\bullet

 invelve

 invelve} a journal of mathematics

A two-step conditionally bounded numerical integrator to approximate some traveling-wave solutions of a diffusion-reaction equation

Siegfried Macías and Jorge E. Macías-Díaz

A two-step conditionally bounded numerical integrator to approximate some traveling-wave solutions of a diffusion-reaction equation

Siegfried Macías and Jorge E. Macías-Díaz
(Communicated by Emil Minchev)

Abstract

We develop a finite-difference scheme to approximate the bounded solutions of the classical Fisher-Kolmogorov-Petrovsky-Piskunov equation from population dynamics, in which the nonlinear reaction term assumes a generalized logistic form. Historically, the existence of wave-front solutions for this model is a wellknown fact; more generally, the existence of solutions of this equation which are bounded between 0 and 1 at all time, is likewise known, whence the need to develop numerical methods that guarantee the positivity and the boundedness of such solutions follows necessarily. The method is implicit, relatively easy to implement, and is capable of preserving the positivity and the boundedness of the new approximations under a simple parameter constraint. The proof of the most important properties of the scheme is carried out with the help of the theory of M-matrices. Finally, the technique is tested against some traveling-wave solutions of the model under investigation; the results evince the fact that the method performs well in the cases considered.

1. Introduction

R. A. Fisher [1937] and A. Kolmogorov, I. Petrovsky and N. Piskunov [Kolmogorov et al. 1937] were the first to investigate the advance wave of mutant genes which are advantageous to some populations distributed on linear habitats. The model that they investigated is known as the Fisher-Kolmogorov-Petrovsky-Piskunov equation, the Fisher-KPP equation, or simply Fisher's equation, and it is one of the simplest diffusive equations with nonlinear reaction. This parabolic partial differential equation is a useful model in the description of the process of epidermal wound healing [Sherratt and Murray 1990], in the theory of the electrodynamics of

[^0]semiconductors [Wallace 1984], in the investigation of excitons [Rashba and Sturge 1982], and as a model for neutron flux in nuclear reactor kinetics [Kastenberg and Chambré 1968].

The Fisher-KPP equation, like many other equations in mathematical physics, is well-known to possess traveling-wave solutions [Wang 1988]. The wave fronts connect the two stationary solutions, 0 and 1 in the equation's nondimensionalized version, via a monotone solution bounded within $(0,1)$ at all times. The existence of other bounded solutions for this model, apart from traveling waves, is also a standard result in the specialized literature [Wazwaz and Gorguis 2004]. This and the fact that the Fisher-KPP equation is a model for which there is no analytic solution for every admissible set of initial conditions justify interest in the design of numerical techniques preserving the boundedness of the solutions.

The design of numerical methods that preserve several physical or mathematical properties of the phenomena that they describe is a fruitful avenue of research in scientific computation. Thus, from the physical point of view, several methods have been proposed to approximate the solution and the energy dynamics of conservative [Furihata 2001] and dissipative [Furihata 1999] systems. From the mathematical point of view, the preservation of conditions such as symmetry, monotonicity, positivity and boundedness is sometimes a highly desirable characteristic in a numerical integrator. In fact, several numerical methods have been designed with these conditions in mind, particularly in those cases when the variable of interest is measured in an absolute scale. In these situations, the conditions of positivity and boundedness of solutions, which are typical in the study of some traveling waves, arise as constraints in the meaningfulness of the numerical results.

In this article we develop a finite-difference scheme to approximate bounded positive solutions to the Fisher-KPP equation, and test our method against known traveling-wave solutions. The main properties of our technique are consequences of the theory of M-matrices [Fujimoto and Ranade 2004], which are nonsingular, square matrices with the property that their inverses have only positive entries.

This work is organized as follows: In Section 2, we introduce the quantitative model under investigation (namely, the Fisher-KPP equation from population dynamics), and a family of traveling-wave solutions used in the sequel as comparison paradigms. Section 3 presents the numerical method employed to approximate solutions of the problem under investigation. There we prove our main result, which gives parameter conditions under which the method is able to preserve positivity and boundedness of the solutions of the Fisher-KPP model. Section 4 presents numerical evidence that the method is capable of preserving the properties mentioned above when the conditions of our main result are satisfied. We make some concluding remarks in Section 5.

2. The Fisher-KPP equation

Let p be a positive integer. Let \mathbb{R}^{+}represent the set of nonnegative numbers, and let $I=[a, b]$ be a closed and bounded interval of \mathbb{R}. Let u be a real function defined on $I \times \mathbb{R}^{+}$which, for practical purposes, is supposed to be twice differentiable in the interior of its domain. In this work, we approximate traveling-wave solutions of the classical Fisher-KPP equation, which, in nondimensional form, is the nonlinear, parabolic partial differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u f(u) \tag{1}
\end{equation*}
$$

where the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the generalized logistic form

$$
\begin{equation*}
f(u)=1-u^{p} . \tag{2}
\end{equation*}
$$

As mentioned in the Introduction, this equation was first studied in the context of the dynamics of populations in a one-dimensional, unbounded habitat. (In the original studies, the exponent p was equal to 1.) For every real constant C, the functions

$$
\begin{equation*}
u(x, t)=\left\{\frac{1}{2} \tanh \left[-\frac{p}{2 \sqrt{2 p+4}}\left(x-\frac{p+4}{\sqrt{2 p+4}} t\right)+\frac{C}{2}\right]+\frac{1}{2}\right\}^{2 / p} \tag{3}
\end{equation*}
$$

are traveling wave solutions to (1), bounded in the interval $(0,1)$, and connecting the two constant solutions $u=0$ and $u=1$ (see [Wang 1988]). These solutions will be employed for comparison purposes in Section 4.

3. Numerical method

For the discretization, we consider a uniform partition $a=x_{0}<x_{1}<\cdots<x_{N}=b$ of the interval I and a uniform partition $0=t_{0}<t_{1}<\cdots<t_{M}=T$ of the time interval $[0, T]$ over which we will compute approximate solutions of (1). We let u_{n}^{k} represent the approximation to the exact value of $u\left(x_{n}, t_{k}\right)$. For convenience, let $\Delta x=(b-a) / N$ and $\Delta t=T / M$, and consider the standard linear operators

$$
\begin{equation*}
\delta_{t} u_{n}^{k}=\frac{u_{n}^{k+1}-u_{n}^{k}}{\Delta t} \tag{4}
\end{equation*}
$$

defined for every $n \in\{0,1, \ldots, N\}$ and every $k \in\{0,1, \ldots, M-1\}$, and

$$
\begin{equation*}
\delta_{x}^{2} u_{n}^{k}=\frac{u_{n+1}^{k}-2 u_{n}^{k}+u_{n-1}^{k}}{(\Delta x)^{2}} \tag{5}
\end{equation*}
$$

defined for every $n \in\{1,2, \ldots, N-1\}$ and every $k \in\{0,1, \ldots, M\}$. Let $n \in$ $\{1,2, \ldots, N-1\}$ and $k \in\{0,1, \ldots, M-1\}$. With this notation at hand, we
approximate the exact solution of u at $\left(x_{n}, t_{k}\right)$ through the nonlinear difference equation

$$
\begin{equation*}
\delta_{t} u_{n}^{k}=\delta_{x}^{2} u_{n}^{k+1}+u_{n}^{k+1} f\left(u_{n}^{k}\right) \tag{6}
\end{equation*}
$$

Clearly, in order to approximate solutions of (1) using the numerical method (6), appropriate initial and boundary conditions must be imposed in both the continuous and the discrete scenarios. In the present work, we will consider an initial profile of the form $u(x, 0)=\phi(x)$ for every $x \in I$, a condition that translates to the discrete scene into the constraint $u_{n}^{0}=\phi\left(x_{n}\right)$, for $n \in\{0,1, \ldots, N\}$. Similarly, we will consider boundary conditions of the form $u(a, t)=g(t)$ and $u(b, t)=h(t)$ for every $t \in[0, T]$, which translate, respectively, as $u_{0}^{k}=g\left(t_{k}\right)$ and $u_{N}^{k}=h\left(t_{k}\right)$, for every $k \in\{0,1, \ldots, M\}$. With these conventions, the finite-difference method (6) may be rewritten in vector form as the equation

$$
\begin{equation*}
A_{k} \boldsymbol{u}^{k+1}=\boldsymbol{v}^{k} \quad \text { for } k \in\{0,1, \ldots, M-1\} \tag{7}
\end{equation*}
$$

where \boldsymbol{v}^{k} is the $(N+1)$-dimensional real vector

$$
\begin{equation*}
\boldsymbol{v}^{k}=\left(g\left(t_{k+1}\right), u_{1}^{k}, \ldots, u_{N-1}^{k}, h\left(t_{k+1}\right)\right)^{t} \tag{8}
\end{equation*}
$$

for $k \in\{0,1, \ldots, M\}$, and A is the matrix of size $(N+1) \times(N+1)$ given by

$$
A_{k}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \tag{9}\\
-R & a_{1}^{k} & -R & 0 & \cdots & 0 & 0 & 0 \\
0 & -R & a_{2}^{k} & -R & \cdots & 0 & 0 & 0 \\
0 & 0 & -R & a_{3}^{k} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a_{N-2}^{k} & -R & 0 \\
0 & 0 & 0 & 0 & \cdots & -R & a_{N-1}^{k} & -R \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right) .
$$

Here,

$$
\begin{align*}
R & =\frac{\Delta t}{(\Delta x)^{2}} \tag{10}\\
a_{n}^{k} & =1+2 R-f\left(u_{n}^{k}\right) \Delta t \quad \text { for } n \in\{1,2, \ldots, N-1\} \tag{11}
\end{align*}
$$

The forward-difference stencil of our method is depicted in Figure 1. The method is clearly implicit and, after appropriate boundary conditions are specified at the endpoints of I, it only requires of an initial profile \boldsymbol{u}^{0} in order to compute the subsequent approximations. Note also that, if f were a constant function, the matrix A_{k} would be a constant matrix A, and the approximation at time k would be given by $A^{k} \boldsymbol{u}^{k}=\boldsymbol{u}^{0}$.

We now establish conditions under which the finite-difference method (6) pre-

Figure 1. Forward-difference stencil of the finite-difference scheme (6). The black circle represents the known approximation to the exact solutions at the time t_{k}, and the crosses denote the unknown, new approximations at the time t_{k+1}.
serves the boundedness and the positivity of the solutions of (1), and it makes use of the nonsingularity properties of M-matrices [Fujimoto and Ranade 2004].

Proposition 1. Let $k \in\{0,1, \ldots, M-1\}$, let p be equal to 1 , and suppose that all the components of \boldsymbol{v}^{k} are numbers in $(0,1)$. If $\Delta t<1$ then the components of \boldsymbol{u}^{k+1} in (7) are all likewise bounded in $(0,1)$.
Proof. Clearly, A_{k} has nonpositive, off-diagonal entries. Moreover, if $f\left(u_{n}^{k}\right) \Delta t<1$ for every $n \in\{1,2, \ldots, N-1\}$, then A_{k} is a strictly diagonally dominant matrix with positive diagonal entries (notice that such condition holds if $0<u_{n}^{k}<1$ for every $n \in\{1,2, \ldots, N-1\}$ and $\Delta t<1$) and, as a consequence, A_{k} is an M-matrix, that is, a nonsingular matrix whose inverse only has positive entries. Together with (7), this implies that \boldsymbol{u}^{k+1} is a vector with positive entries. Next, we establish the boundedness from above of the components of \boldsymbol{u}^{k+1}. Let \boldsymbol{e} be the $(N+1)$ dimensional vector all of whose components are equal to 1 , and let $\boldsymbol{w}^{k+1}=\boldsymbol{e}-\boldsymbol{u}^{k+1}$. A simple substitution in (7) gives us the equation

$$
\begin{equation*}
A_{k} \boldsymbol{w}^{k+1}=A_{k} \boldsymbol{e}-\boldsymbol{v}^{k} \tag{12}
\end{equation*}
$$

The first and last components of the right-hand side of (12) are, respectively, $1-g\left(t_{k}\right)$ and $1-h\left(t_{k}\right)$, which are positive, while for every $n \in\{1,2, \ldots, N-1\}$, the $(n+1)$-st component is given by the expression $(1-\Delta t)\left(1-u_{n}^{k}\right)$, which is also a positive number. As in the first part of this proof, it follows that the components of \boldsymbol{w}^{k+1} are all positive numbers or, equivalently, that the components of \boldsymbol{u}^{k+1} are all less than 1 .

We stress that (4) is a first-order accurate approximation of the partial derivative of u with respect to t at $\left(x_{n}, t_{k}\right)$, and that (5) is an approximation of the second order to the value of the partial derivative of u with respect to x^{2} at the same point. Under these circumstances, the linearized version of the finite-difference scheme (6) is consistent of order $\Delta t+(\Delta x)^{2}$ with the linearized version of (1) at $\left(x_{n}, t_{k+1}\right)$.

4. Numerical results

To illustrate the validity of the our method and its computational implementation, we ran two numerical experiments, choosing the initial conditions so the exact solution is known, namely, the function (3). We set $C=1$ and $p=1$, and let the spatial domain be $I=[-50,150]$, imposing at the endpoints Dirichlet conditions provided by the exact solution evaluated at -50 and 150 .

Figure 2. Analytical solution (solid line) and the corresponding approximation (dotted line) versus the spatial variable x at four different times, of a system governed by (1) with $p=1$. The initial profile is that given by (3) at $t=0$ with $C=1$, and the boundary conditions are provided by (3) at the endpoints of $[-50,150]$ at any time. Numerically, the method (6) employed $\Delta x=1$ and $\Delta t=0.05$, and the times considered were $t=5,15,30,60$.

In the first run, we use the finite-difference method (6) with $\Delta x=1$ and $\Delta t=0.05$, so that the parameter constraint in Proposition 1 for the boundedness of the method be satisfied. Under these conditions, Figure 2 compares the exact solutions with the corresponding numerical approximations provided by our technique at four different times, namely $t=5,15,30$ and 60 . The results show that the computational solution remains bounded within $(0,1)$, as expected. Additionally, there exists a good agreement between both solutions at small times; the difference between the exact solutions and the numerical approximations is more pronounced at the times $t=30$ and 60 .

In the second run, we change only the parameter values $\Delta x=0.5$ and $\Delta t=0.005$. The numerical results are presented in Figure 3, and one immediately notices a better agreement between the analytical solutions and the computational approximations

Figure 3. Analytical solution (solid line) and the corresponding approximation (dotted line) versus the spatial variable x at four different times, of a system governed by (1) with $p=1$. The initial profile is that given by (3) at $t=0$ with $C=1$, and the boundary conditions are provided by (3) at the endpoints of $[-50,150]$ at any time. Numerically, the method (6) employed $\Delta x=0.5$ and $\Delta t=0.005$, and the times considered were $t=5,15,30,60$.
to the problem under consideration, even for larger values of time. We also see that the numerical approximations, like the exact solutions, remain bounded within $(0,1)$. This is in agreement with Proposition 1.

5. Conclusions

We have presented a numerical method to approximate bounded solutions of the classical Fisher-KPP equation from population dynamics. The proposed finitedifference scheme is a nonstandard method in the way that the reaction term is approximated, and it may be conveniently expressed in vector form in terms of the multiplication by a tridiagonal matrix which, under certain circumstances, is actually an M-matrix. In this way, new approximations may be written as the product of the previous approximation by the inverse of the M-matrix. Some simple and direct calculations show that the new approximations are bounded between 0 and 1 under suitable conditions on the computational parameters.

The method was implemented and tested against known exact solutions of the classical Fisher-KPP equation on a bounded spatial domain. The results show that the method performs well when approximating the analytical solutions considered. Moreover, one notices that the method preserves the boundedness and the positivity of the solutions considered when the parameter conditions derived in the work are satisfied.

References

[Fisher 1937] R. A. Fisher, "The wave of advance of advantageous genes", Ann. Eugenics 7 (1937), 355-369.
[Fujimoto and Ranade 2004] T. Fujimoto and R. R. Ranade, "Two characterizations of inversepositive matrices: the Hawkins-Simon condition and the Le Chatelier-Braun principle", Electron. J. Linear Algebra 11 (2004), 59-65. MR 2005m:15053 Zbl 1069.15020
[Furihata 1999] D. Furihata, "Finite difference schemes for $\partial u / \partial t=(\partial / \partial x)^{\alpha} \delta G / \delta u$ that inherit energy conservation or dissipation property", J. Comput. Phys. 156:1 (1999), 181-205. MR 2000j: 65076 Zbl 0945.65103
[Furihata 2001] D. Furihata, "Finite-difference schemes for nonlinear wave equation that inherit energy conservation property", J. Comput. Appl. Math. 134:1-2 (2001), 37-57. MR 2002g:65096 Zbl 0989.65099
[Kastenberg and Chambré 1968] W. E. Kastenberg and P. L. Chambré, "On the stability of nonlinear space-dependent reactor kinetics", Nucl. Sci. Eng. 31 (1968), 67-79.
[Kolmogorov et al. 1937] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, "Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique", Bull. Univ. Moscou, Ser. Internat. A 1:6 (1937), 1-25. Zbl 0018.32106
[Rashba and Sturge 1982] E. I. Rashba and M. D. Sturge (editors), Excitons, North-Holland, Amsterdam, 1982.
[Sherratt and Murray 1990] J. A. Sherratt and J. D. Murray, "Models of epidermal wound healing", Proc. R. Soc. Lond. B 241 (1990), 29-36.
[Wallace 1984] P. R. Wallace, Mathematical analysis of physical problems, Dover Publications, New York, 1984. MR 86c:00006 Zbl 1092.00501
[Wang 1988] X. Y. Wang, "Exact and explicit solitary wave solutions for the generalised Fisher equation", Phys. Lett. A 131:4-5 (1988), 277-279. MR 89h:35320
[Wazwaz and Gorguis 2004] A.-M. Wazwaz and A. Gorguis, "An analytic study of Fisher's equation by using Adomian decomposition method", Appl. Math. Comput. 154:3 (2004), 609-620. MR 2005c:35152 Zbl 1054.65107

Received: 2011-11-28 Accepted: 2012-05-12

sieg_macias@hotmail.com	Universidad Autónoma de Aguascalientes, jemenida Universidad 940, Ciudad Universitaria, jemascalientes, Aguascalientes 20131, Mexico
	Departamento de Matemáticas y Física, Aniversidad Autónoma de Aguascalientes, Universidad 940, Ciudad Universitaria,

involve

msp.berkeley.edu/involve

EDITORS

MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

BOARD OF EDITORS			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Toka Diagana	Howard University, USA tdiagana@howard.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1 @luc.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: © 2008 Alex Scorpan
See inside back cover or http://msp.berkeley.edu/involve for submission instructions.
The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
 http://msp.org/

A NON-PROFIT CORPORATION
Typeset in IATEX
Copyright ©2012 by Mathematical Sciences Publishers

involve

A Giambelli formula for the S^{1}-equivariant cohomology of type A Peterson varieties 115
Darius Bayegan and Megumi Harada
Weak Allee effect, grazing, and S-shaped bifurcation curves 133
Emily Poole, Bonnie Roberson and Brittany Stephenson
A BMO theorem for ϵ-distorted diffeomorphisms on \mathbb{R}^{D} and an application to 159 comparing manifolds of speech and sound
Charles Fefferman, Steven B. Damelin and William Glover
Modular magic sudoku 173
John Lorch and Ellen Weld
Distribution of the exponents of primitive circulant matrices in the first four boxes of \mathbb{Z}_{n}. 187
Maria Isabel Bueno, Kuan-Ying Fang, Samantha Fuller and Susana Furtado
Commutation classes of double wiring diagrams 207
Patrick Dukes and Joe Rusinko
A two-step conditionally bounded numerical integrator to approximate some 219
traveling-wave solutions of a diffusion-reaction equationSiegfried Macías and Jorge E. Macías-Díaz
The average order of elements in the multiplicative group of a finite field 229
Yilan Hu and Carl Pomerance

[^0]: MSC2010: primary 35K15, 65M06; secondary 35K55, 35K57.
 Keywords: Fisher's equation, bounded/positive solutions, finite-difference scheme, boundedness/positivity preservation, inverse-positive matrices.

