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This paper deals with a BMO theorem for ε-distorted diffeomorphisms on RD

and an application comparing manifolds of speech and sound.

1. Introduction

From the very beginning of time, mathematicians have been intrigued by the fasci-
nating connections which exist between music, speech and mathematics. Indeed,
these connections were already in some subtle form in the writings of Gauss. The
aim of this paper is to study estimates in measure for diffeomorphisms RD to RD ,
D≥ 2 of small distortion and provide an application to comparing music and speech
manifolds.

This paper originated from discussions where Glover, an undergraduate student of
Damelin and a passionate practitioner of music (particularly the piano), introduced
Damelin to the beautiful world of beats, movements, scales, measures and time
signatures. A fruitful and inspiring collaboration ensued, enriched by wonderful
contributions from Fefferman.

2. Preliminaries

Fix a dimension D≥ 2. We work in RD . We write B(x, r) to denote the open ball in
RD with centre x and radius r . We write A to denote Euclidean motions on RD . A
Euclidean motion may be orientation-preserving or orientation reversing. We write
c, C , C ′, etc. to denote constants depending on the dimension D. These expressions
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need not denote the same constant in different occurrences. For a D× D matrix,
M = (Mi j ), we write |M | to denote the Hilbert–Schmidt norm

|M | =
(∑

i j

|Mi j |
2
)1/2

.

Note that if M is real and symmetric and if

(1− λ)I ≤ M ≤ (1+ λ)I

as matrices, where 0< λ < 1, then

|M − I | ≤ Cλ. (2-1)

This follows from working in an orthonormal basis for which M is diagonal. One
way to understand the formulas above is to think of λ as being close to zero. See
also (2-6) below.

A function f : RD
→ R is said to be BMO (Bounded mean oscillation )if there

is a constant K ≥ 0 such that, for every ball B ⊂ RD, there exists a real number
HB such that

1
vol B

∫
B
| f (x)− HB | dx ≤ K . (2-2)

The least such K is denoted by ‖ f ‖BMO.
In harmonic analysis, a function of bounded mean oscillation, also known as a

BMO function, is a real-valued function whose mean oscillation is bounded (finite).
The space of functions of bounded mean oscillation (BMO), is a function space
that, in some precise sense, plays the same role in the theory of Hardy spaces, that
the space of essentially bounded functions plays in the theory of Lp-spaces: it
is also called a John–Nirenberg space, after Fritz John and Louis Nirenberg who
introduced and studied it for the first time [John 1961; John and Nirenberg 1961].

The John–Nirenberg inequality asserts the following: Let f ∈ BMO and let
B ⊂ RD be a ball. Then there exists a real number HB such that

vol {x ∈ B : | f (x)− HB |> Cλ‖ f ‖BMO} ≤ exp(−λ)vol B, λ≥ 1. (2-3)

As a corollary of the John–Nirenberg inequality, we have(
1

vol B

∫
B
| f (x)− HB |

4dx
)1/4

≤ Cλ‖ f ‖BMO. (2-4)

There is nothing special about the 4th power in the above; it will be needed later.
The definition of BMO, the notion of the BMO norm, the John–Nirenburg

inequality (2-3) and its corollary (2-4) carry through to the case of functions f
on RD which take their values in the space of D× D matrices. Indeed, we take
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HB in (2-2)–(2-4) to be a D× D matrix for such f . The matrix valued norms of
(2-3)–(2-4) follow easily from the scalar case.

We will need some potential theory. If f is a smooth function of compact support
in RD , then we can write 1−1 f to denote the convolution of f with the Newtonian
potential. Thus, 1−1 f is smooth and 1(1−1 f )= f on RD .

We will use the estimate:∥∥∥∥ ∂∂xi
1−1 ∂

∂x j
f
∥∥∥∥

L2(RD)

≤ C‖ f ‖L2(RD), i, j = 1, . . . , D, (2-5)

valid for any smooth function f with compact support. Estimate (2-5) follows by
applying the Fourier transform.

We will work with a positive number ε. We always assume that ε ≤min(1,C).
An ε-distorted diffeomorphism of RD is a one to one and onto diffeomorphism
8 : RD

→ RD such as

(1− ε)I ≤ (8′(x))T (8′(x))≤ (1+ ε)I

as matrices. Thanks to (2-1), such 8 satisfy∣∣(8′(x))T (8′(x))− I
∣∣≤ Cε. (2-6)

We end this section with the following inequality from [Fefferman and Damelin
≥ 2012]:

Approximation Lemma. Let 8 : RD
→ RD be an ε-distorted diffeomorphism.

Then, there exists an Euclidean motion A such that

|8(x)− A(x)| ≤ Cε (2-7)

for all x ∈ B(0, 10).

3. An overdetermined system

We will need to study the following elemetary overdetermined system of partial
differential equations.

∂�i

∂x j
+
∂� j

∂xi
= fi j , i, j = 1, . . . , D, (3-1)

on RD. Here, �i and fi j are C∞ functions on RD. A result concerning (3-1) we
need is:

PDE Theorem. Let �1, . . . , �D and fi j , for i, j = 1, . . . , D, be smooth functions
on RD . Assume that (3-1) holds and suppose that

‖ fi j‖L2(B(0,4)) ≤ 1. (3-2)
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Then, there exist real numbers 1i j , for i, j = 1, . . . , D, such that

1i j +1 j i = 0 for all i, j (3-3)

and ∥∥∥∥∂�i

∂x j
−1i j

∥∥∥∥
L2(B(0,1))

≤ C. (3-4)

Proof. From (3-1), we see at once that

∂�i

∂xi
=

1
2 fi i

for each i . Now, by differentiating (3-1) with respect to x j and then summing on j ,
we see that

1�i +
1
2
∂

∂xi

(∑
j

f j j

)
=

∑
j

∂ fi j

∂x j

for each i . Therefore, we may write

1�i =
∑

j

∂

∂x j
gi j

for smooth functions gi j with

‖gi j‖L2(B(0,4) ≤ C.

This holds for each i . Let χ be a C∞ cutoff function on RD equal to 1 on B(0, 2)
vanishing outside B(0, 4) and satisfying 0≤ χ ≤ 1 everywhere. Now let

�err
i =1

−1
∑

j

∂

∂x j

(
χg j i

)
and let

�∗i =�i −�
err
i .

Then,
�i =�

∗

i +�
err
i (3-5)

each i . The function
�∗i (3-6)

is harmonic on B(0, 2) and ∥∥∇�err
i

∥∥
L2(B(0,2)) ≤ C (3-7)
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thanks to (2-5). By (3-1), (3-2), (3-5), (3-7), we can write

∂�∗i

∂x j
+
∂�∗j

∂xi
= f ∗i j , i, j = 1, . . . , D, (3-8)

on B(0, 2) and with
‖ f ∗i j‖L2(B(0,2) ≤ C. (3-9)

From (3-6) and (3-8), we see that each f ∗i j is a harmonic function on B(0, 2).
Consequently, (3-9) implies

supB(0,1)|∇ f ∗i j | ≤ C. (3-10)

From (3-8), we have for each i, j, k,

∂2�∗i

∂x j∂xk
+
∂2�∗k

∂xi∂x j
=
∂ f ∗ik
∂x j

,
∂2�∗i

∂x j∂xk
+
∂2�∗j

∂xi∂xk
=
∂ f ∗i j

∂xk
, (3-11)

∂2�∗j

∂xi∂xk
+
∂2�∗k

∂xi∂x j
=
∂ f ∗jk

∂xi
. (3-12)

Now adding the first two equations above and subtracting the last, we obtain:

2
∂2�∗i

∂x j∂xk
=
∂ f ∗ik
∂x j
+
∂ f ∗i j

∂xk
−
∂ f ∗jk

∂xi
(3-13)

on B(0, 1). Now from (3-10) and (3-13), we obtain the estimate∣∣∣∣ ∂2�∗i

∂x j∂xk

∣∣∣∣≤ C (3-14)

on B(0, 1) for each i, j, k. Now for each i, j , let

1∗i j =
∂�∗i

∂x j
(0). (3-15)

By (3-14), we have ∣∣∣∣∂�∗i∂x j
−1∗i j

∣∣∣∣≤ C (3-16)

on B(0, 1) for each i, j . Recalling (3-5) and (3-7), we see that (3-16) implies that∥∥∥∥∂�i

∂x j
−1∗i j

∥∥∥∥
L2(B(0,1))

≤ C. (3-17)

Unfortunately, the 1∗i j need not satisfy (3-3). However, (3-1), (3-2) and (3-17)
imply the estimate

|1∗i j +1
∗

j i | ≤ C



164 CHARLES FEFFERMAN, STEVEN B. DAMELIN AND WILLIAM GLOVER

for each i, j . Hence, there exist real numbers 1i j , (i, j = 1, . . . , D) such that

1i j +1 j i = 0 (3-18)

and
|1∗i j −1i j | ≤ C (3-19)

for each i, j . From (3-17) and (3-19), we see that∥∥∥∥∂�i

∂x j
−1i j

∥∥∥∥
L2(B(0,1))

≤ C (3-20)

for each i and j .
Thus (3-18) and (3-20) are the desired conclusions of the theorem. �

4. A BMO theorem

BMO Theorem 1. Let 8 : RD
→ RD be an ε diffeomorphism and let B ⊂ RD be

a ball. Then, there exists T ∈ O(D) such that

1
vol B

∫
B
|8′(x)− T | dx ≤ Cε1/2. (4-1)

Proof. Estimate (4-1) is preserved by translations and dilations. Hence we may
assume that

B = B(0, 1). (4-2)

Now we know that there exists an Euclidean motion A : RD
→ RD such that

|8(x)− A(x)| ≤ Cε (4-3)

for x ∈ B(0,10). Our desired conclusion (4-1) holds for 8 if and only if it holds for
A−1o8 (with a different T). Hence, without loss of generality, we may assume that
A = I . Thus, (4-3) becomes

|8(x)− x | ≤ Cε, x ∈ B(0, 10). (4-4)

We set up some notation: We write the diffeomorphism 8 in coordinates by setting:

8(x1, . . . , xD)= (y1, . . . , yD) (4-5)

where for each i , 1≤ i ≤ D,

yi = ψi (x1, . . . , xD). (4-6)

First claim: For each i = 1, . . . , D,∫
B(0,1)

∣∣∣∣∂ψi (x)
∂xi

− 1
∣∣∣∣≤ Cε. (4-7)
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For this, for fixed (x2, . . . , xD)∈ B ′, we apply (4-4) to the points x+=(1, . . . , xD)

and x− = (1, . . . , xD). We have∣∣ψ1(x+)− 1
∣∣≤ Cε

and ∣∣ψ1(x−1)+ 1
∣∣≤ Cε.

Consequently, ∫ 1

−1

∂ψ1

∂x1
(x1, . . . , xD)dx1 ≥ 2−Cε. (4-8)

On the other hand, since, (
ψ ′(x)

)T (
ψ ′(x)

)
≤ (1+ ε)I,

we have for each i = 1, . . . , D the inequality(
∂ψi

∂xi

)2

≤ 1+ ε.

Therefore, ∣∣∣∣∂ψi

∂xi

∣∣∣∣− 1≤
√

1+ ε− 1≤ ε. (4-9)

Set

I+ =
{

x1 ∈ [−1, 1] :
∂ψ1

∂x1
(x1, . . . , xD)− 1≤ 0

}
,

I−1
=

{
x1 ∈ [−1, 1] :

∂ψ1

∂x1
(x1, . . . , xD)− 1≥ 0

}
,

1+ =

∫
I+

(
∂ψ1

∂x1
(x1, . . . , xD)− 1

)
dx1,

1− =

∫
I−

(
∂ψ1

∂x1
(x1, . . . , xD)− 1

)
dx1.

The inequality (4-8) implies that −1−1
≤ Cε+1+. The inequality (4-9) implies

that
∂ψ1

∂x1
− 1≤ Cε.

Integrating the last inequality over I+, we obtain 1+ ≤ Cε. Consequently,∫ 1

−1

∣∣∣∣∂ψ1

∂x1
(x1, . . . , xD)− 1

∣∣∣∣ dx1 =1
+
−1− ≤ Cε. (4-10)
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Integrating this last equation over (x2, . . . , xD) ∈ B ′ and noting that B(0, 1) ⊂
[−1, 1]× B ′, we conclude that∫

B(0,1)

∣∣∣∣∂ψ1

∂x1
(x1, . . . , xD)− 1

∣∣∣∣ dx ≤ Cε.

Similarly, for each i = 1, . . . , D, we obtain (4-7).

Second claim: For each i, j = 1, . . . , D, i 6= j , we have∫
B(0,1)

∣∣∣∣∂ψi (x)
∂x j

∣∣∣∣ dx ≤ C
√
ε. (4-11)

Since
(1− ε)I ≤ (8′(x))T (8′(x))≤ (1+ ε)I,

we have
D∑

i, j=1

(
∂ψi

∂x j

)2

≤ (1+Cε)D. (4-12)

Therefore,

∑
i 6= j

(
∂ψi

∂x j

)2

≤ Cε+
D∑

i=1

(
1−

∂ψi

∂xi

)(
1+

∂ψi

∂xi

)
.

Using (4-9) for i , we have |∂ψi/∂xi | + 1≤ C . Therefore,∑
i 6= j

(
∂ψi

∂x j

)2

≤ Cε+C
∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ .
Now integrating the last inequality over the unit ball and using (4-7), we find

that ∫
B(0,1)

∑
i 6= j

(
∂ψi

∂x j

)2

dx ≤ Cε+
∫

B(0,1)

∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ dx ≤ Cε. (4-13)

Consequently, by the Cauchy–Schwarz inequality, we have∫
B(0,1)

∑
i 6= j

∣∣∣∣∂ψi

∂x j

∣∣∣∣ dx ≤ C
√
ε.

Third claim: ∫
B(0,1)

∣∣∣∣∂ψi

∂xi

∣∣∣∣ dx ≤ C
√
ε (4-14)
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Since, ∫
B(0,1)

(
∂ψi

∂xi
− 1

)2

dx ≤
∫

B(0,1)

∣∣∣∣∂ψi

∂xi
− 1

∣∣∣∣ ∣∣∣∣∂ψi

∂xi
+ 1

∣∣∣∣ dx,

using (4-7) and |∂ψi/∂xi | ≤ 1+Cε, we obtain∫
B(0,1)

(
∂ψi

∂xi

)2

dx ≤ Cε.

Thus, an application of Cauchy–Schwarz, yields (4-14).

Final claim: By the Hilbert–Schmidt definition, we have∫
B(0,1)

|9 ′(x)− I | dx =
∫

B(0,1)

( D∑
i, j=1

(
∂ψi

∂x j
− δi j

)2)1/2

≤

∫
B(0,1)

D∑
i, j=1

∣∣∣∣∂ψi

∂x j
− δi j

∣∣∣∣ dx .

The estimate (4-11) combined with (4-14) yields:∫
B(0,1)

∣∣8′(x)− I
∣∣ dx ≤ Cε1/2.

Thus we have proved (4-1) with T = I . The proof of the BMO Theorem 1 is
complete. �

Corollary. Let 8 : RD
→ RD be an ε-distorted diffeomorphism. For each, ball

B ⊂ RD , there exists TB ∈ O(D), such that(
1

vol B

∫
B

∣∣8′(x)− T
∣∣4 dx

)1/4

≤ Cε1/2.

Proof. The proof follows from that of BMO Theorem 1 just proved and the John
Nirenberg inequality. (See (2-4).) �

5. A refined BMO theorem

BMO Theorem 2. Let 8 : RD
→ RD be an ε diffeomorphism and let B ∈ RD be a

ball. Then, there exists T ∈ O(D) such that

1
vol B

∫
B

∣∣8′(x)− T
∣∣ dx ≤ Cε. (5-1)

Proof. We may assume without loss of generality that

B = B(0, 1). (5-2)
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We know that there exists T ∗B ∈ O(D) such that(∫
B
|8′(x)− T ∗B |

4dx
)1/4

≤ Cε1/2.

Our desired conclusion holds for 8 if and only if it holds for (T ∗B )
−1o8. Hence

without loss of generality, we may assume that T ∗B = I . Thus we have(∫
B
|8′(x)− I )|4dx

)1/4

≤ Cε1/2. (5-3)

Let
�(x)=

(
�1(x),�2(x), . . . , �D(x)

)
=8(x)− x, x ∈ RD. (5-4)

Thus (5-3) asserts that (∫
B(0,1)

|∇�(x)|4 dx
)1/4

≤ Cε1/2. (5-5)

We know that ∣∣(8′(x))T8′(x)− I
∣∣≤ Cε, x ∈ RD. (5-6)

In coordinates, 8′(x) is the matrix
(
δi j +

∂�i (x)
∂x j

)
; hence 8′(x)T8′(x) is the

matrix whose i j-th entry is

δi j +
∂� j (x)
∂xi

+
∂�i (x)
∂x j

+

∑
l

∂�l(x)
∂xi

∂�l(x)
∂x j

.

Thus (5-6) says that ∣∣∣∣∂� j

∂xi
+
∂�i

∂x j
+

∑
l

∂�l

∂xi

∂�l

∂x j

∣∣∣∣≤ Cε (5-7)

on RD , i, j = 1, . . . , D. Thus, we have from (5-5), (5-7) and the Cauchy–Schwarz
inequality the estimate ∥∥∥∥∂�i

∂x j
+
∂� j

∂xi

∥∥∥∥
L2(B(0,10))

≤ Cε.

By the PDE Theorem, there exists, for each i, j , an antisymmetric matrix S = (S)i j ,
such that ∥∥∥∥∂�i

∂x j
− S

∥∥∥∥
L2(B(0,1))

≤ Cε. (5-8)

Recalling (5-4), this is equivalent to∥∥8′− (I + S)
∥∥

L2(B(0,1)) ≤ Cε. (5-9)
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Note that (5-5) and (5-8) show that

|S| ≤ Cε1/2

and thus,

|exp(S)− (I + S)| ≤ Cε.

Hence, (5-9) implies via Cauchy–Schwarz.∫
B(0,1)

∣∣8′(x)− exp(S)(x)
∣∣ dx ≤ Cε1/2. (5-10)

This implies the result because S is antisymmetric, which means that exp S ∈ O(D).
�

6. A BMO theorem for diffeomorphisms of small distortion

Theorem. Let 8 : RD
→ RD be an ε distorted diffeomorphism. Let B ⊂ RD be a

ball. Then, there exists TB ∈ O(D) such that for every λ≥ 1,

vol
{

x ∈ B : |8′(x)− TB |> Cλε
}
≤ exp(−λ)vol (B). (6-1)

Moreover, the result (6-1) is sharp in the sense of small volume if one takes a
slow twist defined as follows: For x ∈ RD , let Sx be the block-diagonal matrix

D1(x) 0 0 0 0 0
0 D2(x) 0 0 0 0
0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 0 · 0
0 0 0 0 0 Dr (x)


where, for each i , either Di (x) is the 1× 1 identity matrix or else

Di (x)=
(

cos fi (|x |) sin fi (|x |)
−sin fi (|x |) cos fi (|x |)

)
for a function fi of one variable.

Now define for each x ∈ RD , 8(x)=2T Sx(2x) where 2 is any fixed matrix in
SO(D). One checks that 8 is ε-distorted, provided for each i , t | f ′i (t)|< cε for all
t ∈ [0,∞).

Proof. The theorem follows from BMO Theorem 2 and the Nirenberg inequality.
The sharpness can be easily checked. �
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7. On the approximate and exact alignment of data in Euclidean space,
speech and music manifolds

Approximate and exact alignment of data. A classical problem in geometry goes
as follows. Suppose we are given two sets of D-dimensional data, that is, sets of
points in Euclidean D-space, where D ≥ 1. The data sets are indexed by the same
set, and we know that pairwise distances between corresponding points are equal in
the two data sets. In other words, the sets are isometric. Can this correspondence
be extended to an isometry of the ambient Euclidean space?

In this form the question is not terribly interesting; the answer has long known
to be yes (see [Wells and Williams 1975], for example). But a related question
is actually fundamental in data analysis: here the known points are samples from
larger, unknown sets — say, manifolds in RD — and we seek to know what can be
said about the manifolds themselves. A typical example might be a face recognition
problem, where all we have is multiple finite images of people’s faces from various
views.

An added complication is that in general we are not given exact distances. We
have noise and so we need to demand that instead of the pairwise distances being
equal, they should be close in some reasonable metric. Some results on almost
isometries in Euclidean spaces can be found in [John 1961; Alestalo et al. 2003].

In [Fefferman and Damelin ≥ 2012], the following two theorems are established
which tell us about how to handle manifold identification when the point set function
values given are not exactly equal but are close.

Theorem. Given ε > 0 and k ≥ 1, there exists δ > 0 such that the following holds.
Let y1, . . . , yk and z1, . . . , zk be points in RD . Suppose

(1+ δ)−1
≤
|zi − z j |

|yi − y j |
≤ 1+ δ, i 6= j.

Then, there exists a Euclidean motion 80 : x→ T x + x0 such that

|zi −80(yi )| ≤ ε diam {y1, . . . , yk}

for each i . If k ≤ D, then we can take 80 to be a proper Euclidean motion on RD .

Theorem. Let ε > 0, D ≥ 1 and 1≤ k ≤ D. Then there exists δ > 0 such that the
following holds: Let E := y1, . . . , yk and E ′ := z1, . . . zk be distinct points in RD.
Suppose that

(1+ δ)−1
≤
|zi − z j |

|yi − y j |
≤ (1+ δ), 1≤ i, j ≤ k, i 6= j.

Then there exists a diffeomorphism 9 : RD
→ RD with
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(1+ ε)−1
≤
|9(x)−9(y)|
|x − y|

≤ (1+ ε), x, y ∈ RD, x 6= y

satisfying
9(yi )= zi , 1≤ i ≤ k.

The theorem above shows that any 1+ δ bilipchitz mapping 8 of 1 ≤ k ≤ D
points from RD to RD may be extended to a 1+ ε bilipchitz diffeomorphism of RD

to RD .
Given the two theorems above, we now need to ask ourselves. Can we take, in

any particular data application, an ε-distorted map and replace it by a Euclidean
motion or visa versa. Clearly this is very important since the theorems themselves
provide in the once case a Euclidean motion and in the other a diffeomorphism of
small distortion. We understand that our main BMO theorems tell us that at least in
measure, diffeomorphisms of small distortion are very close to Euclidean motions
motions.

Speech and music manifolds. Recently (see [Damelin and Miller 2012] and the
references cited therein) there has been much interest in geometrically motivated
dimensionality reduction algorithms. The reason for this is that these algorithms
exploit low dimensional manifold structure in certain natural datasets to reduce
dimensionality while preserving categorical content. In [Jansen and Niyogi 2006],
the authors motivated the existence of low dimensional manifold structure to voice
and speech sounds. As an immediate application of our results from this paper and
from [Fefferman and Damelin ≥ 2012], we are now able to answer the following
question related to speech and music manifolds. Suppose that we are given two
collections of data functions in time which arise from vocal tract functions used
in speech and music production. These manfolds exist; see the results of [Jansen
and Niyogi 2006]. Suppose that all we know is that the functions are the same
within a small δ distrortion. Then what can one say about the manifolds themselves.
For example, can one identify different musical instruments or people/animals
via speech using Euclidean motions or diffeomorphisms of ε distortion? What
can one say about the differences in measure between the Euclidean motions or
diffeomorphisms themselves? The theorems proved in this paper and in [Fefferman
and Damelin ≥ 2012] provide a fascinating insight into these very interesting
questions.
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