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The Legendre family of elliptic curves has the remarkable property that both
its periods and its supersingular locus have descriptions in terms of the hyper-
geometric function 2 F1

( 1/2 1/2
1

∣∣ z
)
. In this work we study elliptic curves and

elliptic integrals with respect to the hypergeometric functions 2 F1
( 1/3 2/3

1

∣∣ z
)

and 2 F1
( 1/2 5/12

1

∣∣ z
)
, and prove that the supersingular λ-invariant locus of certain

families of elliptic curves are given by these functions.

1. Introduction and statement of results

Let p be a prime and F a field of characteristic p. An elliptic curve E/F is a curve
of the form

E : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

where ai ∈ F and the points in E are elements of F × F. This curve must be
nonsingular in that it has no multiple roots. A point at infinity must also be included
on the curve to make it projective.

There is an important invariant defined for any isomorphism class of elliptic
curves (two curves are isomorphic if they have the same defining equation up to
some change of coordinate system). Using the notation of an elliptic curve as
before, the j-invariant j (E) and discriminant 1(E) are defined to be

j (E)=
c3

4

1

and

1(E)=
c3

4− c2
6

1728

where c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216a2
3 − 864a6, b2 = a2

1 + 4a2, and
b4 = a1a3+ 2a4.
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It is well-known that the points on the curve E with coordinates in F form the
group E(F) (see [Washington 2003] for an explanation of the group structure). The
curve E is called supersingular if and only if the group E(F) has no p-torsion. In
this paper, we will determine when certain infinite families of elliptic curves are
supersingular for any prime.

One well-known and widely studied family of elliptic curves is the Legendre
family, which we denote by

E 1
2
(λ) : y2

= x(x − 1)(x − λ)

for λ 6= 0, 1. We define its supersingular locus by

Sp, 1
2
(λ) :=

∏
λ0∈Fp

supersingularE 1
2
(λ0)

(λ− λ0).

The locus Sp, 1
2
(λ) and the periods of E 1

2
(λ) have beautiful and simple descrip-

tions in terms of the hypergeometric function

2 F1

(
a b

c

∣∣∣∣ z
)
=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
.

Here a, b, z ∈C, c ∈C\Z≤0, (x)0 = 1, and (x)n = (x)(x+1) · · · (x+n−1) is the
Pochhammer symbol. For any prime p, define

2 F1

(
a b

c

∣∣∣∣ z
)

p
≡

p−1∑
n=0

(a)n(b)n
(c)n

zn

n!
(mod p).

It is natural to study hypergeometric functions related to elliptic integrals. An
elliptic integral of the first kind is written as

K (k)=
∫ π

2

0

dθ√
1− k2 sin2(θ)

.

From [Borwein and Borwein 1987] we have the following identities for appropriate
ranges of k:

K (k)=
π

2 2 F1

( 1
2

1
2
1

∣∣∣∣ k2
)
, (1-1a)

K 2(k)=
π2

4

√
1− 8

9 h2

1− (kk ′)2

(
2 F1

( 1
3

2
3
1

∣∣∣∣ h2
))2

, (1-1b)

K (k)=
π

2
(1− (2kk ′)2)−

1
4 2 F1

( 1
4

3
4
1

∣∣∣∣ (2kk ′)2

(2kk ′)2− 1

)
, (1-1c)
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K (k)=
π

2
(1− (kk ′)2)−

1
4 2 F1

( 1
12

5
12
1

∣∣∣∣ J−1
)
. (1-1d)

Here k ′=
√

1− k2, J =
(4(2kk ′)−2

− 1)3

27(2kk ′)−2 and h is the smaller of the two solutions
of

(9− 8h2)3

64h6h′2
= J.

For the locus Sp, 1
2
, it is a classical result (see [Husemöller 2004] and [Silverman

1986]) that

Sp, 1
2
(λ)≡ 2 F1

( 1
2

1
2
1

∣∣∣∣ λ)
p
(mod p).

In [El-Guindy and Ono 2012], El-Guindy and Ono studied the family of curves
defined by

E 1
4
(λ) : y2

= (x − 1)(x2
+ λ).

They proved a result analogous to the classical case, namely∏
λ0∈Fp

supersingular E 1
4
(λ0)

(λ− λ0)≡ 2 F1

( 1
4

3
4
1

∣∣∣∣− λ)
p
(mod p).

Here we prove two other cases of this phenomenon that cover the other hy-
pergeometric functions related to elliptic integrals listed in (1-1). We define the
following families of elliptic curves:

E 1
3
(λ) : y2

+ λyx + λ2 y = x3, (1-2)

E 1
12
(λ) : y2

= 4x3
− 27λx − 27λ. (1-3)

We note that E 1
3
(λ) is singular for λ ∈ {0, 27}, and that E 1

12
(λ) is singular for

λ ∈ {0, 1}.
We also define, for each i ∈

{1
3 ,

1
4 ,

1
12

}
and all primes p ≥ 5,

Sp,i (λ) :=
∏
λ0∈Fp

supersingular Ei (λ0)

(λ− λ0).

Generalizing the results above, we prove the following for E 1
3
(λ) and E 1

12
(λ).

Theorem 1.1. For any prime p ≥ 5, we have

Sp, 1
3
(λ)≡ λb

p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
(mod p).

Theorem 1.2. For any prime p ≥ 5, we have the following:
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(1) If p ≡ 1, 5 (mod 12), then

Sp, 1
12
(λ)≡ cp

−1λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p),

(2) if p ≡ 7, 11 (mod 12), then

Sp, 1
12
(λ)≡ cp

−1λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p),

where cp =

(
6
⌊ p

12

⌋
+ dp⌊ p

12

⌋ )
, and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12).

Remark. The j-invariant of E 1
3
(λ) is λ(λ− 24)3/(λ− 27) and the j-invariant of

E 1
12
(λ) is 1728λ/(λ− 1). Notice that E 1

3
(λ) is singular when λ = 0 and j = 0.

Also, E 1
12
(λ) is singular when its j-invariant is 0 and undefined when j = 1728.

In addition to the stated result, the proof of Theorem 1.2 yields some fascinating
combinatorial identities as well. The following is one such identity obtained for
a specific class of p modulo 12. Similar results also hold for primes in the other
congruence classes, but are omitted for brevity.

Corollary 1.3. Let p ≥ 5 be a prime congruent to 1 modulo 12, and let m = p−1
12 .

Then for all 0≤ n ≤ m,

4n
(

3m− n
3m− 3n

)(
6m

3m− n

)(
6m
m

)
≡ 27n

m∑
t=n

(
m
t

)(
5m
t

)(
6m
3m

)
(mod p).

In particular, when n = m,

4m
(

6m
2m

)(
6m
m

)
≡ 27m

(
5m
m

)(
6m
3m

)
(mod p).

2. Preliminaries

Throughout, let p ≥ 5 be prime.

Definition 2.1. The Hasse invariant of an elliptic curve defined by f (w, x, y)= 0
is the coefficient of (wxy)p−1 in f (w, x, y)p−1. Likewise, the Hasse invariant of
a curve defined by y2

= f (x) is the coefficient of x p−1 in f (x)
p−1

2 .

Remark. The projective completions of E 1
3
(λ) and E 1

12
(λ) are

wy2
+ λwxy+ λ2 y− x3

= 0

and

wy2
− 4x3

+ 27λw2x + 27λw3
= 0.
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Here is a well-known characterization of supersingular elliptic curves.

Lemma 2.2 [Husemöller 2004, Definition 3.1 of Chapter 13]. An elliptic curve E
is supersingular if and only if its Hasse invariant is 0.

It is well-known that two elliptic curves defined over Fp are isomorphic if and
only if they have the same j-invariant. Recall the following formula for the number
of isomorphism classes of supersingular elliptic curves over Fp (see [Washington
2003]). We write p− 1= 12m p + 6εp + 4δp, where εp, δp ∈ {0, 1}.

Lemma 2.3. Up to isomorphism, there are exactly

m p + εp + δp

supersingular elliptic curves in characteristic p.

Remark. It is known that δp = 1 only when p ≡ 2 (mod 3) (i.e., when 0 is a
supersingular j-invariant) and εp = 1 only when p ≡ 3 (mod 4) (when 1728 is a
supersingular j-invariant). Also, in all cases m p =

⌊ p
12

⌋
.

3. Proof of main results

We first prove several preliminary lemmas.

Lemma 3.1. There are exactly
⌊ p

3

⌋
distinct values of λ for which E 1

3
(λ) is super-

singular over Fp.

Proof. To calculate the degree of Sp, 1
3
(λ), we must consider how many different

values for λ yield a curve E 1
3
(λ) with a given supersingular j-invariant. From

[Lennon 2010] we have that

j (E 1
3
(λ))=

λ(λ− 24)3

λ− 27
(3-1)

and that the discriminant 1(E 1
3
(λ))= λ8(λ−27). Hence there are usually four λ-

invariants for a given j-invariant, but there are certain exceptions. Since the only
roots of 1 in this case are 0 and 27, we know that these and 1728 are the only
possible j-invariants for which there are less than four corresponding λ-invariants.
However, there are four distinct values of λ for which j (E 1

3
(λ))= 27. Also, only

λ= 18± 6
√

3 gives a value of 1728 for j , so the correspondence is 2-to-1 in this
case. As mentioned previously, the curve is singular for λ= 0, so the only value of
λ that will give a j-invariant of 0 is λ= 24. The correspondence is thus one-to-one
for j = 0.

Using the ideas of Lemma 2.3, we have that each of the m p supersingular j-
invariants is obtained from four supersingular λ-invariants, δp can come from at
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most one λ-invariant, and εp comes from two, if any, λ-invariants. Thus the total
number of λ-invariants, and the degree of Sp, 1

3
(λ), is

4m p + δp + 2εp = 4
⌊ p

12

⌋
+ δp + 2εp.

It is easily verified that this equals
⌊ p

3

⌋
for every prime p, and so we are done. �

Lemma 3.2. There are exactly
⌊ p

12

⌋
distinct values of λ for which E 1

12
(λ) is super-

singular over Fp.

Proof. The j-invariant of E 1
12
(λ) is

j (E 1
12
(λ))=

1728λ
λ− 1

. (3-2)

This is a one-to-one correspondence from λ-invariants to j-invariants for j 6=1728.
Also, the special cases j = 0 and j = 1728 do not apply here, for the curve is
singular for these respective j-invariants. Thus by Lemma 2.3 there are exactly⌊ p

12

⌋
values of λ for which E 1

12
(λ) is supersingular. �

Proof of Theorem 1.1. The curve E 1
3
(λ) can be defined as

f (w, x, y)= wy2
+ λwxy+ λ2w2 y− x3

= 0.

To compute its Hasse invariant, we consider a general term in the expansion of
(wy2

+ λwxy+ λ2w2 y− x3)p−1. It has the form

(wy2)a(λwxy)b(λ2w2 y)c(−x3)d ,

where a+b+ c+d = p−1. In order for this to be a constant multiple of a power
of wxy, we must have a = c = d .

Thus the terms that we are concerned with are of the form

(wy2)n(λ2w2 y)n(−x3)n(λwxy)p−3n−1
= (−λ)p−n−1(wxy)p−1.

For a given n, there are(
p− 1

n

)(
p− n− 1

n

)(
p− 2n− 1

n

)
ways to choose which of the f (w, x, y) factors we obtain each of the wy2, λ2w2 y,
and −x3 terms from. Summing over all possible values of n, we determine the
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Hasse invariant to be

b
p
3 c∑

n=0

(
p− 1

n

)(
p− n− 1

n

)(
p− 2n− 1

n

)
(−λ)p−n−1

≡

b
p
3 c∑

n=0

(−λ)p−n−1(p− 1)(p− 2) · · · (p− n)
n!

·
(p− n− 1) · · · (p− 2n)

n!

·
(p− 2n− 1) · · · (p− 3n)

n!
(mod p)

≡

b
p
3 c∑

n=0

(3n)!
n!3

λp−n−1 (mod p).

By definition, we have

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡

p−1∑
n=0

( 1
3

)
n

( 2
3

)
n

n!2
27n

xn (mod p).

However, if n >
⌊ p

3

⌋
, then p will appear in the numerator of either

( 1
3

)
n or

(2
3

)
n ,

making those terms congruent to 0 modulo p, so

λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡

b
p
3 c∑

n=0

( 1
3

)
n

( 2
3

)
n

n!2
27nλp−n−1 (mod p)

≡

b
p
3 c∑

n=0

27n 1
3

2
3

4
3

5
3 · · ·

3n−2
3

3n−1
3

n!2
λp−n−1 (mod p)

≡

b
p
3 c∑

n=0

(3n)!
n!3

λp−n−1 (mod p).

Thus λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is congruent modulo p to the Hasse invariant of

E 1
3
(λ). So by Lemma 2.2, λ is a root of λp−1

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡ 0 (mod p) if and

only if E 1
3
(λ) is supersingular, i.e., if and only if λ is a root of Sp, 1

3
(x).

The least power of λ in 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is−
⌊ p

3

⌋
. Hence λbp/3c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

has the same roots as λp−1
2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
, with the exception of 0, which is not

a λ-invariant as shown in Lemma 3.1, and thus is not a root of Sp, 1
3
.
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The degree of λb
p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is exactly
⌊ p

3

⌋
. Since the degree of Sp, 1

3
(λ)

is also
⌊ p

3

⌋
by Lemma 3.1, it follows that λb

p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p
≡ c · Sp, 1

3
(λ)

(mod p). However, c is 1 since λb
p
3 c 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

is monic: we are done. �

Proof of Theorem 1.2. Assume p ≡ 1, 5 (mod 12). The function

f (z)= 2 F1

( 1
12

5
12
1

∣∣∣∣ z
)

satisfies the second order differential equation

z(1− z)
d2 f
dz2 +

(
1−

3
2

z
)

d f
dz
−

5
144

f = 0.

Substituting z = 1− 1
x , we see that g(x)= 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
x

)
satisfies

x2(x − 1)
d2g
dx2 + x

(
3
2

x −
1
2

)
dg
dx
−

5
144

g = 0.

Hence, h(λ)= λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
satisfies

(λ3
− λ2)

d2h
dλ2 +

((
2−

p
2

)
λ2
+

( p
2
− 1

)
λ
) dh

dλ

+

((
p2
− 4p+ 3

16

)
λ+−

p2

16
+

1
36

)
h = 0. (3-3)

The function h(λ) is a Laurent series in 1
λ

with p-integral rational coefficients.
However, its reduction modulo p yields a polynomial in λ. This polynomial must

satisfy the reduction of (3-3) modulo p, so F(λ) = λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

satisfies

(λ3
− λ2)

d2 F
dλ2 + (2λ

2
− λ)

d F
dλ
+

(
3
16
λ+

1
36

)
F ≡ 0 (mod p).

A similar calculation shows that F(λ) = λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

also satisfies

the same differential equation when p ≡ 7, 11 (mod 12).
Now, to compute the Hasse invariant, we consider a general x p−1 term in the

expansion of (4x3
− 27λx − 27λ)

p−1
2 . This is of the form

(4x3)n(−27λx)p−3n−1(−27λ)2n− p−1
2 ,
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where p−1
4 ≤ n ≤

⌊ p
3

⌋
. For a given n in this range, there are exactly

( p−1
2
n

)( p−1
2 − n

p− 3n− 1

)
ways to choose which of the 4x3

− 27λx − 27λ factors the 4x3 terms and −27λx
terms came from. Summing over all n yields the Hasse invariant to be

b
p
3 c∑

n= p−1
4

4n(−27λ)
p−1

2 −n
( p−1

2
n

)( p−1
2 − n

p− 3n− 1

)
,

into which we can substitute n= p−1
2 −k, and using the fact that 4

p−1
2 ≡ 1 (mod p),

we obtain
p−1

4∑
k= p−1

2 −b
p
3 c

(
−

27
4
λ

)k ( p−1
2
k

)(
k

3k− p−1
2

)
.

We show the Hasse invariant satisfies the differential equation by showing that
for any t , the λt term in the resulting expansion is congruent to 0 mod p. Let

c(k)=
(
−

27
4
λ

)k ( p−1
2
k

)(
k

3k− p−1
2

)
.

Then the λt term has coefficient

d2

dt2 c(t − 1)−
d2

dt2 c(t)+ 2
d
dt

c(t − 1)−
d
dt

c(t)+
3

16
c(t − 1)+

1
36

c(t),

which we expand to obtain(
−

27
4

)t ( p−1
2
t

)(
t

3t − p−1
2

)(
−t (t − 1)− t +

1
36

)
+

(
−

27
4

)t−1 ( p−1
2

t − 1

)(
t − 1

3t − 3− p−1
2

)(
(t − 1)(t − 2)+ 2(t − 1)+

3
16

)
.

This is congruent to 0 modulo p if and only if( p−1
2
t

)(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

( p−1
2

t − 1

)(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
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is also congruent to 0. We now expand the first binomials to obtain

1
t !

(
p− 1

2

)
· · ·

(
p− 1

2
− t + 1

)(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

1
(t − 1!)

(
p− 1

2

)
· · ·

(
p− 1

2
− t + 2

)(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
,

which is congruent to 0 modulo p if and only if

1
2 − t

t

(
t

3t − p−1
2

)(
27
4

t2
−

3
16

)
+

(
t − 1

3t − 3− p−1
2

)(
t2
− t +

3
16

)
≡ 0 (mod p)

as well. Using a similar cancellation method on the remaining binomials shows
that it is sufficient to prove(

1
2
− t
)(

p−1
2
−2t+2

)(
p−1

2
−2t+1

)(
27
4

t2
−

3
16

)
+

(
3t−

p−1
2

)(
3t−

p−1
2
−1

)(
3t−

p−1
2
−2

)(
t2
− t+

3
16

)
≡ 0 (mod p),

which is easily verified.
Thus the Hasse invariant satisfies the same second order differential equation

as both λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

and λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p
. For p > 5,

notice that both the Hasse invariant and the truncated hypergeometric functions
have no term with a degree less than 2. For each case, this implies that the truncated
polynomials are congruent modulo p to the Hasse invariant up to multiplication by

a constant. For the case p=5, it is easy to compute that λ 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
5
=λ,

and the Hasse invariant is 4λ, so this property still holds.
Therefore, we know that the two truncated hypergeometric functions have the

same roots modulo p as the Hasse invariant, so by Lemma 2.2, λ is a root of
the hypergeometric functions if and only if E 1

12
(λ) is supersingular. Notice that

λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

and λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

have the same roots

as λ
p−1

4 multiplied by the respective truncated functions with the exception of 0,
which is as desired since E 1

12
(0) is singular. Also, when p ≡ 1, 5 (mod 12) the

degree of λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

is
⌊ p

12

⌋
, so by Lemma 3.2, there exists a

constant cp such that

Sp, 1
12
≡ cp

−1λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p).
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Similarly for primes p ≡ 7, 11 (mod 12),

Sp, 1
12
≡ cp

−1λb
p

12c 2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
p
(mod p).

Finally, we explicitly compute the constant cp. Notice that Sp, 1
12

is monic, so

cp is the coefficient of the leading term in λb
p

12c 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p
, the same

as the constant term in 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p
. For n >

⌊ p
12

⌋
, one of

( 1
12

)
n or

( 5
12

)
n

will be congruent to 0 modulo p. Hence, the constant term of

2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
=

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2

(
1−

1
λ

)n

is
b

p
12c∑

n=0

( 1
12

)
n

( 5
12

)
n

n!2
.

For p ≡ 1 (mod 12), we have( 1
12

)
n

n!
≡ (−1)n

p−1
12

p−13
12 · · ·

(
p−1
12 − n+ 1

)
n!

(mod p)≡ (−1)n
( p−1

12
n

)
(mod p).

Also,
( 5

12

)
n

n! ≡ (−1)n
( 5p−5

12
n

)
(mod p). Therefore,

cp =

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2
≡

(
6
⌊ p

12

⌋⌊ p
12

⌋ ) (mod p).

For p ≡ 5 (mod 12),

cp =

b
p

12c∑
n=0

( 1
12

)
n

( 5
12

)
n

n!2
≡

(
6
⌊ p

12

⌋
+ 2⌊ p

12

⌋ )
(mod p).

A similar method can be used to compute cp ≡

(
6
⌊ p

12

⌋
+ 2⌊ p

12

⌋ )
(mod p) when p ≡

7 (mod 12) and
(

6
⌊ p

12

⌋
+4⌊ p

12

⌋ )
when p≡ 11 (mod 12), which completes the proof.

�

Proof of Corollary 1.3. Recall from the proof of Theorem 1.2 that since the Hasse

invariant of E 1
12
(λ) and the polynomial λ

p−1
4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1− 1
λ

)
p

both satisfied

the same second order differential equation, they are congruent up to multiplication
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by a constant, which we will denote bp. The same argument and notation apply to

λ
p−3

4 2 F1

( 7
12

11
12
1

∣∣∣∣ 1− 1
λ

)
p

when p ≡ 7, 11 mod 12).

Assume that p ≡ 1 mod 12, and define m =
⌊ p

12

⌋
. Also, define n = 3m − k.

We computed the Hasse invariant of E 1
12
(λ) to be

3m∑
k=2m

(
−27

4
λ

)k (6m
k

)(
k

3m− 6m

)
=

m∑
n=0

(
−27λ

4

)3m−n ( 6m
3m− n

)(
3m− n

3m− 3n

)
.

By definition,

λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
≡ λ

p−1
4

m∑
k=0

( 1
12

)
k

( 5
12

)
k

k!2

(
1−

1
λ

)k

(mod p).

As before, ( 1
12

)
k

( 5
12

)
k

k!2
≡

(
m
k

)(
5m
k

)
(mod p).

We expand each of the
(
1− 1

λ

)k
terms and rearrange to obtain

λ
p−1

4 2 F1

( 1
12

5
12
1

∣∣∣∣ 1−
1
λ

)
p
≡

3m∑
k=2m

(−λ)k
m∑

t=3m−k

(
m
t

)(
5m
t

)(
t

3m− k

)
(mod p)

≡

m∑
n=0

(−λ)3m−n
m∑

t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

Since this polynomial is congruent to the Hasse invariant via multiplication by
bp, we have, for all 0≤ n ≤ m,(

27
4

)3m−n ( 3m− n
3m− 3n

)(
6m

3m− n

)
≡ bp

m∑
t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

When n = 0, this becomes(
27
4

)3m (6m
3m

)
≡ bp

m∑
t=0

(
m
t

)(
5m
t

)
≡ bp

(
6m
m

)
(mod p)

and thus

bp ≡

(6m
3m

) (27
4

)3m(6m
m

) (mod p).
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Substituting this back into our identity, we have that for all 0≤ n ≤ m,(
4
27

)n ( 3m− n
3m− 3n

)(
6m

3m− n

)(
6m
m

)
≡

(
6m
3m

) m∑
t=n

(
m
t

)(
5m
t

)(
t
n

)
(mod p).

In the case n = m, we obtain the simpler identity(
27
4

)3m (5m
m

)(
6m
3m

)
≡

(
6m
2m

)(
6m
m

)
(mod p). �

4. Examples

In this section we provide two examples to illustrate our main theorems.

Example of Theorem 1.1. Consider p = 19. The supersingular j-invariants mod
19 are known to be 18 (corresponding to 1728) and 7. From formula (3-1) we find
that the values of λ where j ≡ 18 (mod 19) are −1± i

√
6 only. The values of λ

for which j ≡ 7 (mod 19) are −6± 3
√

2 and 4± 11
√

13. Thus

S19, 1
3
(λ)= (λ− (−1+ i

√
6))(λ− (−1− i

√
6))(λ− (−6+ 3

√
2))

(λ− (−6− 3
√

2))(λ− (4+ 11
√

13))(λ− (4− 11
√

13))

≡ λ6
+ 6λ5

+ 14λ4
+ 8λ3

+ 13λ2
+ 5λ+ 12 (mod 19)

≡ (λ2
+ 2λ+ 7)(λ2

+ 11λ+ 1)(λ2
+ 12λ+ 18) (mod 19).

The Hasse invariant is the coefficient of (wxy)18 in the expansion of

(wy2
+ λwxy+ λ2w2 y− x3)18.

This is

H(λ)≡λ18
+6λ17

+14λ16
+8λ15

+13λ14
+5λ13

+12λ12
≡λ12 S19, 1

3
(λ) (mod 19).

In addition,

2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
19
≡ 1+

6
λ
+

14
λ2 +

8
λ3 +

13
λ4 +

5
λ5 +

12
λ6 ≡

1
λ6 S19, 1

3
(λ) (mod 19).

Example of Theorem 1.2. Consider p = 59, which is 11 modulo 12. The supersin-
gular j-invariants mod 59 are known to be 0, 17 (corresponding to 1728), 48, 47,
28, and 15. From formula (3-2), we find the λ-invariants corresponding to 48, 47,
28, and 15 are 32, 35, 24, and 22, respectively. We do not include the cases j = 0
or j = 1728 since in these cases E 1

12
(λ) is singular. Thus

S59, 1
12
(λ)= (λ+ 27)(λ+ 24)(λ+ 35)(λ+ 37)

≡ λ4
+ 5λ3

+ 10λ2
+ 11λ+ 3 (mod 59).
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The Hasse invariant is the coefficient of x58 in (4x3
− 27λx − 27λ)29. This is

H(λ)≡ 2λ14
+ 10λ13

+ 20λ12
+ 22λ11

+ 6λ10
≡ 2λ10S59, 1

12
(λ) (mod 59).

In addition,

2 F1

( 7
12

11
12
1

∣∣∣∣ 1−
1
λ

)
59
≡2+

10
λ
+

20
λ2+

22
λ3+

6
λ4 ≡

2
λ4 S59, 1

12
(λ) (mod 59) (mod 59).

Also, c59 ≡
(28

4

)
≡ 2 (mod 59).

5. Conclusion

We have described the supersingular loci of two infinite families of elliptic curves
in terms of truncated hypergeometric functions. For the family E 1

3
(λ), the super-

singular locus was a power of λ times the 2 F1

( 1
3

2
3
1

∣∣∣∣ 27
λ

)
p

function. We found

a similar result for the family E 1
12
(λ). This gives a very simple method for de-

termining exactly which values of λ yield supersingular curves for these infinite
families. Over any given field Fp, these λ-invariants are simply the roots of these
hypergeometric functions truncated modulo p.

Our results also yield interesting insights into combinatorics. We have the very
nice identity given in Corollary 1.3, and analogous results can be obtained by
similar methods. For example, assume that p is any prime that is congruent to
1 modulo 12 and that 12m + 1 = p. If one could prove that the constant bp from
the proof of Corollary 1.3 is congruent to 1 modulo p for all such p, then the
following identity is implied from Corollary 1.3:(

6m
3m

)
≡

(
27
4

)m (2m
m

)
(mod p).

The truth of this statement has been verified for all m up to 10000. This is a
fascinating identity regarding the “central” binomial coefficients modulo p, and it
illustrates the types of insights one can gain into combinatorics through the study
of elliptic curves and hypergeometric functions.

It is our hope that these results will be used to further understand the deep
connections between elliptic curves and hypergeometric functions.

References

[Borwein and Borwein 1987] J. M. Borwein and P. B. Borwein, Pi and the AGM: a study in
analytic number theory and computational complexity, Wiley, New York, 1987. MR 89a:11134
Zbl 0611.10001



ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS 113

[El-Guindy and Ono 2012] A. El-Guindy and K. Ono, “Hasse invariants for the Clausen ellip-
tic curves”, preprint, 2012, available at http://www.mathcs.emory.edu/~ono/publications-cv/
pdfs/129.pdf. To appear in Ramanujan J.

[Husemöller 2004] D. Husemöller, Elliptic curves, 2nd ed., Graduate Texts in Mathematics 111,
Springer, New York, 2004. MR 2005a:11078 Zbl 1040.11043

[Lennon 2010] C. Lennon, “A trace formula for certain Hecke operators and Gaussian hypergeo-
metric functions”, preprint, 2010. arXiv 1003.1157

[Silverman 1986] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics
106, Springer, New York, 1986. MR 87g:11070 Zbl 0585.14026

[Washington 2003] L. C. Washington, Elliptic curves: number theory and cryptography, Chapman
& Hall/CRC, Boca Raton, FL, 2003. MR 2004e:11061 Zbl 1034.11037

Received: 2011-09-12 Accepted: 2011-09-14

monks@college.harvard.edu Harvard University, 2013 Harvard Yard Mail Center,
Cambridge 02138, United States

mathematical sciences publishers msp



involve
msp.berkeley.edu/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

John V. Baxley Wake Forest University, NC, USA
baxley@wfu.edu

Arthur T. Benjamin Harvey Mudd College, USA
benjamin@hmc.edu

Martin Bohner Missouri U of Science and Technology, USA
bohner@mst.edu

Nigel Boston University of Wisconsin, USA
boston@math.wisc.edu

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
budhiraj@email.unc.edu

Pietro Cerone Victoria University, Australia
pietro.cerone@vu.edu.au

Scott Chapman Sam Houston State University, USA
scott.chapman@shsu.edu

Jem N. Corcoran University of Colorado, USA
corcoran@colorado.edu

Toka Diagana Howard University, USA
tdiagana@howard.edu

Michael Dorff Brigham Young University, USA
mdorff@math.byu.edu

Sever S. Dragomir Victoria University, Australia
sever@matilda.vu.edu.au

Behrouz Emamizadeh The Petroleum Institute, UAE
bemamizadeh@pi.ac.ae

Errin W. Fulp Wake Forest University, USA
fulp@wfu.edu

Joseph Gallian University of Minnesota Duluth, USA
jgallian@d.umn.edu

Stephan R. Garcia Pomona College, USA
stephan.garcia@pomona.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Andrew Granville Université Montréal, Canada
andrew@dms.umontreal.ca

Jerrold Griggs University of South Carolina, USA
griggs@math.sc.edu

Ron Gould Emory University, USA
rg@mathcs.emory.edu

Sat Gupta U of North Carolina, Greensboro, USA
sngupta@uncg.edu

Jim Haglund University of Pennsylvania, USA
jhaglund@math.upenn.edu

Johnny Henderson Baylor University, USA
johnny_henderson@baylor.edu

Natalia Hritonenko Prairie View A&M University, USA
nahritonenko@pvamu.edu

Charles R. Johnson College of William and Mary, USA
crjohnso@math.wm.edu

Karen Kafadar University of Colorado, USA
karen.kafadar@cudenver.edu

K. B. Kulasekera Clemson University, USA
kk@ces.clemson.edu

Gerry Ladas University of Rhode Island, USA
gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor Cover design: ©2008 Alex Scorpan

See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2012 is US $105/year for the electronic version, and $145/year (+$35 shipping outside the US) for print
and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to
Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of
California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.
PUBLISHED BY

mathematical sciences publishers
http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

http://msp.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:rg@mathcs.emory.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:nahritonenko@pvamu.edu
mailto:crjohnso@math.wm.edu
mailto:karen.kafadar@cudenver.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.berkeley.edu/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2012 vol. 5 no. 1

1Elliptic curves, eta-quotients and hypergeometric functions
DAVID PATHAKJEE, ZEF ROSNBRICK AND EUGENE YOONG

9Trapping light rays aperiodically with mirrors
ZACHARY MITCHELL, GREGORY SIMON AND XUEYING ZHAO

15A generalization of modular forms
ADAM HAQUE

25Induced subgraphs of Johnson graphs
RAMIN NAIMI AND JEFFREY SHAW

39Multiscale adaptively weighted least squares finite element methods for
convection-dominated PDEs

BRIDGET KRAYNIK, YIFEI SUN AND CHAD R. WESTPHAL

51Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors
BLAKE ALLEN, ERIN MARTIN, ERIC NEW AND DANE SKABELUND

61Total positivity of a shuffle matrix
AUDRA MCMILLAN

67Betti numbers of order-preserving graph homomorphisms
LAUREN GUERRA AND STEVEN KLEE

81Permutation notations for the exceptional Weyl group F4
PATRICIA CAHN, RUTH HAAS, ALOYSIUS G. HELMINCK, JUAN LI AND JEREMY
SCHWARTZ

91Progress towards counting D5 quintic fields
ERIC LARSON AND LARRY ROLEN

99On supersingular elliptic curves and hypergeometric functions
KEENAN MONKS

1944-4176(2012)5:1;1-C

involve
2012

vol.5,
no.1


	
	
	

