

a journal of mathematics

Progress towards counting D_5 quintic fields Eric Larson and Larry Rolen

mathematical sciences publishers

Progress towards counting D_5 quintic fields

Eric Larson and Larry Rolen

(Communicated by Ken Ono)

Let $N(5, D_5, X)$ be the number of quintic number fields whose Galois closure has Galois group D_5 and whose discriminant is bounded by X. By a conjecture of Malle, we expect that $N(5, D_5, X) \sim C \cdot X^{\frac{1}{2}}$ for some constant C. The best upper bound currently known is $N(5, D_5, X) \ll X^{\frac{3}{4} + \varepsilon}$, and we show this could be improved by counting points on a certain variety defined by a norm equation; computer calculations give strong evidence that this number is $\ll X^{\frac{2}{3}}$. Finally, we show how such norm equations can be helpful by reinterpreting an earlier proof of Wong on upper bounds for A_4 quartic fields in terms of a similar norm equation.

1. Introduction and statement of results

Let K be a number field and $G \leq S_n$ a transitive permutation group on n letters. In order to study the distribution of fields with given degree and Galois group, we introduce the following counting function:

$$N(d, G, X) :=$$

$$\#\{\text{degree }d\text{ number fields }K\text{ with }\operatorname{Gal}(K^{\operatorname{gal}}/\mathbb{Q})\simeq G\text{ and }|D_K|\leq X\}.$$

Here D_K denotes the discriminant of K, counting conjugate fields as one. Our goal is to study this function for d = 5 and $G = D_5$. Malle [2002] has conjectured that

$$N(d, G, X) \sim C(G) \cdot X^{a(G)} \cdot \log(X)^{b(G)-1} \tag{1}$$

for some constant C(G) and for explicit constants a(G) and b(G), and this has been proven for all abelian groups G. Although this conjecture seems to be close to the truth on the whole, Klüners [2005] found a counterexample when $G = C_3 \wr C_2$

MSC2010: primary 11R45; secondary 11R29, 14G05.

Keywords: quintic dihedral number fields, Cohen–Lenstra heuristics for p = 5.

The authors are grateful for the support of the NSF in funding the Emory 2011 REU. The authors would like to thank our advisor Andrew Yang, as well as Ken Ono for their guidance, useful conversations, improving the quality of exposition of this article, and hosting the REU.

by showing that the conjecture predicts the wrong value for b(G). This conjecture has been modified to explain all known counterexamples in [Turkelli 2008].

We now turn to the study of $N(5, D_5, X)$. By Malle's conjecture, we expect that

$$N(5, D_5, X) \stackrel{?}{\sim} C \cdot X^{\frac{1}{2}}.$$
 (2)

This question is closely related to average 5-parts of class numbers of quadratic fields. In general, let l be a prime, D range over fundamental discriminants, and $r_D := \operatorname{rk}_l(\operatorname{Cl}_{\mathbb{Q}(\sqrt{D})})$. Then the heuristics of Cohen–Lenstra predicts that the average of $l^{r_D}-1$ over all imaginary quadratic fields is 1, and the average of $l^{r_D}-1$ over all real quadratic fields is l^{-1} .

In fact, one can show using class field theory that the Cohen–Lenstra heuristics imply that Malle's conjecture is true for D_5 quintic fields. Conversely, the best known upper bound for $N(5, D_5, X)$ is proved using the "trivial" bound (see [Klüners 2006])

$$l^{r_D} \le \#\operatorname{Cl}_{\mathbb{Q}(\sqrt{D})} = O(D^{\frac{1}{2}}\log D). \tag{3}$$

This gives $N(5, D_5, X) \ll X^{\frac{3}{4} + \varepsilon}$, and any improved bound would give nontrivial information on average 5-parts of class groups in a similar manner.

In this paper, we consider a method of point counting on varieties to give upper bounds on $N(5, D_5, X)$. Our main result is the following:

Theorem 1.1. To any quintic number field K with Galois group D_5 , there corresponds a triple (A, B, C) with $A, B \in \mathbb{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$\operatorname{Nm}_{\mathbb{O}}^{\mathbb{Q}[\sqrt{5}]}(B^2 - 4 \cdot \bar{A} \cdot A^2) = 5 \cdot C^2 \tag{4}$$

and satisfying the following bounds under any archimedean valuation:

$$|A| \ll D_K^{\frac{1}{4}}, \quad |B| \ll D_K^{\frac{3}{8}}, \quad and \quad |C| \ll D_K^{\frac{3}{4}}.$$
 (5)

Conversely, the triple (A, B, C) uniquely determines K.

In Section 6, we further provide numerical evidence that $N(5, D_5, X) \ll X^{\frac{2}{3} + \alpha}$ for very small α ; in particular the exponent appears to be much lower than $\frac{3}{4}$.

Before we prove Theorem 1.1, we show that earlier results from [Wong 2005] in the case of $G = A_4$ can be handled in a similar fashion. Namely, we give a shorter proof of the following theorem:

Theorem 1.2 (Wong). To any quartic number field K with Galois group A_4 , there corresponds a tuple $(a_2, a_3, a_4, y) \in \mathbb{Z}^4$ such that

$$(4a_2^2 + 48a_4)^3 = \operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{-3}]} (32a_2^3 + 108a_3^2 - 6a_2(4a_2^2 + 48a_4) - 12\sqrt{-3}y)$$

and satisfying the following under any archimedean valuation:

$$|a_2| \ll D_K^{\frac{1}{3}}, |a_3| \ll D_K^{\frac{1}{2}}, |a_4| \ll D_K^{\frac{2}{3}}, and |y| \ll D_K.$$

Conversely, given such a tuple, there corresponds at most one A_4 -quartic field. In particular, we have $N(4, A_4, X) \ll X^{\frac{5}{6} + \varepsilon}$.

2. Upper bounds via point counting

Let G be a transitive permutation group. If K is a number field of discriminant D_K and degree n for which $\operatorname{Gal}(K^{\operatorname{gal}}/\mathbb{Q}) \simeq G$, then Minkowski theory implies there is an element $\alpha \in \mathbb{O}_K$ of trace zero with

$$|lpha| \ll D_K^{\frac{1}{2(n-1)}}$$
 (under any archimedean valuation),

where the implied constant depends only on n. In particular, if K is a primitive extension of \mathbb{Q} , then $K = \mathbb{Q}(\alpha)$, so the characteristic polynomial of α will determine K. One can use this to give an upper bound on N(n, G, X) (at least in the case where K is primitive), since every pair (K, α) as above gives a \mathbb{Z} -point of

Spec
$$\mathbb{Q}[x_1, x_2, \dots, x_n]^G/(s_1)$$
,

where $s_1 = x_1 + x_2 + \dots + x_n$ (here $\mathbb{Q}[x_1, x_2, \dots, x_n]^G$ denotes the ring of *G*-invariant polynomials in $\mathbb{Q}[x_1, x_2, \dots, x_n]$).

3. Proof of Theorem 1.2

In this section, we sketch a simplified (although essentially equivalent) version of Wong's proof [Wong 2005] that $N(4,A_4,X)\ll X^{\frac{5}{6}+\epsilon}$ as motivation for our main theorem. In this section, we assume that the reader is familiar with the arguments in Wong's paper. As noted in the last section, it suffices to count triples (a_2,a_3,a_4) for which $|a_k|\ll X^{\frac{k}{6}}$ under any archimedean valuation and

$$256a_4^3 - 128a_2^2a_4^2 + (16a_2^4 + 144a_2a_3^2)a_4 - 4a_2^3a_3^2 - 27a_3^4$$

$$= \text{Disc}(x^4 + a_2x^2 + a_3x + a_4) = v^2$$

for some $y \in \mathbb{Z}$. (See Equation 4.2 of [Wong 2005].)

The key observation of Wong's paper (although he does not state it in this way) is that this equation can be rearranged as

$$(4a_2^2 + 48a_4)^3 = \operatorname{Nm}_{\mathbb{O}}^{\mathbb{Q}[\sqrt{-3}]} (32a_2^3 + 108a_3^2 - 6a_2(4a_2^2 + 48a_4) - 12\sqrt{-3}y).$$
 (6)

One now notes that there are $\ll X^{\frac{2}{3}}$ possibilities for $4a_2^2 + 48a_4$, and for each of these choices $(4a_2^2 + 48a_4)^3$ can be written in $\ll X^{\varepsilon}$ ways as a norm of an element

of $\mathbb{Q}[\sqrt{-3}]$. Thus, it suffices to count the number of points (a_2, a_3) for which

$$32a_2^3 + 108a_3^2 - 6a_2(4a_2^2 + 48a_4) - 12\sqrt{-3}y$$
 and $4a_2^2 + 48a_4$

are fixed. But the above equation defines an elliptic curve, on which the number of integral points can be bounded by Theorem 3 in [Heath-Brown 2002]. This then gives Wong's bound (as well as the conditional bound assuming standard conjectures as Wong shows).

4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. As explained in Section 2, it suffices to understand the \mathbb{Z} -points of

Spec
$$\mathbb{Q}[x_1, x_2, x_3, x_4, x_5]^{D_5}/(x_1 + x_2 + x_3 + x_4 + x_5)$$

inside a particular box. Write ζ for a primitive fifth root of unity, and define

$$V_j = \sum_{i=1}^5 \zeta^{ij} x_i.$$

In terms of the V_i , we define

$$A = V_2 \cdot V_3,$$

$$B = V_1 \cdot V_2^2 + V_3^2 \cdot V_4,$$

$$C = \frac{1}{\sqrt{5}} \cdot (V_1 \cdot V_2^2 - V_3^2 \cdot V_4) \cdot (V_2 \cdot V_4^2 - V_1^2 \cdot V_3).$$

Lemma 4.1. The expressions A, B, and C are invariant under the action of D_5 .

Proof. The generators of D_5 act by $V_j \mapsto V_{5-j}$ and $V_j \mapsto \zeta^j V_j$; the result follows immediately. \Box

Lemma 4.2. We have $A, B \in \mathbb{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$.

Proof. To see the first assertion, it suffices to show that A and B are invariant by the element of $Gal(\mathbb{Q}[\zeta]/\mathbb{Q})$ given by $\zeta \mapsto \zeta^{-1}$. But this induces the map $V_j \mapsto V_{5-j}$, so this is clear.

To see that C is in \mathbb{Z} , we observe that the generator of $Gal(\mathbb{Q}[\zeta]/\mathbb{Q})$ given by $\zeta \mapsto \zeta^2$ acts by $C\sqrt{5} \mapsto -C\sqrt{5}$. Since $C\sqrt{5}$ is an algebraic integer, it follows that $C\sqrt{5}$ must be a rational integer times $\sqrt{5}$, so $C \in \mathbb{Z}$.

Now, we compute

$$B^2 - 4 \cdot \bar{A} \cdot A^2 = (V_1 \cdot V_2^2 + V_3^2 \cdot V_4)^2 - 4 \cdot V_1 \cdot V_4 \cdot (V_2 \cdot V_3)^2 = (V_1 \cdot V_2^2 - V_3^2 \cdot V_4)^2.$$

Therefore,

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{5}]}(B^2 - 4 \cdot \bar{A} \cdot A^2) = (V_1 \cdot V_2^2 - V_3^2 \cdot V_4)^2 \cdot (V_2 \cdot V_4^2 - V_1^2 \cdot V_3)^2 = 5 \cdot C^2,$$

which verifies the identity claimed in Theorem 1.1.

To finish the proof, it remains to show that to each triple (A, B, C), there corresponds at most one D_5 -quintic field. To do this, we begin with the following lemma.

Lemma 4.3. None of the V_i are zero.

Proof. Suppose that some V_j is zero. Since $\bar{A} \cdot A^2 = V_1 \cdot V_2^2 \cdot V_3^2 \cdot V_4$, it follows that $\bar{A} \cdot A^2 = 0$, and hence

$$\operatorname{Nm}_{\mathbb{O}}^{\mathbb{Q}[\sqrt{5}]}(B^2) = 5 \cdot C^2,$$

which implies B=C=0. Using B=0, we have $V_1V_2^2 \cdot V_3^2V_4 = V_1V_2^2 + V_3^2V_4 = 0$, so $V_1V_2^2 = V_3^2V_4 = 0$. Similarly, using $\bar{B}=0$, we have $V_2V_4^2 = V_1^2V_3 = 0$. Thus, all pairwise products V_iV_j with $i \neq j$ are zero, so at most one V_k is nonzero. Solving for the x_i , we find $x_i = \zeta^{-ik}c$ for some constant c. (It is easy to verify that this is a solution, since $\sum \zeta^i = 0$; it is unique up to rescaling because the transformation $(x_i) \mapsto (V_i)$ is given by a Vandermonde matrix of rank 4). Hence, the minimal polynomial of α is $t^5 - c^5 = 0$, which is visibly not a D_5 extension. \square

Lemma 4.4. For fixed (A, B, C), there are at most two possibilities for the ordered quadruple

$$(V_1V_2^2, V_3^2V_4, V_2V_4^2, V_1^2V_3).$$

Proof. Since $V_1V_2^2+V_3^2V_4=B$ and $V_1V_2^2\cdot V_3^2V_4=\bar{A}\cdot A^2$ are determined, there are at most two possibilities for the ordered pair $(V_1V_2^2,V_3^2V_4)$. Similarly, there at most two possibilities for the ordered pair $(V_2V_4^2,V_1^2V_3)$; thus if $V_1V_2^2=V_3^2V_4$, then we are done. Otherwise,

$$V_2 \cdot V_4^2 - V_1^2 \cdot V_3 = \frac{C\sqrt{5}}{V_1 \cdot V_2^2 - V_3^2 \cdot V_4}.$$

Since $V_2V_4^2 + V_1^2V_3 = \bar{B}$, this shows that the ordered pair $(V_1V_2^2, V_3^2V_4)$ determines $(V_2V_4^2, V_1^2V_3)$. Hence there are at most two possibilities our ordered quadruple.

Lemma 4.5. For fixed (A, B, C), there are at most ten possibilities for the ordered quadruple (V_1, V_2, V_3, V_4) .

Proof. In light of Lemmas 4.4 and 4.3, it suffices to show there at most five possibilities for (V_1, V_2, V_3, V_4) when we have fixed nonzero values for

$$(V_1V_4, V_2V_3, V_1V_2^2, V_3^2V_4, V_2V_4^2, V_1^2V_3).$$

But this follows from the identities

$$V_1^5 = \frac{V_1 V_2^2 \cdot (V_1^2 V_3)^2}{(V_2 V_3)^2}, \quad V_3 = \frac{V_1^2 V_3}{V_1^2}, \quad V_4 = \frac{V_3^2 V_4}{V_3^2}, \quad V_2 = \frac{V_2 V_4^2}{V_4^2}.$$

This completes the proof of Theorem 1.1, because $|D_5| = 10$, so each D_5 -quintic field corresponds to ten ordered quadruples (V_1, V_2, V_3, V_4) , each of which can be seen to correspond to the same triple (A, B, C). Thus, the triple (A, B, C) uniquely determines the D_5 -quintic field, since otherwise we would have at least 20 quadruples (V_1, V_2, V_3, V_4) corresponding to (A, B, C), contradicting Lemma 4.5.

5. The quadratic subfield

Proposition 5.1. Suppose that K is a D_5 -quintic field corresponding to a triple (A, B, C) with $C \neq 0$. Then the composite of $\mathbb{Q}[\sqrt{5}]$ with the unique quadratic subfield $F \subset K^{gal}$ is generated by adjoining to $\mathbb{Q}[\sqrt{5}]$ the square root of

$$(2\sqrt{5}-10)\cdot (B^2-4\cdot \bar{A}\cdot A^2).$$

Proof. Using the results of the previous section, we note that

$$\sqrt{(2\sqrt{5}-10)\cdot(B^2-4\cdot\bar{A}\cdot A^2)}=2\cdot(\zeta-\zeta^{-1})\cdot(V_1\cdot V_2^2-V_3^2\cdot V_4).$$

By inspection, the D_5 -action on the above expression is by the sign representation, and the action of $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q}[\sqrt{5}])$ is trivial. Hence, adjoining the above quantity to $\mathbb{Q}[\sqrt{5}]$ generates the composite of $\mathbb{Q}[\sqrt{5}]$ with the quadratic subfield F. \square

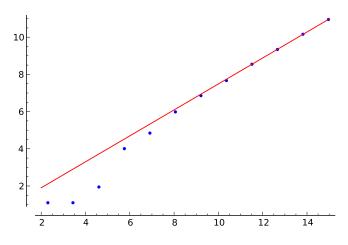
6. Discussion of computational results

Numerical evidence indicates that the number of triples (A,B,C) satisfying the conditions of Theorem 1.1 is $O(X^{\frac{2}{3}+\alpha})$ for a small number α (in particular, much less than $O(X^{\frac{3}{4}})$). More precisely, we have the following table of results. The computation took approximately four hours on a 3.3 GHz CPU, using the program available at http://web.mit.edu/~elarson3/www/d5-count.py.

X	#(A,B,C)	X	#(A,B,C)	X	#(A,B,C)
10	3	1000	127	100000	5145
31	3	3162	397	316227	11385
100	7	10000	951	1000000	25807
316	55	31622	2143	3162277	57079

The log plot on the next page shows that after the first few data points, the least squares best fit to the last four data points given by y = 0.698x + 0.506 with slope

a little more than $\frac{2}{3}$ is quite close.



References

[Heath-Brown 2002] D. R. Heath-Brown, "The density of rational points on curves and surfaces", *Ann. of Math.* (2) **155**:2 (2002), 553–595. MR 2003d:11091 Zbl 1039.11044

[Klüners 2005] J. Klüners, "A counterexample to Malle's conjecture on the asymptotics of discriminants", C. R. Math. Acad. Sci. Paris 340:6 (2005), 411–414. MR 2005m:11214 Zbl 1083.11069

[Klüners 2006] J. Klüners, "Asymptotics of number fields and the Cohen–Lenstra heuristics", *J. Théor. Nombres Bordeaux* **18**:3 (2006), 607–615. MR 2008j:11162 Zbl 1142.11078

[Malle 2002] G. Malle, "On the distribution of Galois groups", *J. Number Theory* **92**:2 (2002), 315–329. MR 2002k:12010 Zbl 1022.11058

[Turkelli 2008] S. Turkelli, "Connected components of Hurwitz schemes and Malle's conjecture", preprint, 2008. arXiv 0809.0951

[Wong 2005] S. Wong, "Densities of quartic fields with even Galois groups", *Proc. Amer. Math. Soc.* **133**:10 (2005), 2873–2881. MR 2006d:11138 Zbl 1106.11041

Received: 2011-07-20 Accepted: 2011-08-04

elarson3@gmail.com

Department of Mathematics, Harvard,

Cambridge, MA 02138, United States

larry.rolen@mathcs.emory.edu Department of Mathematics and Computer Science,

Emory University, Atlanta, GA 30322, United States

msp.berkeley.edu/involve

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
David Larson	Texas A&M University, USA larson@math.tamu.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.

The subscription price for 2012 is US \$105/year for the electronic version, and \$145/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers http://msp.org/

A NON-PROFIT CORPORATION

Typeset in LATEX

Elliptic curves, eta-quotients and hypergeometric functions DAVID PATHAKJEE, ZEF ROSNBRICK AND EUGENE YOONG	1
Trapping light rays aperiodically with mirrors ZACHARY MITCHELL, GREGORY SIMON AND XUEYING ZHAO	9
A generalization of modular forms ADAM HAQUE	15
Induced subgraphs of Johnson graphs RAMIN NAIMI AND JEFFREY SHAW	25
Multiscale adaptively weighted least squares finite element methods for convection-dominated PDEs BRIDGET KRAYNIK, YIFEI SUN AND CHAD R. WESTPHAL	39
Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors BLAKE ALLEN, ERIN MARTIN, ERIC NEW AND DANE SKABELUND	51
Total positivity of a shuffle matrix AUDRA MCMILLAN	61
Betti numbers of order-preserving graph homomorphisms Lauren Guerra and Steven Klee	67
Permutation notations for the exceptional Weyl group F_4 PATRICIA CAHN, RUTH HAAS, ALOYSIUS G. HELMINCK, JUAN LI AND JEREMY SCHWARTZ	81
Progress towards counting D_5 quintic fields ERIC LARSON AND LARRY ROLEN	91
On supersingular elliptic curves and hypergeometric functions KEENAN MONKS	99

1944-4176(2012)5:1:1-C