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We describe a new method for computing the graph of commutation classes of
double wiring diagrams. Using these methods we compute the graph for five
strings or less which allows us to confirm a positivity conjecture of Fomin and
Zelevinsky when n ≤ 4.

1. Introduction

In the theory of cluster algebras, the term Laurent phenomenon describes the
mysterious instances in which recursively defined rational functions simplify to
Laurent polynomials [Fomin and Zelevinsky 2002]. In many instances of the
Laurent phenomenon, it is conjectured that the coefficients of the resulting Laurent
polynomials are all positive.

One of the first examples of the Laurent phenomenon was found by Fomin and
Zelevinsky [2000] when studying the relationships among minors of an n×n matrix
with real coefficients. In this work they showed that every minor of a matrix was
positive if and only if a particular subset of minors known as chamber minors was
positive. These chamber minors were indexed by regions of a combinatorial object
known as a double wiring diagram. Further, the relationships among minors were
described in terms of a graph that describes the relationships among classes of
double wiring diagrams.

As an example of the Laurent phenomenon, Fomin and Zelevinsky proved that
every minor of an n × n matrix can be written as a Laurent polynomial in the
chamber minors. They stated the following conjecture which remains open:

Conjecture 1.1 [Fomin and Zelevinsky 2000]. For any n-string double wiring
diagram w, every minor of an n× n matrix can be written as a Laurent polynomial
with nonnegative coefficients in terms of the chamber minors of w.

In this paper we confirm the conjecture for n ≤ 4. To do so, we develop a new
method of computing the graph of relationships among classes of double wiring
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diagrams. We then use an original program for computing this graph based on
this method, along with the algebra software Fermat [Lewis 2007] to compute the
aforementioned Laurent polynomials.

In Section 2 of this paper we define commutation classes of double wiring
diagrams and a graph which displays the relationships among these classes. In
Section 3 we describe a new quiver representation of the commutation classes. This
representation greatly simplifies the computation of the associated graph which we
describe in Section 4. Finally, we return in Section 5 to the Laurent phenomenon
and use our new computations to confirm the positivity conjecture for n ≤ 4.

2. Double wiring diagrams

Fomin and Zelevinsky [2000] define an n-stringed double wiring diagram as two
sets of n piecewise linear lines (black and gray) such that each line intersects every
other line of the same color exactly once. We number gray lines from 1 to n with 1
on the top left and n on the bottom left. The black lines are labeled in the reverse
order. In addition, for each chamber of the double wiring diagram we define the
chamber label to be a pair of subsets (g, b) where g (respectively b) is the subset
of {1, 2, . . . , n} identifying the gray (respectively black) strings that pass below the
chamber. See Figure 1 for an example of a double wiring diagram with the chamber
labels.

Figure 1. A four string double wiring diagram with chamber labels.

It is possible that slightly different wiring diagrams yield the same collection
of chamber labels. Following Fomin and Zelevinsky, we consider two wiring
diagrams that share the same collection of chamber labels isotopic. For single
wiring diagrams, such collections of diagrams are called commutation classes,
which have been studied in [Bédard 1999; Carter and Marsh 2000].

Definition 2.1. A commutation class of double wiring diagrams is the collection
of all double wiring diagrams that share the same collection of chamber labels.

Any two commutation classes of double wiring diagrams can be linked by a
sequence of the braid moves pictured in Figure 2 [Fomin and Zelevinsky 2000].
Note that in each exchange only one chamber label changes. In a braid move from
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wiring diagram w to wiring diagram w′, we call the chamber label of w that changes
under the braid move, the center of the braid move. A braid move is centered at a
chamber label if that label changes under the braid move.

Figure 2. Braid moves. Left: 2-move; right: 3-move.

Since any two commutation classes of wiring diagrams can be connected by
a sequence of braid moves, it is natural to construct a graph describing these
relationships.

Definition 2.2. The graph of commutation classes of wiring diagrams, 8n , has a
unique vertex for every commutation class of double wiring diagram with n strings.
Two vertices are connected by an edge if their wiring diagrams differ by a single
braid move.

Fomin and Zelevinsky [2000] prove that 8n is a finite connected graph and
compute 83. In this paper we present a method for computing 8n and use it to
construct 84 and 85. We use these calculations to verify a positivity conjecture of
Fomin and Zelevinsky when n ≤ 4.

3. Using quivers to compute 8n

We have found that it is easier to compute 8n from the relationships among chamber
labels than through the graphical structure of the wiring diagrams. This avoids the
difficulty of keeping track of which wiring diagrams are in the same commutation
class.

We introduce a quiver that describes the relevant relationships among the chamber
labels of the double wiring diagram. This quiver is similar to a dual graph. The dual
graph itself, however, is not an adequate data structure, as double wiring diagrams
that are in the same commutation class may have differing dual graph structures.

Definition 3.1. For any double wiring diagram ω, define the quiver Q(w) with
vertices corresponding to chamber labels and an arrow from (g, b) to (g′, b′) if
g′ = g ∪ {g j } and b′ = b∪ {bk} for g j , bk ∈ {1, 2, . . . , n}. We label the arrows of
the quiver with the pair of numbers (g j , bk). We refer to g j (respectively bk) as the
gray (respectively black) labels of the arrow.

Figure 3 shows Q(w) for the wiring diagram pictured in Figure 1. To keep track
of the geometric relationship between the wiring diagram and the quiver we define
the height and position of a vertex of a quiver, which roughly describe the location
in the double wiring diagram of the corresponding chamber label.
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Figure 3. Quiver diagram.

Definition 3.2. Let v be a vertex of Q(w) corresponding to the chamber label
(g, b). We define the height of v to be the cardinality of g; h(v)= |g|. We define
the position of v denoted p(v)=

∑
x∈b x −

∑
y∈g y.

Notice that the height increases the higher up one moves in the diagram while
the position increases from left to right.

In order to construct 8n one needs to be able to identify the edges that are
incident to a given vertex. This information is local in nature so we introduce
language that allows us to discuss pieces of Q(w).

Definition 3.3. A subquiver of Q(w) is any subset of the vertices of Q(w) together
with a (possibly empty) set of arrows whose corresponding vertices are in the subset.

The following definitions provide the language needed to discuss the subquivers
that are fundamental to the identifying braid moves.

Definition 3.4. A subquiver S of Q(w) is complete if it contains every arrow of Q
that connects two vertices of S.

Definition 3.5. A subquiver S of Q(w) is full if, given that (g1, b1) and (g2, b2) are
elements of S with height h, S contains the vertices corresponding to all chamber
labels with height h and position between the positions of (g1, b1) and (g2, b2).

Notice that complete full subquivers completely determine a portion of a wiring
diagram without missing arrows or vertices.

Using the language of complete full subquivers we can describe all of the
edges that are incident to a vertex of 8n . Recall, each edge of 8n corresponds
to a particular braid move centered at a particular chamber of the double wiring
diagram.

Theorem 3.6. There exists a 3-move centered at label (g, b) if and only if Q(w)

contains a complete, full subquiver of one of the two types shown in Figure 4.
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Figure 4. Subquivers for 3-move.

Proof. Assume a 3-move exists. Then there must be a region of the wiring diagram
isomorphic to Figure 2 (right). Constructing the subquiver from this diagram yields
Figure 4.

For the other direction, assume Q(w) has a compete full subquiver isomorphic
to Figure 4 (left). We examine the possible gray labels for this subquiver. Since
the bottom vertex is connected to the top by a path of length three, we know that
only three distinct edge labels may appear in this subquiver. We label the leftmost
path from the bottom to the top that passes through (g, b), x , y, z as pictured in
Figure 5.

For each four-cycle in Figure 5 only two distinct edge labels may be used since
the bottom and top vertices are connected by a path of length two. This limits the
potential labelings to those in Figure 6. The case of picture d) in the figure cannot
exist because strings z and y are exchanged twice, which contradicts the definition
of a double wiring diagram.

Figure 5. Grey labels for subquiver.

Figure 6. Possible labeled subquivers.
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Figure 7. Invalid quiver labeling.

Repeat this argument for the black strings and label those cases A through H .
We now determine which gray and black cases can be paired together. Since the
labels must be distinct, the only potential pairs are (a, H), (b, G) and (c, F), and
their opposites (h, A), (g, B) and ( f, C).

If we draw a subquiver with the labels in the case (b, G), as in Figure 7, we
recover an extra arrow, which contradicts the hypothesis that the subquiver was
complete. The pairs (c, F), (g, B) and ( f, C) are symmetric to (b, G), so they are
also eliminated. This leaves only (a, H) and (h, A) as possible labelings.

By symmetry of the labelings we may assume the edge labels are of type (h, A).
Since this subquiver is full, there are no missing vertices. This means that changes in
chamber labels of the same cardinality indicate a unique braid crossing as pictured
in Figure 8 (left). No other crossings may occur in this region because the quiver is
complete. Therefore, the strings must connect without creating any other crossings.
This yields the 3-move pictured in Figure 8 (right). The proof for Figure 4 (right)
follows the same argument with reflected labels. �

Theorem 3.7. There exists a 2-move centered at label (g, b) if and only if Q(w)

contains the full subquiver shown in Figure 9.

Proof. Assume a 2-move exists. Then there must be a region of the wiring diagram
isomorphic to Figure 2 (left). Constructing the quiver from this diagram yields the
subquiver in Figure 9.

Figure 8. Reconstructed 3-move.
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Figure 9. Subquiver for 2-move.

Now assume Q(w) contains the full subquiver in Figure 9. We examine the
possible gray labels for the subquiver. Label the arrows to and from (g, b) as x
and y. Since there is a path from the bottom vertex to the top vertex of length two,
all arrows in the subquiver must be labeled x or y. Figure 10 shows the possible
labelings. The case corresponding to picture d) can be eliminated because it would
require strings x and y to be exchanged twice.

Figure 10. Quiver labelings.

We construct a similar pattern of possibilities for the black strings by labeling
the arrows with X and Y . We need to determine which gray and black cases can be
paired together. Since all of the labelings are distinct, the only potential pairs of
cases are (b, C) and (c, B); see Figure 11.

Figure 11. Potential quiver labelings.

As the labelings are symmetric, we can assume without loss of generality that
the diagram has edge labels of type (b, C). Since this subquiver is full there are no
missing vertices. This means that changes in chamber labels of the same height
indicate a unique braid crossing as pictured in Figure 12 (left). Since no other
crossings may occur in this region we connect the strings without creating any other
crossings. Doing so yields the 2-move pictured in Figure 12 (right). �
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Figure 12. Reconstructed 2-move.

4. Describing 8n

Theorems 3.6 and 3.7 allow for the computation of the graph 8n for any n using
the following algorithm:

(1) Choose an n-stringed double wiring diagram w with quiver Q(w).

(2) Using Theorems 3.6 and 3.7 find and connect all vertices incident to the vertex
corresponding to w.

(3) Repeat the previous step with the new set of vertices.

(4) Repeat this process until no new vertices can be added.

Since 8n is finite and connected this process will terminate and compute the entire
graph. This process has been implemented in C++ using algorithms available at
[Dukes 2011].

The smallest graph 82 consists of two vertices connected by an edge. The graph
of 83 first appeared in [Fomin and Zelevinsky 2000]. Figure 13 shows a new

Figure 13. 83 with Hamiltonian cycle highlighted.
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82 83 84 85

Vertices 2 34 4894 5520372
Edges 1 120 33300 60930112

Table 1. 8n edge and vertex data.

1 2 3 4 5 6 7 8 9

82 2
83 16 18
84 2 522 1362 1754 1054 200

Table 2. Number of vertices of given degree for 82 through 84.

6 7 8 9 10 11
85 84 28584 198596 632028 1165732 1402756

12 13 14 15 16
85 1165888 651188 227520 44452 3544

Table 3. Number of vertices of given degree for 85.

representation of 83 which indicates the presence of a Hamiltonian path. Tables 1,
2 and 3 summarize information about 8n for n ≤ 5.

5. Total positivity conjecture

With these explicit computations of 8n in hand, we return to the positivity conjecture
of Fomin and Zelevinsky described in the introduction. We briefly review the
setup of their work here. See [Fomin and Zelevinsky 2000] for a more complete
description.

Definition 5.1. An n× n matrix M with entries in R is called totally positive if all
minors of M are positive.

Definition 5.2 (Fomin and Zelevinsky). Let w be an n-stringed double wiring
diagram. For each chamber label (b, g) of w we define the minor 1g,b to be the
determinant of the matrix with rows of M corresponding to g and columns of M
corresponding to b. We call the collection of all such minors the chamber minors
of w.

Fomin and Zelevinsky [2000] proved that for any commutation class of double
wiring diagrams w, a matrix M is totally positive if and only if all of its chamber
minors are positive. In addition they conjectured that every minor could be written
as a Laurent polynomial in the chamber minors with nonnegative coefficients.
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Using our computations from Section 3, we can confirm this conjecture for n≤ 4.

Theorem 5.3. For n ≤ 4 and any n-stringed double wiring diagram w, every
minor of an n× n matrix can be written as a Laurent polynomial with nonnegative
coefficients in terms of the chamber minors of w.

Proof. Fomin and Zelevinsky [2000] show that if w and w′ are linked by a braid
move as pictured in Figure 2, then their chamber minors satisfy the equation

AD+ BC = XY. (1)

Using the program Fermat [Lewis 2007] and a C++ program written by the first
author, we verify Theorem 5.3 using the following algorithm:

(1) For each vertex v ∈8n and minor 1, find a path from v to a vertex v′ such
that 1 is a chamber minor of v′. This is possible since 8n is connected and
every minor appears as the chamber minor for some double wiring diagram.

(2) At each edge of this path use Fermat to compute the new minor as a Laurent
polynomial in terms of the previous minors using Equation (1). The Laurent
theorem [Fomin and Zelevinsky 1999] guarantees the result will be a Laurent
polynomial in the chamber minors of v. Repeat the process until 1 is written
as a Laurent polynomial in terms of the chamber minors of v.

(3) Verify that the corresponding Laurent polynomial has all positive coefficients.

The relevant code and data files can be found in [Dukes 2011]. �

Example 5.4. In this example we demonstrate that 114,12 can be written as a
Laurent polynomial in the chamber minors of w as in the wiring diagram in Figure 1
with nonnegative coefficients. First, the diagrams in Figure 14 determine a path in
84 from w to a vertex corresponding to a diagram with 114,12 as a chamber minor.

Each exchange along this path introduces a new chamber minor. Using (1), we
compute the new chamber minor as a Laurent polynomial in terms of the chamber
minors of w. The results of the Fermat computations of these Laurent polynomials
are listed below.

134,13 =
134,12113,13+1134,12313,1

113,12

=1134,1231
−1
13,1213,1+134,121

−1
13,12113,13,

114,13 =
11,1134,13+14,1113,13

13,1

=1134,1231
−1
13,12+134,121

−1
13,12113,131

−1
3,111,1+113,1314,11

−1
3,1,

114,12 =
114,13134,12+1134,12314,1

134,13
=134,121

−1
3,111,1+113,1214,11

−1
3,1.
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Figure 14. Path to a vertex with 114,12 as a chamber minor.

It suffices to observe that the coefficients in the expression of 114,12 in terms of the
chamber minors of w, are all positive.

Remark 5.5. The example above is not indicative of the complexity of the com-
putations. In 84 the Laurent polynomials in the solution frequently had over 100
terms.

Although we were able to compute 85 we were unable to confirm the conjecture
for n = 5 because of number of computations required. There are 34× 14= 476
pairs of vertices and chamber minors in 83, and 62 × 4,894 = 303,420 such
combinations in 84. To confirm the conjecture with brute force for n = 5 would
require 242× 5,520,372= 1,335,930,024 computations each involving extremely
large Laurent polynomials.
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