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We consider the problem of describing the possible exponents of n-by-n boolean
primitive circulant matrices. It is well known that this set is a subset of [1, n−1]
and not all integers in [1, n−1] are attainable exponents. In the literature, some
attention has been paid to the gaps in the set of exponents. The first three gaps
have been proven, that is, the integers in the intervals [ n2+1, n−2], [ n3+2, n

2−2]
and [ n4+3, n

3−2] are not attainable exponents. Here we study the distribution
of exponents in between those gaps by giving the exact exponents attained there
by primitive circulant matrices. We also study the distribution of exponents in
between the third gap and our conjectured fourth gap. It is interesting to point out
that the exponents attained in between the (i−1)-th and the i-th gap depend on
the value of n mod i .

1. Introduction

A boolean matrix is a matrix over the binary boolean algebra {0, 1}. An n-by-n
boolean matrix C is said to be circulant if each row of C (except the first one) is
obtained from the preceding row by shifting the elements cyclically 1 column to the
right. In other words, the entries of a circulant matrix C = (ci j ) are related in the
manner: ci+1, j = ci, j−1, where 0≤ i ≤ n−2, 0≤ j ≤ n−1, and the subscripts are
computed modulo n. The first row of C is called the generating vector. Here and
throughout we number the rows and columns of an n-by-n matrix from 0 to n−1.

The set of all n-by-n boolean circulant matrices forms a multiplicative commuta-
tive semigroup Cn with |Cn| = 2n [Davis 1979; Lancaster 1969]. This semigroup
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was thoroughly investigated by K. K.-H. Butler and J. R. Krabill [1974] and by S.
Schwarz [1974].

An n-by-n boolean matrix C is said to be primitive if there exists a positive
integer k such that Ck

= J , where J is the n-by-n matrix whose entries are all ones
and the product is computed in the algebra {0, 1}. The smallest such k is called
the exponent of C , and we denote it by exp C . Let us denote En = {exp C : C ∈
Cn, C is primitive}.

In [Bueno et al. 2009] we stated the following question: Given a positive integer
n, what is the set En?

The previous question can easily be restated in terms of circulant graphs or bases
for finite cyclic groups, as we explain next.

Let C be a boolean primitive circulant matrix and let S be the set of positions
corresponding to the nonzero entries in the generating vector of C (where the
columns are counted starting with zero). C is the adjacency matrix of the circulant
digraph Cay(Zn, S). The vertex set of this graph is Zn and there is an arc from u
to u+a (mod n) for every u ∈ Zn and every a ∈ S. A digraph D is called primitive
if there exists a positive integer k such that for each ordered pair a, b of vertices
there is a directed walk from a to b of length k in D. The smallest such integer k
is called the exponent of the primitive digraph D. Thus, a circulant digraph G is
primitive if and only if its adjacency matrix is. Moreover, if they are primitive, they
have the same exponent. Therefore, finding the set En is equivalent to finding the
possible exponents of circulant digraphs of order n.

Let n be a positive integer and let S be a nonempty subset of the additive group
Zn . For a positive integer k we denote by kS the set given by

kS = {s1+· · ·+sk mod n : si ∈ S} ⊂ Zn.

The set kS is called the k-fold sumset of S.
The set S is said to be a basis for Zn if there exists a positive integer k such that

kS=Zn . The smallest such k is called the order of S, denoted by order(S). It is well
known [Butler and Krabill 1974; Schwarz 1974] that the set S={s0, s1, . . . , sr }⊂Zn

is a basis if and only if gcd(s1−s0, . . . , sr−s0, n)= 1. In [Bueno et al. 2009] we
proved that, given a matrix C in Cn , if S is the set of positions corresponding to the
nonzero entries in the generating vector of C , then C is primitive if and only if S
is a basis for Zn . Moreover, if C is primitive, then exp(C)= order(S). Therefore,
finding the set En is equivalent to finding the possible orders of bases for the cyclic
group Zn . This question is quite interesting by itself. We note that all the results
in this paper will be given in terms of bases for Zn , as the techniques we can use
following this approach result more convenient.

The problem we study in this paper has applications in different areas. In
particular, circulant matrices appear as transition matrices in Markov processes
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[Chou et al. 2008]. Also, the problem stated in terms of bases for Zn has applications
in coding theory and quantum information [Klopsch and Lev 2009].

In the literature, the problem of computing all possible exponents attained by
circulant primitive matrices or, equivalently, by circulant digraphs, has been con-
sidered. In particular, the following results were obtained. Here and throughout,
[a, b] denotes the set of positive integers in the real interval [a, b]. If a > b then
[a, b] =∅.

Lemma 1 [Huang 1990; Wang and Meng 1997]. If C is a primitive circulant matrix,
then its exponent is either n−1,

⌊n
2

⌋
,
⌊n

2

⌋
−1 or does not exceed

⌊ n
3

⌋
+1. Moreover,

exp C = n−1 if and only if the number of nonzero entries in the generating vector
of C is exactly 2.

Lemma 2 [Dukes et al. 2010]. For every n ≥ 3, the sets
[⌊ n

4

⌋
+3,

⌊ n
3

⌋
−2
]

and En

are disjoint.

All these results can be immediately translated into results about the possible
orders of bases for a finite cyclic group.

Note that the only primitive matrix in C2 is J2, so E2 = {1}. From now on, we
assume that n ≥ 3. In [Bueno et al. 2009] we presented a conjecture concerning the
possible exponents attained by n-by-n boolean primitive circulant matrices which
we restate here in a more precise way. We start with a definition.

Definition. Let j be a positive integer. We call the j th box of Zn , and denote it by
B j , the set of positive integers[⌊

n
j

⌋
−1,

⌊
n
j

⌋
+ j−2

]
.

Conjecture 3. If C ∈ Cn is primitive, then

exp C ∈
[
1,
⌊√

n
⌋]
∪

b
√

nc⋃
j=1

B j .

In [Dukes et al. 2010], it was proven that if C ∈ Cn is primitive and its exponent
is greater than k for some positive integer k, then there exists dk such that the
exponent of C is within dk of n/ l for some integer l ∈ [1, k]. Notice that the result
we present in Conjecture 3 produces gaps in the set of exponents which are larger
than the ones encountered in [Dukes et al. 2010]. In fact, we have shown that the
gaps in our conjecture should be maximal [Bueno and Furtado 2010]. We say that a
gap A in En is maximal if A′∩En 6=∅ for any interval of integers A′ ⊂ [1, n−1],
with A strictly contained in A′. In [Bueno and Furtado 2010], we proved that for
each positive integer j , there is an integer n, such that B j,n is a maximal gap in
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En . However, as stated in [Dukes et al. 2010], we remain far from a complete
characterization of the possible exponents of n×n primitive circulant matrices.

Lemmas 1 and 2 above show the gaps between the first and second box, between
the second and third box, and between the third and fourth box when these boxes do
not overlap. Here we present the distribution of orders of bases within the first three
boxes by showing what orders are attained and which ones are not. The results
for the first and second box were already known [Huang 1990; Wang and Meng
1997] and we include them for completeness. We also study the order of bases in
the fourth box by giving orders that are attained and we conjecture that those are,
in fact, the exact orders in that box. In addition, we also prove that all integers in
[1,
⌊√

n
⌋
] are attained by bases of Zn .

This paper is organized as follows. In Section 2 we state our main results and
prove them in Section 4. In Section 3 we state and prove several auxiliary results
concerning the order of bases for Zn , which will be used to prove our main theorems.
The order of several bases for Zn with cardinality at most 4 that are relevant to our
proofs is studied in the Appendix.

2. Main results

In this section, we give the exact orders attained by bases for Zn in the first three
boxes of Zn . We also give orders attained in the fourth box. Notice that the results
for the first and second box were already known [Huang 1990; Wang and Meng
1997] but we include them for completeness. Finally, we state that all integers up
to
⌊√

n
⌋

are in En .
The result for the first box is an immediate consequence of Lemma 1.

Theorem 4 [Huang 1990]. For all n,

B1 ⊆ En.

Concerning the second box, we have the following result obtained in [Huang
1990; Wang and Meng 1997]. In Section 4.1 we include a proof of it using the
techniques for bases.

Theorem 5 [Huang 1990; Wang and Meng 1997]. Let n ≥ 17 be a positive integer.

• If n is even, then B2 ⊆ En .

• If n is odd, then B2∩En =
⌊ n

2

⌋
.

The next two theorems are our main results and will be proven in Section 4. In
our first result we assume a lower bound n0 for n, which is the smallest value of n
for which the theorem holds for all n > n0. The possible orders in En , with n < n0,
appear in Tables 1 and 2. We observe that, for any n for which the box under
study does not overlap with adjacent boxes, the theorem holds. We also notice that,
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though we have a lower bound for n in our results, when n ≡ 0 mod j , j = 3, 4,
B j is a subset of En , for all n.

Theorem 6. Let n ≥ 45 be a positive integer.

• If n ≡ 0 (mod 3), then B3 ⊆ En .

• If n ≡ 1 (mod 3), then B3∩En =
{⌊ n

3

⌋
+1,

⌊ n
3

⌋}
.

• If n ≡ 2 (mod 3), then B3∩En =
{⌊ n

3

⌋
+1
}
.

Theorem 7. Let n ≥ 16 be a positive integer.

• If n ≡ 0 (mod 4), then B4 ⊆ En .

• If n ≡ 1 (mod 4), then
{⌊ n

4

⌋
+2,

⌊ n
4

⌋
+1,

⌊ n
4

⌋}
⊆ En .

• If n ≡ 2 (mod 4) or n ≡ 3 (mod 4), then
{⌊ n

4

⌋
+2,

⌊n
4

⌋
+1
}
⊆ En .

Though we do not prove it, we conjecture that
⌊ n

4

⌋
−1 /∈ En when n≡ 1 (mod 4)

and
⌊ n

4

⌋
−1,

⌊n
4

⌋
/∈ En when n ≡ 2, 3 (mod 4).

In Tables 1 and 2 we give the exact orders attained by bases for Zn with n =
2, 3, 4, . . . , 104. As the numerical experiments show, for each n there is a number of

n En n En n En

2 1 23 1 . . .8,11,22 44 1 . . .13,15,21,22,43
3 1,2 24 1 . . .9,11,12,23 45 1 . . .16,22,44
4 1,2,3 25 1 . . .9,12,24 46 1 . . .13,15,16,22,23,45
5 1,2,4 26 1 . . .9,12,13,25 47 1 . . .13,16,23,46
6 1,2,3,5 27 1 . . .10,13,26 48 1 . . .17,23,24,47
7 1,2,3,6 28 1 . . .10,13,14,27 49 1 . . .14,16,17,24,48
8 1 . . .4,7 29 1 . . .10,14,28 50 1 . . .14,17,24,25,49
9 1 . . .4,8 30 1 . . .11,14,15,29 51 1 . . .14,16,17,18,25,50

10 1 . . .5,9 31 1 . . .11,15,30 52 1 . . .15,17,18,25,26,51
11 1 . . .5,10 32 1 . . .11,15,16,31 53 1 . . .15,18,26,52
12 1 . . .6,11 33 1 . . .12,16,32 54 1 . . .15,17,18,19,26,27,53
13 1 . . .6,12 34 1 . . .12,16,17,33 55 1 . . .15,18,19,27,54
14 1 . . .7,13 35 1 . . .10,12,17,34 56 1 . . .16,19,27,28,55
15 1 . . .7,14 36 1 . . .13,17,18,35 57 1 . . .16,18,19,20,28,56
16 1 . . .8,15 37 1 . . .13,18,36 58 1 . . .16,19,20,28,29,57
17 1 . . .6,8,16 38 1 . . .11,13,18,19,37 59 1 . . .16,20,29,58
18 1 . . .9,17 39 1 . . .14,19,38 60 1 . . .17,19,20,21,29,30,59
19 1 . . .7,9,18 40 1 . . .14,19,20,39 61 1 . . .17,20,21,30,60
20 1 . . .7,9,10,19 41 1 . . .12,14,20,40 62 1 . . .17,21,30,31,61
21 1 . . .8,10,20 42 1 . . .14,15,20,21,41 63 1 . . .17,20,21,22,31,62
22 1 . . .8,10,11,21 43 1 . . .12,14,15,21,42 64 1 . . .18,21,22,31,32,63

Table 1. Orders of bases for Zn .
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n En n En

65 1 . . . 14, 16, 17, 18, 22, 32, 64 85 1 . . . 18, 20, 21, 22, 23, 28, 29, 42, 84
66 1 . . . 18, 21, 22, 23, 32, 33, 65 86 1 . . . 18, 20, 21, 22, 23, 29, 42, 43, 85
67 1 . . . 18, 22, 23, 33, 66 87 1 . . . 18, 20, 22, 23, 28, 29, 30, 43, 86
68 1 . . . 19, 23, 33, 34, 67 88 1 . . . 24, 29, 30, 43, 44, 87
69 1 . . . 19, 22, 23, 24, 34, 68 89 1 . . . 20, 22, 23, 24, 30, 44, 88
70 1 . . . 15, 17, 18, 19, 23, 24, 34, 35, 69 90 1 . . . 19, 21, 22, 23, 24, 29, 30, 31, 44, 45, 89
71 1 . . . 19, 24, 35, 70 91 1 . . . 21, 23, 24, 30, 31, 45, 90
72 1 . . . 20, 23, 24, 25, 35, 36, 71 92 1 . . . 19, 21, 22, 23, 24, 25, 31, 45, 46, 91
73 1 . . . 20, 24, 25, 36, 72 93 1 . . . 21, 23, 24, 25, 30, 31, 32, 46, 92
74 1 . . . 20, 25, 36, 37, 73 94 1 . . . 21, 23, 24, 25, 31, 32, 46, 47, 93
75 1 . . . 16, 18, 19, 20, 24, 25, 26, 37, 74 95 1 . . . 20, 22, 24, 25, 32, 47, 94
76 1 . . . 21, 25, 26, 37, 38, 75 96 1 . . . 26, 31, 32, 33, 47, 48, 95
77 1 . . . 16, 18, 19, 20, 21, 26, 38, 76 97 1 . . . 18, 20, 22, 24, 25, 26, 32, 33, 48, 96
78 1 . . . 21, 25, 26, 27, 38, 39, 77 98 1 . . . 22, 24, 25, 26, 33, 48, 49, 97
79 1 . . . 18, 20, 21, 26, 27, 39, 78 99 1 . . . 22, 25, 26, 32, 33, 34, 49, 98
80 1 . . . 17, 19, 20, 21, 22, 27, 39, 40, 79 100 1 . . . 21, 23, 24, 25, 26, 27, 33, 34, 49, 50, 99
81 1 . . . 22, 26, 27, 28, 40, 80 101 1 . . . 23, 25, 26, 27, 34, 50, 100
82 1 . . . 17, 19, 20, 21, 22, 27, 28, 40, 41, 102 1 . . . 21, 23, 25, 26, 27, 33, 34, 35, 50, 51, 101

81 103 1 . . . 19, 21, 22, 23, 26, 27, 34, 35, 51, 102
83 1 . . . 19, 21, 22, 28, 41, 82 104 1 . . . 19, 21, 22, 23, 25, 26, 27, 28, 35, 51, 52,
84 1 . . . 23, 27, 28, 29, 41, 42, 83 103

Table 2. Orders of bases for Zn .

consecutive orders that can be attained by bases of Zn . Though we prove Theorem 8,
according to our numerical experiments, we conjecture that at least all consecutive
integers up to 2

√
n−2 are attainable orders.

Theorem 8. Let n be a positive integer. Then [1, b
√

nc] ⊆ En .

Though this result is cited in [Dukes et al. 2010], it seems that the paper where
its proof is said to be is not available.

3. Order of bases for Zn

Computing the order of bases for Zn is, in general, a challenging task. In this
section we introduce some results relative to the order of bases of Zn that will be
helpful when proving our main results.

To start with, let us notice that the order of a basis S is invariant under shifts and
multiplication by a unit of Zn , that is, for a ∈ Zn and b a unit of Zn

order(S)= order(S+a), and order(S)= order(b∗S) (1)

where b∗S = {bs mod n : s ∈ S}. In particular, this result implies that the set of
orders attained by bases of Zn is the same as the set of orders attained by bases of
Zn containing 0.
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We now state some known results about the order of a basis for Zn . The following
lemma gives an upper bound on the cardinality of a basis when a lower bound on
its order is known.

Lemma 9 [Klopsch and Lev 2009]. Let n ∈ N and ρ ∈ [2, n−1]. Let S be a basis
for Zn such that order(S)≥ ρ. Then

|S| ≤max
{

n
d

(⌊
d−2
ρ−1

⌋
+1
)
: d|n, d ≥ ρ+1

}
.

In particular, for each fixed k ∈ N, if order(S)≥ n
k and n� 0, then |S| ≤ 2k.

The next lemma gives an upper and a lower bound on the order of some bases
for Zn with cardinality 3.

Lemma 10 [Bueno and Furtado 2010]. Let 2≤ b ≤ n−1. Then⌊ n
b

⌋
≤ order({0, 1, b})≤

⌊ n
b

⌋
+b−2.

We now give the exact order of some particular bases for Zn that will be needed
later. The next lemma shows, in particular, that the largest element of the j-th box,
j ≤
√

n, belongs to En for all n.

Lemma 11 [Bueno et al. 2009]. For j ∈ {1, 2, . . . ,
⌊√

n
⌋
},

order({0, 1, j})=
⌊n

j

⌋
+ j−2.

Lemma 12 [Bueno and Furtado 2010]. Let 2≤ j ≤
√

n be a positive integer. Then

order
({

0, 1,
⌊ n

j

⌋
+1
})
=
⌊n

j

⌋
+ j−2.

Lemma 13 [Bueno et al. 2009]. Let 2≤ r ≤ n−1 and t = n−r
⌊ n

r

⌋
. Then

order({0, 1, 2, . . . , r−1, r})=

{⌊n
r

⌋
if t ≤ 1,⌊ n

r

⌋
+1 if t > 1.

Lemma 14. Let 2≤ r ≤ n−2. Then

order({0, 1, 2, . . . , r−1, r+1})=
⌊

n
r+1

⌋
+1.

Proof. Let S = {0, 1, 2, . . . , r−1, r+1}. It can be shown by induction on k that,
for k ≥ 1, kS= [0, . . . , k(r+1)−2] ∪ {k(r+1)}. Thus, order(S)= k if and only if
k is the minimum integer such that k(r+1)−2≥ n−1, which implies the result. �
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Lemma 15. Suppose that m is a divisor of n and let 1≤ q < m ≤ n. Then

order
( q⋃

i=0

(i+〈m〉)
)
=

⌈
m−1

q

⌉
.

Proof. Let S be the basis in the statement. Note that kS =
⋃kq

i=0(i+〈m〉) for all
k ≥ 1. Therefore, the order of S equals the minimum k such that kq ≥ m−1 and
the result follows. �

As a consequence of the previous result, we obtain that, if j is a divisor of n, the
smallest element of the j-th box is an element of En , since

order (〈n/j〉∪(1+〈n/j〉))= n/j−1.

Using canonical projections we can bound the order of some bases in a convenient
way. Given Zn and a proper divisor m of n, we denote by φ the canonical quotient
map φ : Zn→ Zn/m . We denote by ordern(S) the order of the basis S as a subset
of Zn . The next result is well known. For that reason, we include it without proof.

Lemma 16. Let m be a proper divisor of n. If S is a basis for Zn that contains zero
and an element of order m, then φ(S) is a basis for Zn/m and

ordern/m(φ(S))≤ ordern(S)≤ ordern/m(φ(S))+m−1.

The next corollaries are immediate consequences of the previous lemma and
Lemma 1.

Corollary 1 [Huang 1990]. Suppose m is a proper divisor of n and S is a basis for
Zn that contains zero and an element of order m. Then order(S)≤ (n/m)+m−2.

Corollary 2. Let S be a basis for Zn and assume that S contains zero and an
element of order 2. Then order(S)≤

⌊ n
4

⌋
+1 or order(S)≥

⌊ n
2

⌋
−1.

Corollary 3. Let S be a basis for Zn and assume that S contains zero and an element
of order 3. Then order(S)≤

⌊n
6

⌋
+2 or order(S)≥

⌊ n
3

⌋
−1.

The next technical lemma allows us to prove Corollary 4, which is a key result
in the proof of our main theorems.

Lemma 17. Let j ≥ 2 be an integer and assume that

b ∈ I j =

[⌊ n
j+1

⌋
+2,

⌊n
j

⌋
−1
]
.

Then
order({0, 1, b})≤

⌊ n
j+2

⌋
+ j.

Proof. Let S = {0, 1, b}. First we observe that j+1< ( j+1)b−n < b. We divide
the proof into three cases.
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Case 1: Assume b is even and ( j+1)b−n= b/2. This implies that (2 j+1)b/2= n
and, therefore, b is not a divisor of n. Since (2 j+1)b = 2n, then b is an element
of Zn of order 2 j+1. Then

order(S)≤
n

2 j+1
+2 j−1≤

⌊
n

j+2

⌋
+ j.

The inequality on the left follows from Corollary 1 while the right inequality follows
after a few computations. Thus,⌊

n
j+2

⌋
+ j =

⌊
(2 j+1)( j+2+k)

j+2

⌋
+ j ≥ 3 j+1+k =

n
2 j+1

+2 j−1.

Case 2: Assume ( j+1)b−n < b/2. Let k = j+1 and p = ( j+1)b−n. Clearly,
[0, k] ∪ {p} ∪ [b, b+k−1] ⊆ kS. It can be shown by induction on q that

q⋃
i=0

[i p, i p+(q−i)k] ∪ [b, b+qk−1] ⊂ qkS (2)

and
q−1⋃
i=0

[i p+(k−1)b, i p+(k−1)b+(q−(i+1))k] ⊂ (qk−1)S. (3)

Now assume that q is the largest integer such that qp < b, that is, q = bb/pc and
let l = max{b− pq, p−k}. Note that q ≥ 2. Also, the gaps between consecutive
intervals in the unions in (2) and (3) have at most l−1 elements. Thus, we have

[0, b+ j]∪[ jb, jb+(q−1)p+l] ⊆ (qk+l−1)S.

Moreover, [0, jb+(q−1)p+l+ j−1] ⊆ (qk+l−1+( j−1))S. Since n− jb =
b− p, we get that (q−1)p+l+ j ≥ n− jb is equivalent to l+ j ≥ b−qp, which
is true because of the definition of l. This implies

order(S)≤ qk+max{b− pq, p−k}+ j−2. (4)

Let b = pq+r , 0≤ r < p and q1 = brk/pc. It is easy to show that

max{b− pq, p−k} ≤ q1+ p−k (5)

which implies

order(S)≤
⌊

bk
p

⌋
+ p−k+ j−2. (6)

Taking into account (6), to complete the proof it is sufficient to show that⌊
bk
p

⌋
+ p−k+ j−2≤

⌊
n

j+2

⌋
+ j. (7)
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Let g be the function given by

g(b)=
bk
p
+ p−3=

n
p
+ p−2.

To see that (7) holds it is enough to note that g(b)≤ n
j+2+ j, or, equivalently,

b ∈

[
n+ j+2

j+1
,

n+ n
j+2

j+1

]
.

Case 3: Assume ( j+1)b−n> b/2. Note that j =
⌊n

b

⌋
. Let n= jb+r3, 0≤ r3< b.

Thus, ( j+1)b−n= b−r3. Clearly, [0, j+1]∪{b−r3}∪[b, b+ j]∪[ jb, jb+1]⊆
( j+1)S. It can be shown by induction on j that

[0, q j+1] ∪
q−1⋃
i=0

[b−(q−i)r3, b−(q−i)r3+i j]∪[b, b+q j] ⊂ (q j+1)S (8)

Denote by q the largest integer such that q j+2 ≤ b−qr3, that is, q =
⌊

b−2
j+r3

⌋
.

An argument similar to Case 2 implies that

order(S)≤ q j+max{r3, b−q( j+r3)−1}+ j−1. (9)

Let l =max{r3, b−q( j+r3)−1}. Now we show that

q j+l+ j−1≤
⌊

j (b−1)
j+r3

⌋
+ j+r3−1≤

⌊
n

j+2

⌋
+ j. (10)

To see the first inequality in (10), it is enough to note that, by definition of q,
q( j+r3) < b−1 and b−1≤ (q+1)( j+r3). To see the second inequality in (10),
let h be the function given by

h(b)=
j (b−1)
j+r3

+ j+r3−1=
n

j+n− jb
+ j+n− jb−2.

Then we see that

h(b)≤
n

j+2
+( j+2)−2 if and only if j+n− jb ∈

[
j+2,

n
j+2

]
.

Moreover, for j+n− jb=
⌊ n

j+2

⌋
+1, we get bh(b)c=

⌊ n
j+2

⌋
+ j , since by [Bueno

and Furtado 2010, Theorem 5.7], and taking into account that j <
√

n,⌊
n⌊ n

j+2

⌋
+1

⌋
= j+1.
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Therefore, if j+n− jb ∈
[

j+2, n
j+2+1

]
, or equivalently, if

b ∈

[
n+ j−1− n

j+2

j
,

n−2
j

]
, (11)

then the second inequality in (10) holds. We finish the proof by showing that any b
satisfying our assumptions is such that (11) holds. Note that, as ( j+1)b−n> b

2 , we
have 2n/(2 j+1)<b≤

⌊ n
j

⌋
−1. Thus, because j ≥2, it follows that b≤ n

j −1≤ n−2
j .

First we note that if |I j | ≥ 2, then

n+ j−1− n
j+2

j
≤

2n
2 j+1

< b. (12)

If |I j | = 1, then b = bn/jc−1. If (12) holds, we are done. Otherwise, it can be
proven that

n+ j−1− n
j+2

j
≤ b =

⌊n
j

⌋
−1. �

From the previous lemma we obtain the next corollary, which includes some
results presented in [Dukes et al. 2010] without proof.

Corollary 4. Let n ≥ 16. Suppose that 2≤ b ≤
⌊ n

2

⌋
+1.

(i) If either b /∈
{
2, 3,

⌊ n
3

⌋
,
⌊ n

3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
, or b =

⌊ n
3

⌋
and n 6= 0 mod 3,

then order({0, 1, b})≤
⌊ n

4

⌋
+2.

(ii) If either b ∈
{
3,
⌊ n

3

⌋
+1
}
, or b =

⌊n
3

⌋
and n ≡ 0 mod 3, or b =

⌊ n
2

⌋
with n

odd, then order({0, 1, b})=
⌊ n

3

⌋
+1.

(iii) If either b∈
{
2,
⌊n

2

⌋
+1
}
, or b=

⌊n
2

⌋
and n is even, then order({0, 1, b})=

⌊n
2

⌋
.

Proof. By Lemma 17, if b ∈
[⌊n

4

⌋
+2,

⌊ n
3

⌋
−1
]
∪
[⌊ n

3

⌋
+2,

⌊n
2

⌋
−1
]
, the order of

{0, 1, b} is at most
⌊n

4

⌋
+2. By Lemma 10, if 4≤ b ≤ n/4, then order({0, 1, b})≤⌊ n

4

⌋
+2. By Lemma 12, order

{
0, 1,

⌊ n
4

⌋
+1
}
=
⌊ n

4

⌋
+2. If b =

⌊ n
3

⌋
and n 6=

0 mod 3 then

order({0, 1, b})=
{

order(1+3∗{0, 1, b})= order({0, 1, 4}) if n ≡ 1 mod 3,
order(2+3∗{0, 1, b})= order({0, 2, 5}) if n ≡ 2 mod 3,

and the result follows from Lemmas 19 and 20. Thus, (i) follows. If b∈
{
3,
⌊ n

3

⌋
+1
}

the result follows from Lemmas 12 and 14. If n is odd, then

order(
{
0, 1,

⌊ n
2

⌋}
)= order(1+2∗{0, 1, b})= {0, 1, 3}

and the result follows from Lemma 14. If n ≡ 0 mod 3 and b= n/3, then, for k ≥ 1,

kS = [0, k] ∪ [n/3, n/3+k−1] ∪ [2n/3, 2n/3+k−2]



198 BUENO, FANG, FULLER AND FURTADO

(in Z). The order of S is the smallest positive integer k such that k−2+2n/3≥n−1,
that is, k = 1+n/3, which completes the proof of (ii). To prove (iii), note that, if n
is even and b = n/2, then, for k ≥ 1,

kS = [0, k] ∪ [n/2, n/2+k−1]

(in Z). Thus, the order of S is the smallest positive integer k such that k−1+n/2≥
n−1, that is, order(S)= n/2. If b ∈

{
2,
⌊ n

2

⌋
+1
}
, the result follows from Lemmas

12 and 13. �

4. Proofs of the main results

In this section we prove Theorems 5, 6, 7, and 8. To prove the first three results,
we initially show that certain orders in each box are attained by giving examples of
bases with such orders. Then, regarding the first two theorems, we prove that the
remaining orders are not attained.

4.1. Proof of Theorem 5. In the next table, we give examples of bases attaining
the orders in the second box according to Theorem 5. The results follow from
Lemmas 13 and 15.

Second Box for Zn

n ≡ 0 mod 2 n ≡ 1 mod 2 Order(S)

S = 〈n/2〉 ∪ (1+〈n/2〉) —
⌊ n

2

⌋
−1

S = {0, 1, 2} S = {0, 1, 2}
⌊ n

2

⌋
We now assume that n ≥ 17 and n is odd, and show that there is no basis S ⊆ Zn

such that order(S)=
⌊ n

2

⌋
−1.

Assume that S ⊂ Zn is a basis such that order(S) =
⌊ n

2

⌋
−1. By Lemma 9,

|S| ≤ 3. Note that, by definition of basis, |S| ≥ 2 and, by Lemma 1, |S| 6= 2 if
order(S) 6= n−1. Thus |S| = 3. Suppose S = {0, a, b} where a, b ∈ Zn . If a had
order m 6= n, then 3≤ m <

⌊ n
2

⌋
, since n is odd. By Corollary 1, this would imply

that order(S) ≤ m+n/m−2<
⌊ n

2

⌋
−1, as n ≥ 17. Therefore, a must have order

n. Then S has the same order as a−1S = {0, 1, c} for some c ∈ Zn . If c >
⌊n

2

⌋
+1,

then S has the same order as 1−a−1S = {0, 1, d} with d ≤
⌊ n

2

⌋
+1. Thus, we can

assume that c ≤
⌊n

2

⌋
+1. Now using Corollary 4, we get order(S) 6=

⌊ n
2

⌋
−1, a

contradiction.

4.2. Proof of Theorem 6. The next table gives examples of bases attaining the
conjectured orders in the third box according to Theorem 6. The results follow
from Lemmas 13–15.
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Third Box for Zn

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3 Order(S)

S = 〈n/3〉 ∪ (1+〈n/3〉) — —
⌊ n

3

⌋
−1

S = {0, 1, 2, 3} S = {0, 1, 2, 3} —
⌊ n

3

⌋
S = {0, 1, 3} S = {0, 1, 3} S = {0, 1, 3}

⌊ n
3

⌋
+1

The fact that, for n ≥ 45, order(S) 6=
⌊n

3

⌋
−1, if n ≡ 1 mod 3, and order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
, if n ≡ 2 mod 3, follows from Lemma 18. Just note that, if

order(S) ∈
{⌊n

3

⌋
−1,

⌊ n
3

⌋}
, then, by Lemma 9, |S| ≤ 4.

The statement of the next lemma is stronger than what is needed to prove
Theorem 6. However, the techniques we developed before allowed us to get this
result, which in turn is useful in the proof of Corollary 5.

Lemma 18. Let n ≥ 45 and suppose that 3 is not a divisor of n. Let S be a basis
for Zn . If |S| ≤ 4, then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
. Moreover, if

order(S)=
⌊ n

3

⌋
, then n ≡ 1 mod 3.

Proof. Without loss of generality, assume 0∈ S. Suppose that n 6= 0 mod 3. Since S
is a basis, |S|> 1. If |S| = 2, then order(S)= n−1>

⌊n
3

⌋
. Suppose that |S| = 3 or

|S| = 4. If S has an element whose order is not 1, 2, n/2 nor n, then, by Corollary 1,
the result follows since there can’t be an element of order 3 or n/3. Thus, this
element has order ≥ 4 or ≤ n/4. Suppose that the order of the elements in S is
1, 2, n/2, or n, where 2 and n/2 only occur when n is even. If S has an element
of order 2, then the result follows from Corollary 2. If S does not contain an
element of order 2, then necessarily it contains an element of order n. Moreover,
by (1), if S has an element of order n, the basis S has the same order as some basis
of the form {0, 1, a, b}. If |S| = 3, then we can assume that S = {0, 1, a}, with
1< a≤

⌊ n
2

⌋
+1. In this case, the result follows from Corollary 4. If |S| = 4, assume

that S = {0, 1, a, b} with a ≤
⌊ n

2

⌋
+1. Since for S′ ⊂ S, order(S)≤ order(S′), we

have
order({0, 1, a, b})≤min{order({0, 1, a}), order({0, 1, b})}. (13)

Let
A1 =

{
2, 3,

⌊ n
3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
,

A2 =
{
2, 3,

⌊ n
3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
.

Note that −
⌊ n

2

⌋
∈ A2. Also, 1−

⌊n
2

⌋
≡
⌊ n

2

⌋
+1 mod n, for n even. If a /∈ A1 or

b /∈ A2 then, by Corollary 4 and taking into account (13),

order({0, 1, a, b})≤min{order({0, 1, a}), order({0, 1, b})} ≤
⌊ n

4

⌋
+2.
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Recall that order({0, 1, 1−b})= order({0, 1, b}). If a ∈ A1 and b ∈ A2, the 25 and
26→ result follows from Lemmas 22–26. �

The following result was presented in [Dukes et al. 2010]. However, the authors
leave most of the details of the proof to the reader and we do not see clearly that
the result follows from their proof. For that reason and for completeness we are
including it in this paper.

Corollary 5. Let S be a basis for Zn . Then

order(S) /∈
[⌊ n

4

⌋
+3,

⌊n
3

⌋
−2
]
.

Proof. Note that, for n < 45, the interval in the statement is empty. Assume that
n ≥ 45. Without loss of generality, suppose that 0∈ S. If S⊂Zn is a basis such that⌊ n

4

⌋
+3≤ order(S), by Lemma 9, |S| ≤ 6. Assume that n 6= 0 mod 3. If |S| = 5 or

|S| = 6, by [Bueno et al. 2009, Theorem 3.7], order(S) ≤
⌊ n

4

⌋
+1. If |S| ≤ 4, by

Lemma 18, order(S)≤
⌊ n

4

⌋
+2 or order(S)≥

⌊ n
3

⌋
.

Now assume that n ≡ 0 mod 3. If |S| = 3, the result follows from Corollary 4.
Suppose that |S| ∈ {4, 5, 6}. If

⌊ n
4

⌋
+3 ≤ order(S), by Corollary 1, the order of

the elements in S must be 1, 2, 3, n/2, n/3, or n. First note that S contains, or has
the same order as a basis which contains, an element of order 2, 3 or n. In fact, if
|S| = 4 and S does not have an element of order 2, 3 or n, then S has an element of
order n/2 and an element of order n/3. Hence, {0, 2a, 3b} ⊆ S for some a, b ∈ Zn .
Since S is a basis, 3b−2a is not an element of order n/2 nor n/3 as, otherwise, 6
would divide 2a or 3b and all elements of S would be multiples of 2 or multiples
of 3. Thus, S has the same order as S−2a, which has an element of order 2, 3 or
n. A similar argument can be applied if |S| = 5 or |S| = 6. Thus, assume that S
contains an element of order 2, 3 or n. If S contains an element of order 2 or 3, the
result follows from Corollaries 2 and 3. Now suppose that S contains an element
of order n and no elements of order 2 and 3. If either n/3+1 ∈ S or n is even and
n/2+1 ∈ S, then S can be transformed into a basis with the same order containing
zero and an element of order 2 or 3 and we reduce the problem to the previous case.
Let

A1 =
{
2, 3,

⌊n
2

⌋
,
⌊n

2

⌋
+1
}
,

A2 =
{
2, 3,

⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−2,−1

}
.

Assume that S = {0, 1, a, b, c, d}, with a ≤
⌊ n

2

⌋
+1 and b = c = d if |S| = 4, and

c= d if |S| = 5. Note that if S′ ⊂ S then order(S)≤ order(S′). If a /∈ A1 or, b,c, or
d /∈ A2 the result follows from Corollary 4. Suppose that a ∈ A1, b, c, d ∈ A2 and
if a, b, c or d ∈

{⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊ n
2

⌋}
then n is odd. If |S| = 4, the result follows

from Lemmas 22–26. If |S| = 5 or |S| = 6 the result follows from the Remark on
page 204 by noting that S has a subset of cardinality 4 containing 0 and 1 which is
not one of the exceptional bases and, therefore, order(S)≤

⌊n
4

⌋
+2. �
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4.3. Proof of Theorem 7. The next table gives examples of bases attaining the
orders in the fourth box of Zn claimed in Theorem 7. The results follow from
Lemmas 12–15.

Fourth Box for Zn

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4 Order(S)

〈n/4〉 ∪ (1+〈n/4〉) — — —
⌊ n

4

⌋
−1

{0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
⋃2

i=0(i+〈n/2〉) —
⌊ n

4

⌋
{0, 1, 2, 4} {0, 1, 2, 4} {0, 1, 2, 4} {0,1,2,4}

⌊ n
4

⌋
+1{

0, 1, n
4+1

} {
0, 1,

⌊ n
4

⌋
+1
} {

0, 1,
⌊ n

4

⌋
+1
} {

0, 1,
⌊ n

4

⌋
+1
} ⌊ n

4

⌋
+2

4.4. Proof of Theorem 8. If n ≤ 4, the result follows from Table 1. Assume n ≥ 5.
Notice that Zn is always a basis for Zn , which implies that 1 ∈ En . Consider the set
S= {0, 1, 2, . . . , r−1, r+1} with 2≤ r ≤ n−2. By Lemma 14, order(S)=

⌈ n+1
r+1

⌉
.

For all r ≥
√

n−1

n+1
r+1
−

n+1
r+2

=
n+1

(r+1)(r+2)
=

n+1
r2+3r+2

≤
n+1

n+
√

n
< 1.

It can be easily seen that, for positive real numbers a and b, dae−dbe ≤ da−be.
Thus,

⌈ n+1
r+1

⌉
−
⌈ n+1

r+2

⌉
≤ 1 for all r ≥

√
n−1, which implies that all integers from 2

to ⌈
n+1⌈√

n
⌉
−1+1

⌉

are attained orders. But
⌈

n+1⌈√
n
⌉⌉≥ ⌈ n⌈√

n
⌉⌉≥ ⌊√n

⌋
and the result follows.

Appendix: Gallery of bases and their orders

Here we provide the order of some particular bases that are necessary to prove the
main results in this paper. We do not include all the proofs since many of them are
similar.

Lemma 19. For n ≥ 6, order({0, 1, 4})=
⌊ n

4

⌋
+2.

Proof. Let S = {0, 1, 4}. It can be shown by induction on k that in Z, for all k ≥ 2,

kS = [0, 4k−6] ∪ [4k−4, 4k−3] ∪ {4k}.

Let q =
⌊n

4

⌋
. Then

(q+1)S = [0, 4q−2] ∪ [4q, 4q+1] ∪ {4q+4}

and [0, 4q+2] ⊆ (q+2)S. Note that 4q+4 6= 4q−1 (mod n), since n ≥ 6. Thus,
(q+1)S 6= Zn (mod n). On the other hand, 4q+2≥ n−1. The result follows. �
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Lemma 20. For n ≥ 6, order({0, 2, 5})≤
⌊ n

5

⌋
+3.

Lemma 21. For n ≥ 4, order({0, 2, 3, 4})=
⌊n

4

⌋
+1.

Bases of the form {0, 1, 2, a}

Lemma 22. Let n≥21. Let a∈
{
3,
⌊n

3

⌋
+1,

⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S = {0, 1, 2, a}. Then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Proof. Case 1: If a ∈ {3,−1}, then the basis S has the same order as {0, 1, 2, 3}
and the result follows by Lemma 13.

Case 2: If a =−2, then S has the same order as 2+S = {0, 2, 3, 4} and the result
follows from Lemma 21.

Case 3: Suppose that a ∈
{⌊ n

2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋}
. Assume n is even. Note that

1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+1. In this case, S contains an element of order 2 or it has the same

order as a basis containing 0 and an element of order 2. Thus, the result follows
from Corollary 2. Assume n is odd. Then

order
({

0, 1, 2,
⌊ n

2

⌋})
= order({0, 1, 3, 5})≤ order({0, 1, 5}),

order
({

0, 1, 2,
⌊n

2

⌋
+1
})
= order({0, 1, 2, 4})≤ order({0, 1, 4}).

In both cases, order(S)≤
⌊ n

4

⌋
+2 by Corollary 4. Also,

order
({

0, 1, 2,
⌊ n

2

⌋
+2
})
= order({0, 2, 3, 4})≤

⌊ n
4

⌋
+2

by Lemma 21. Note that 1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+2.

Case 4: Suppose that a ∈
{
−
⌊n

3

⌋
,
⌊ n

3

⌋
+1
}
. If n ≡ 0 mod 3, then S contains an

element of order 3 or it has the same order as a basis containing 0 and an element of
order 3. Thus, the result follows from Corollary 3. Let n ≡ 1 mod 3. If a =−

⌊ n
3

⌋
,

then 3∗S = {0, 1, 3, 6} and

order(S)= order(3∗S)≤ order({0, 1, 6});

if a =
⌊n

3

⌋
+1, then 3∗S−2= {0, 1, 4,−2} and

order(S)= order(3∗S−2)≤ order({0, 1, 4}).

In both cases, order(S)≤
⌊ n

4

⌋
+2 by Corollary 4. If n ≡ 2 mod 3, then

order
({

0, 1, 2,−
⌊ n

3

⌋})
= order({0, 1, 4,−2}),

order
({

0, 1, 2,
⌊ n

3

⌋
+1
})
= order({0, 1, 3, 6}),

and the result follows as before. �
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Bases of the form {0, 1, 3, a}

Lemma 23. Let n ≥ 30. Let a ∈
{⌊n

3

⌋
+1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S = {0, 1, 3, a}. Then order(S) ≤

⌊ n
4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Bases of the form
{

0, 1,
⌊ n

3
⌋
+1, a

}
Lemma 24. Let n ≥ 30. Let a ∈

{⌊n
2

⌋
,
⌊n

2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and

S =
{
0, 1,

⌊ n
3

⌋
+1, a

}
. Then order(S)≤

⌊ n
4

⌋
+2 or order(S)≥

⌊ n
3

⌋
−1. Moreover,

if n ≡ 1 mod 3, then order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈{⌊ n

3

⌋
−1,

⌊ n
3

⌋}
.

Bases of the form
{

0, 1,
⌊ n

2
⌋
, a

}
Lemma 25. Let n ≥ 22. Let a ∈

{⌊ n
2

⌋
+1, 1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S ={

0, 1,
⌊ n

2

⌋
, a
}
. Then order(S)≤

⌊n
4

⌋
+2 or order(S)≥

⌊n
3

⌋
−1. Moreover, if n ≡ 1

mod 3, then order(S) 6=
⌊n

3

⌋
−1 and if n≡ 2 mod 3, then order(S) /∈

{⌊ n
3

⌋
−1,

⌊ n
3

⌋}
.

Proof. If n is even, then S contains an element of order 2 and the result follows
from Corollary 2. Now suppose that n is odd. Note that 2∗S+1= {0, 1, 3, 2a+1}.

For a =−1, order(S)= order({0, 1, 3,−1})= order({0, 1, 2, 4})≤
⌊n

4

⌋
+2, by

Corollary 4.
For a =−

⌊n
3

⌋
and n ≡ 0 mod 3, S contains an element of order 3 and the result

follows from Corollary 4.
For a =

⌊n
2

⌋
+1, order(S)= order(2∗S+1)= {0, 1, 2, 3} and the result follows

from Lemma 13.
Now suppose that a does not satisfy the previous cases. We have order(S) =

order({0, 1, 3, b}), with b∈
{
4,
⌊ n

3

⌋
+t+1,−3

}
, where 0< t =n−3

⌊ n
3

⌋
≤2. Thus,

order(S)≤ order({0, 1, b})≤
⌊ n

4

⌋
+2 by Corollary 4. �

Bases of the form
{

0, 1,
⌊ n

2
⌋
+1, a

}
Lemma 26. Let n ≥ 21, a ∈

{
1−

⌊ n
2

⌋
,−
⌊ n

3

⌋
,−2,−1

}
and S =

{
0, 1,

⌊n
2

⌋
+1, a

}
.

Then order(S) ≤
⌊n

4

⌋
+2 or order(S) ≥

⌊ n
3

⌋
−1. Moreover, if n ≡ 1 mod 3, then

order(S) 6=
⌊ n

3

⌋
−1 and if n ≡ 2 mod 3, then order(S) /∈

{⌊ n
3

⌋
−1,

⌊ n
3

⌋}
.

Proof. If n is even, then S has the same order as S−1, which contains 0 and an
element of order 2. Thus, the result follows from Corollary 2. Now suppose that n
is odd. Then order(S)= order({0, 1, 2, 2a}).

If a = 1−
⌊ n

2

⌋
=
⌊ n

2

⌋
+2, then 2a = 3 and the result follows from Lemma 13.
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If a =−2, then 2a =−4 and, by Corollary 4,

order(S)≤ order({0, 1,−4})= order({0, 1, 5})≤
⌊ n

4

⌋
+2.

If a = −1, then 2a = −2 and, by Lemma 21, order(S) = order({0, 2, 3, 4}) ≤⌊ n
4

⌋
+2.

Suppose that a = −
⌊n

3

⌋
. If n ≡ 0 mod 3, then S contains 0 and an element

of order 3 and the result follows from Corollary 3. If n ≡ 1 mod 3, then S ={
0, 1, 2,

⌊ n
3

⌋
+1
}

and the result follows from Lemma 22. If n ≡ 2 mod 3, then, by
Corollary 4,

order(S)= order
({

0, 1, 2,
⌊ n

3

⌋
+2
})
≤ order

({
0, 1,

⌊ n
3

⌋
+2
})
≤
⌊ n

4

⌋
+2. �

Remark. Suppose that S = {0, 1, a, b}, with a ∈
{
2, 3,

⌊ n
2

⌋
,
⌊n

2

⌋
+1
}

and b ∈{
2, 3,

⌊n
2

⌋
,
⌊ n

2

⌋
+1, 1−

⌊n
2

⌋
,−2,−1

}
, where n is odd if a or b belong to the set{⌊ n

2

⌋
,
⌊ n

2

⌋
+1,−

⌊ n
2

⌋}
. From the proofs of Lemmas 22–26, we get that order(S)≤⌊ n

4

⌋
+2 if S is not one of the next exceptional bases:{

0, 1, 2, 3
}
,

{
0, 1, 2,−1

}
,

{
0, 1,

⌊ n
2

⌋
,
⌊ n

2

⌋
+1
}
,

{
0, 1,

⌊ n
2

⌋
+1, 1−

⌊n
2

⌋}
.

Note that all of them have the same order as {0, 1, 2, 3}.
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