. �

Proposition 2.15. For all r, n ≥ 0,

ωr (02, Kn)=

(
n

r + 1

)(
r + 1

2

)
.

Proof. Let η ∈ OHOM(02, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 02. By Lemma 2.10, there is an element
xi ∈η(1)∩η(2) and another element x j ∈η(2)∩η(3). Moreover, by Proposition 1.4,
η(1)∩η(3)=∅ and hence xi 6= x j . Thus by the inclusion-exclusion principle, there
are r + 1 distinct elements in η(1)∪ η(2)∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a
subset X ⊆ {x1, . . . , xn} of the r + 1 elements in η(1)∪η(2)∪η(3), together with
the elements xi ∈ η(1)∩ η(2) and x j ∈ η(2)∩ η(3). Certainly there are

( n
r+1

)(r+1
2

)
ways to make these choices. Given the set X and distinguished elements xi and
x j , we take

η(1)={x ∈ X : x≤ xi }, η(2)={x ∈ X : xi ≤ x≤ x j }, η(3)={x ∈ X : x≥ x j }. �

Proposition 2.16. For all r, n ≥ 0,

ωr (03, Kn)=

(
n

r + 2

)(
r + 2

2

)
.

Proof. Let η ∈ OHOM(03, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 03. By Lemma 2.10, there is an element
x j ∈ η(2) ∩ η(3), and by Proposition 1.4, η(1) ∩ η(2) = ∅. By the inclusion-
exclusion principle, there are r + 2 distinct elements in η(1)∪ η(2)∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a
subset X ⊆{x1, . . . , xn} of the r+2 distinct elements in η(1)∪η(2)∪η(3), together
with the element x j ∈η(2)∩η(3) and the largest element xi in η(1). Certainly there
are

( n
r+2

)(r+2
2

)
ways to make these choices. As before, having chosen X , xi and

x j , we take

η(1)={x ∈ X : x≤ xi }, η(2)={x ∈ X : xi < x≤ x j }, η(3)={x ∈ X : x≥ x j }. �

Proposition 2.17. For all r, n ≥ 0,

ωr (04, Kn)=

(
n

r + 2

)(
r + 2

2

)
.
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Proof. The proof of this proposition follows by an argument that is symmetric to
the one given to compute the weights ωr (03, Kn). �

Proposition 2.18. For all r, n ≥ 0,

ωr (05, Kn)=

(
n

r + 3

)(
r + 2

2

)
.

Proof. Let η ∈ OHOM(05, Kn) be an r -dimensional multihomomorphism whose
upper order ideal U (η) is generated by 05. By Proposition 1.4, η(1) ∩ η(2),
η(2)∩η(3), and η(1)∩η(3) are empty. Thus by the inclusion-exclusion principle,
|η(1)∪ η(2)∪ η(3)| = r + 3.

In order to describe such a multihomomorphism η, we must choose a subset
X ⊆ {x1, . . . , xn} of the r+3 distinct elements of η(1)∪η(2)∪η(3) together with
the maximal elements xi and x j of η(1) and η(2) respectively. Having made these
choices, we take

η(1)= {x ∈ X : x ≤ xi }, η(2)= {x ∈ X : xi < x ≤ x j }, η(3)= {x ∈ X : x > x j }.

Since η(3) must be nonempty, we cannot choose x j to be the maximal element of
X . The number of ways to choose X , xi , and x j is

( n
r+3

)(r+2
2

)
, which completes

the proof. �

3. Enumerative results

Our goal for this section is to prove the promised formula computing the weights
ωr (P, n) for any small nonnesting partition P. Before stating the main theorem,
we establish notation that will be used for the remainder of the paper.

Proposition 3.1. For any small nonnesting partition P of [m], there is a unique
constant k = k(P) and a unique decomposition of [m] into intervals I1, . . . , Ik

satisfying the following conditions.

(P1) I1 ∪ · · · ∪ Ik = [m],

(P2) I1 ≤ I2 ≤ · · · ≤ Ik ,

(P3) |I j | ≥ 2 for all j , and

(P4) each interval I j satisfies exactly one of the following conditions:

(i) I j is a maximal interval (under inclusion) that is independent in 0P.
(ii) I j = {i j , i j+1} and (i j , i j+1) is an edge of 0P.

Proof. We induct on m. The result is clear when m = 2. When m ≥ 3, we examine
two cases.

If (1, 2) is an arc in 0P, let I1 = {1, 2}. Inductively, we may decompose the
restriction of P to [2,m] into intervals I2, . . . , Ik satisfying conditions (P1)–(P4).
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On the other hand, if (1, 2) is not an arc in 0P, let t be the largest element of
[m] such that [1, t] is independent in 0P. Let I1 = [1, t]; if t = m, we have found
the desired decomposition. Otherwise, if t < m, the restriction of 0P to [t,m] is
a small arc diagram, and we may inductively decompose the restriction of 0P to
[t,m] into intervals I2, . . . , Ik satisfying conditions (P1)–(P4).

In either of the above cases, we must check that the resulting interval decom-
position [m] = I1 ∪ · · · ∪ Ik satisfies conditions (P1)–(P4). Conditions (P1)–(P3)
are satisfied by the inductive hypothesis. We must check, however, that if I1 and
I2 are both edgefree as in condition (P4.i), then both are maximal under inclusion.
By our construction, I1 = [1, t] is maximal. Since t+1 /∈ I1 and P is small, either
(t, t + 1) or (t − 1, t + 1) is an edge in 0P. If (t, t + 1) is an edge in 0P, then
I2 = {t, t + 1} satisfies condition (P4.ii). If (t − 1, t + 1) is an edge in 0P, then
I2 satisfies condition (P4.i), and t − 1 cannot be added to I2 without violating the
independence condition. Thus I2 is maximal under inclusion, which completes the
proof. �

Example 3.2. Consider the small arc diagram 0P for

P= {{1, 3}, {4, 5, 7}, {6, 8}, {9}} :

1 2 3 4 5 6 7 8 9

The interval decomposition of 0P is

I1 = {1, 2}, I2 = {2, 3, 4}, I3 = {4, 5},

I4 = {5, 6}, I5 = {6, 7}, I6 = {7, 8, 9}.

Theorem 3.3. Let P be a small nonnesting partition of [m] with interval decom-
position I1, . . . , Ik as described by Proposition 3.1. For any r, n ≥ 0,

ωr (P, n)=

{(n
l

)(l−1
k

)
if (1, 2), (m− 1,m) ∈ E(0P);(n

l

)(l
k

)
otherwise,

(3-1)

where l := r +m−
∑

j∈J (|I j | − 1) and J ⊆ [k] indexes those intervals described
by condition (P4.i).

Proof. Fix a small nonnesting partition P of [m]. For each 1 ≤ j ≤ k, let I j =

[a j , c j ]. For any r -dimensional multihomomorphism η ∈ OHOM(0e, Kn), we
observe that

∑m
i=1 |η(i)| = r +m. If the arc diagram for 0P generates U (η), then

Lemma 2.10 prescribes the combinatorial structure of the intersections of the sets
η(i) within each interval I1, · · · , Ik .
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As a consequence of these lemmas, we claim that as a set,

l := |η(1)∪ · · · ∪ η(m)| = r +m−
∑
j∈J

(|I j | − 1),

where J ⊆ [k] indexes those intervals described by condition (P4.i). To see this,
we simply observe that for each interval I j with j ∈ J , there is a single element x j

common to the sets among {η(p) : p ∈ I j }. When computing |η(1)∪ · · · ∪ η(m)|,
each of these elements x j is overcounted |I j | − 1 times.

Thus in order to describe such a multihomomorphism η, we must first choose a
subset X ⊆ {x1, . . . , xn} of the l distinct elements of η(1)∪ · · · ∪ η(m). This can
be accomplished in

(n
l

)
ways.

Now suppose that (1, 2) is not an arc of 0P. The binomial coefficient
(l

k

)
counts

the number of ways in which we may decompose the set X into pairwise disjoint
intervals A0 < A1 < · · · < Ak so that the sets A1, . . . , Ak are nonempty. This
follows from a standard stars-and-bars argument [Stanley 1997, Section 1.2] by
arranging the elements of X linearly as

xi1 xi2 · · · xil−1 xil ,

with i1 < · · ·< il and choosing k of the spaces between consecutive elements of X
to partition the set. This includes the possibility of choosing the space to the left
of xi1 , which corresponds to the case that A0 is empty.

We now exhibit a bijection between the family of stars-and-bars partitions of
X described in the previous paragraph and the collection of multihomomorphisms
η ∈ OHOM(Ge, Kn) such that η(1)∪ · · · ∪ η(m)= X and P generates U (η).

Given pairwise disjoint intervals A0 < A1 < · · · < Ak that partition X with
A1, . . . , Ak nonempty, let mi denote the smallest element of Ai for 1≤ i ≤ k. We
determine the sets η(i) by declaring that

• A0 ⊆ η(1),

• A j ⊆ η(c j ) for all 1≤ j ≤ k, and

• m j ∈ η(b) for all b ∈ [a j , c j ] and all j ∈ J .

Lemma 2.10 and Proposition 1.4 show that this is a bijective correspondence. By
symmetry, the same argument applies to the situation that (m− 1,m) /∈ 0P.

In the case that both (1, 2) and (m − 1,m) are edges in 0P, an analogous bi-
jection holds, with the exception that

(l−1
k

)
counts the number of partitions of X

into nonempty, pairwise disjoint intervals B0 < · · · < Bk . Here we must require
that B0 and Bk are nonempty, since they describe the elements of η(1) and η(m),
respectively. �
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Example 3.4. We illustrate the proof of Theorem 3.3. Let P be the small partition
from Example 3.2. Suppose l = 11 and (for simplicity) that

η(1)∪ · · · ∪ η(9)= {x1, . . . , x11}.

The stars-and-bars decomposition

x1 x2 | x3 | x4 x5 x6 | x7 | x8 | x9 | x10 x11

gives

A0 = {x1, x2}, A1 = {x3}, A2 = {x4, x5, x6}, A3 = {x7},

A4 = {x8}, A5 = {x9}, A6 = {x10, x11}.

This, in turn corresponds to the following multihomomorphism η:

η(1) η(2) η(3) η(4) η(5) η(6) η(7) η(8) η(9)
x1

x2

x3 x3

x4 x4 x4

x5

x6

x7

x8 x8

x9 x9

x10 x10 x10

x11

We have shaded the blocks A j ⊆ η(c j ) for all 1 ≤ j ≤ 6, where the intervals
I1, . . . , I6 are those given in Example 3.2 and we write I j =[a j , c j ] as in the proof
of Theorem 3.3.
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