\bullet
 involve

 a journal of mathematicsAlhazen's hyperbolic billiard problem
Nathan Poirier and Michael McDaniel

Alhazen's hyperbolic billiard problem

Nathan Poirier and Michael McDaniel
(Communicated by Joseph Gallian)

Abstract

Given two points inside a circle in the hyperbolic plane, we study the problem of finding an isosceles triangle inscribed in the circle so that the two points belong to distinct congruent sides. By means of a reduction to the corresponding result in Euclidean geometry, we prove that this problem cannot generally be solved with hyperbolic ruler and compass.

In his treatise on optics, written in Arabic, the scientist and mathematician Abu Ali al-Hasan ibn al-Haytham (965-1039) posed the problem of finding the light path between a source and an observer by way of a fixed spherical mirror, and gave a geometric solution for it. The problem may have been formulated much earlier, by the great Greek mathematicians of the Hellenistic era, but no surviving testimony confirms this. Thus it is fit that it carries al-Hasan ibn al-Haytham's name, which was rendered as Alhazen in the Latin translation of his book - a document that played an important role in the development of modern science.

Alhazen recognized that the problem is essentially two-dimensional - the path must lie in a plane determined by the center of the sphere, the source and the observer. His solution is long, in part because he is actually studying a more general problem; see [Sabra 1982] for details. It is not a ruler-and-compass construction, as it requires an auxiliary hyperbola; in fact, apart from special cases, the problem turns out not to be solvable with ruler and compass alone, though it seems this was only proved some 50 years ago ([Elkin 1965]; see also [Riede 1989; Neumann 1998]).

In this paper, we study the hyperbolic version of Alhazen's problem and relate it to its classical Euclidean counterpart. We use the following formulation of the problem: Given a circle (in the Euclidean or the hyperbolic plane) and two points A and B inside it, construct an inscribed, isosceles triangle with A on one equal leg and B on the other.

The isosceles condition is equivalent to the condition that the two legs meet at equal angles the diameter of the circle that goes through their common vertex, so this is Alhazen's problem all right. (One can also imagine a round billiard table

[^0]with two points marked on the felt. A shot that goes through one of the points, hits the cushion and then goes through the other point is a solution to the problem.)

We show the following result:
Theorem. For a given circle in the hyperbolic plane and a given circle in the Euclidean plane, there exists a bijection-indeed a homeomorphism-between Alhazen point configurations of one and those of the other, preserving in both directions the property of Alhazen constructibility with ruler and compass.

That is, hyperbolic configurations whose Alhazen solution is constructible with (hyperbolic) ruler and compass correspond to Euclidean configurations whose Alhazen solution is constructible with (Euclidean) ruler and compass, and similarly for nonconstructible configurations.

This correspondence was unexpected to us, since hyperbolic triangles are so different from Euclidean ones - to begin with, their angles add up to arbitrary measures less than π. Generally, Euclidean ruler-and-compass constructions fail to carry over to the hyperbolic plane; even trisecting an arbitrary segment, something quite simple with Euclidean ruler and compass, cannot be done in the hyperbolic case! (See [Martin 1975, p. 483], for instance.)

Since, as already mentioned, Alhazen's problem is seldom solvable with ruler and compass in the Euclidean plane, we obtain (see Remark 2 on page 281):
Corollary. The hyperbolic Alhazen problem is not generally solvable with ruler and compass. Indeed, for any fixed hyperbolic open disk D_{H}, the set of pairs of points $A, B \in D_{H}$ for which the Alhazen problem can be solved with ruler and compass has measure zero in $D_{H} \times D_{H}$.

This paper is organized as follows. In Section 1 we describe the relevant models of the hyperbolic plane and spell out the hyperbolic Alhazen problem. In Section 2 we motivate the correspondence between Euclidean and hyperbolic constructions, observing it in action in a simple constructible case. The proof of the theorem is then given in Section 3.

1. Alhazen's billiard problem in hyperbolic geometry

Hyperbolic geometry has several models, that is, ways to name points and make calculations. We will need to use two: the Poincaré disk model and the Klein model.

The Poincaré model represents the hyperbolic plane by an open disk, that is, the set of points inside a fixed Euclidean circle. ${ }^{1}$ This so-called boundary circle is not part of the hyperbolic plane. It is a "boundary" of the model only: the hyperbolic

[^1]

Figure 1. A hyperbolic Alhazen triangle, JKL. The hyperbolic plane is the interior of the disk with red boundary. The pink circles represent hyperbolic lines, to be determined in the solution of the problem, together with their intersections J, K, L. The givens of the problem consist of the small circle (on which we must place J, K, and L) and the points A and B inside it. Note the position of the center H of the given hyperbolic circle.
plane itself extends infinitely in all directions. The center of the boundary circle will be labeled O. It is not a special point in the hyperbolic plane - any point can be chosen for this honor - but it does enjoy special properties in the model.

Figure 1 illustrates the main features of the Poincaré model. The boundary circle is shown in red. Hyperbolic straight lines appear in the model either as Euclidean diameters (like the line $O H$) or as circles (in pink) orthogonal to the boundary circle - or rather, the portions of such circles inside the boundary circle. Hyperbolic circles (sets of points at a fixed hyperbolic distance from a center) appear as Euclidean circles contained in the open disk; the green circle is an example.

This is two-thirds of what we need in order to visualize the hyperbolic Alhazen problem. But how are we to recognize isosceles triangles? Hyperbolic distances cannot be discerned from appearances in the model: the formula to compute the hyperbolic distance between two points, given their coordinates in the Poincaré model, is very different from the formula giving the Euclidean distance. The ratio between the two is, roughly speaking, inversely proportional to the Euclidean distance to be boundary.
(Another manifestation of this is that the center of a hyperbolic circle does not match what appears to be the center in the model. The true center H is the point hyperbolically equidistant from the points on the circle; it can be found, for instance, as the intersection of two hyperbolic lines perpendicular to the circle. H always lies closer to the boundary than the apparent center, unless both coincide with O. In Figure 1, H is the center of the green circle.)

What saves the day is an important feature of the Poincaré model: it is conformal, meaning that it renders angles faithfully. The true angle between two hyperbolic lines equals the (Euclidean) angle between the circles representing the same lines in the model. Thus a hyperbolic Alhazen triangle has two equal angles in the Poincaré model, as exemplified by the triangle $J K L$ in Figure 1. (This example is special in that the triangle's axis of symmetry, the line $O H$, is a diameter of the model, so the triangle also appears "isosceles", that is, symmetric, to Euclidean eyes. This would not generally be the case.)

The Klein model of the hyperbolic plane also uses a Euclidean disk to represent its points, but in this model hyperbolic lines correspond to Euclidean chords. Euclidean appearances are even more deceiving here, because hyperbolic angle measures are not the Euclidean ones visible in the model. However, the property that hyperbolic and Euclidean notions of straightness coincide in this model will be helpful.

There exists an isomorphism between the Poincaré and Klein models, based on stereographic projection, which will be the key in Section 3 to our correspondence between the hyperbolic and Euclidean Alhazen problems. To describe it, we work in (Euclidean) three-dimensional space, with both models lying on the horizontal coordinate plane. We rest a sphere on this plane, as shown in Figure 2: the radius of the sphere is half the radius of the Poincaré model, and its south pole is the center O of both models. Given a point R in the Poincaré model, we find its counterpart in the Klein model by first mapping the point onto the sphere via stereographic projection (central projection from the north pole); this gives a point P, somewhere on the south hemisphere. We then project P directly down onto the horizontal plane, obtaining Q; this is the counterpart of R in the Klein model.

Stereographic projection maps circles to circles and preserves orthogonality. An arc of circle orthogonal to the red boundary of the Poincaré model projects onto the sphere as a semicircle orthogonal to the equator. When projected again straight down, this gives a line segment. This confirms that in the Klein model hyperbolic lines are represented by Euclidean chords.

Finally, we observe that if a hyperbolic circle happens to be centered at O in the Poincaré model (in which case its hyperbolic and Euclidean centers coincide), it will map to a horizontal circle on the sphere, and from there down to a circle in the Klein model, again centered at O. These are the only hyperbolic circles that look like Euclidean circles in Klein model: other circles look like Euclidean ellipses.

Figure 2. Correspondence between the Poincaré and Klein models.

2. A constructible example

The Euclidean Alhazen problem has an obvious solution when the given points A and B lie on a diameter of the given circle and are equidistant from the center (Figure 3, left). We simply construct the perpendicular bisector of $\overline{A B}$ - the horizontal diameter in Figure 3, right. Each of the two points where this line

Figure 3. Solving the Alhazen problem in a special case: A and B are diametrically opposed and equidistant from the center of the circle. The triangle $U V W$ is a solution if and only if $V O \perp A B$.
intersects the given circle provides a solution to the problem, since the angles subtended by $O A$ and $O B$ from these points are the same.

Moreover, these are the only solutions. To see this, take a point V on the given circle, and form the inscribed triangle whose sides lie on the lines $V A$ and $V B$. If this triangle is isosceles, its median $V O$ is also an altitude, so V lies on the perpendicular bisector of $A B$. (If we allow degenerate triangles then of course the line $A B$ also provides a solution.)

For this simple situation, the reasoning in the hyperbolic case is identical. Given a hyperbolic circle of center H and two points A and B, diametrically opposed and equidistant from H, we draw the perpendicular bisector of A and B using our (hyperbolic!) compass, just as we would in the Euclidean case, and mark off its intersections with the circle, each of which provides a solution to the Alhazen problem. Seen in the Klein model, the picture would look exactly the same as Figure 3, provided we took the precaution of starting with a circle whose center coincides with the center O of the model! In the Poincaré model, with the same precaution, we'd have Figure 4.

Figure 4. Special case of Alhazen problem in the Poincaré model; compare Figure 3, right. The triangle $U V W$ is a solution if and only if $V O \perp A B$.

This leads to an important digression. With Euclidean constructions, we have physical tools (paper, ruler and compass) at our disposal, which are sufficiently accurate to help build intuition. Alas, we don't have a physical hyperbolic compass at our disposal, nor hyperbolic paper. What tools can we use to explore?

That's where the two models come in. In the Klein model, a Euclidean ruler is a proxy for a hyperbolic one, but the same cannot be said about the compass: hyperbolic circles look like ellipses in the model. What about the Poincaré model? Hyperbolic lines look like lines or circles in the model, and hyperbolic circles look
like circles, so it's at least conceivable that what can be done with hyperbolic ruler and compass can also be done in the Poincaré model with Euclidean ruler and compass. And that turns out to be so:

Fact 1. Any point in the hyperbolic plane obtained from initial data by using only (hyperbolic) ruler and compass can be obtained using ruler and compass in the Euclidean plane that supports the Poincaré model.

This is proved by considering each building block of ruler-and-compass constructions. For instance, the problem of drawing a line through two points translates into finding a circle perpendicular to the boundary of the model and going through the given points; this can be done with Euclidean ruler and compass in a few steps. Drawing a (hyperbolic) circle centered at a point and going through another point translates into finding the Euclidean center of the desired circle in the model, and so on. See [Goodman-Strauss 2001] for a pleasant exposition of these constructions.

Fact 2. Conversely, any point in the Poincaré model obtained from initial data by using Euclidean ruler and compass can also be obtained using intrinsic (hyperbolic) ruler and compass.

This is perhaps more surprising than Fact 1 , since Euclidean manipulations in the Poincaré model can involve objects that are not actually in the hyperbolic plane, but rather on the boundary and the exterior of the disk. Fact 2 was apparently first proved in [Curtis 1990] - specifically in §6, but the whole article is recommended for its lucid discussion, references to earlier work, and a proof of the 90 -year old result of D. Mordukhai-Boltovskoi that states exactly which lengths are constructible in hyperbolic geometry. (Warning: The "Klein conformal model" to which Curtis refers is a slight variation of the Poincaré model, rather than the projective Klein model explained on page 276.)

With this we can close our digression, confident that in talking about ruler-andcompass constructibility, it makes no difference whether we use intrinsic hyperbolic tools or Euclidean tools in the Poincaré model!

3. Correspondence between the hyperbolic and Euclidean Alhazen problems

We now prove the Theorem stated on page 274. We are given a disk D_{H} in the hyperbolic plane and a disk D_{E} in the Euclidean plane.

Lemma 1. We can assume without loss of generality that D_{H} and D_{E} are centered at the origin O of the Cartesian plane. (In the hyperbolic case, we understand the Cartesian plane as underlying the Poincaré model.)

This may seem obvious, but it merits discussion: the theorem does talk of arbitrary circles, after all. The proof of the lemma follows from three observations:

Any isometry T of either the Euclidean or the hyperbolic plane can be implemented with ruler and compass, in the following sense: Let T be defined by some known data, such as the images $T(a), T(b), T(c)$ of three noncollinear points a, b, c. Then, given any point x, one can construct $T(x)$ with ruler and compass, starting from x and the data defining T.

This is usually taken for granted for Euclidean constructions, and indeed it is easy to show - we leave it as an exercise. Your proof for the Euclidean case will quite likely carry over to the hyperbolic case (with intrinsic ruler and compass).

The second observation is that any given disk is mapped by some isometry T to some disk centered at O. This is because the hyperbolic and Euclidean planes are homogeneous: given two points in the Euclidean plane, there is an isometry taking one to the other - and of course such an isometry maps a disk to a disk. Similarly for the hyperbolic plane - having in mind hyperbolic isometries, of course.

The third observation ties it all together: The theorem asserts a constructibilitypreserving bijection between $D_{H^{-}}$and D_{E}-Alhazen configurations. If such a bijection is known for D_{H} and D_{E} of the special form in the lemma, it can be defined for any D_{H} and D_{E}, by using isometries to bridge between configurations in the old and the new D_{H}, and between configurations in the old and the new D_{E}. Because isometries are constructible, these bridges take constructible configurations to constructible configurations; and because they do so in both directions, they also take nonconstructible configurations to nonconstructible configurations.

This formally justifies the usual cavalier attitude about isometries when dealing with constructibility questions.

Let ϕ denote the map taking the Poincaré model to the Klein model, described in Figure 2 as the composition of stereographic projection and vertical projection. We need one more normalization.

Lemma 2. We can assume, moreover, that D_{H} is taken to D_{E} under the Poincaré-to-Klein map ϕ.

The radius of D_{H} cannot be tampered with, ${ }^{2}$ but fortunately the radius of D_{E} can, by applying a homothety (scaling transformation). Homotheties preserve constructibility, being themselves constructible (same logic as in the third observation above). So we just scale D_{E} to make it coincide with $\phi\left(D_{H}\right)$.

Lemma 3. The Poincaré-to-Klein correspondence ϕ, applied to Alhazen configurations in our normalized D_{H} and D_{E}, preserves constructibility.

[^2]Indeed, the action of ϕ on single points can be implemented with (Euclidean) ruler and compass. This is obvious for points on the red boundary circle, ${ }^{3}$ since such points are just pulled halfway toward O - a homothety of ratio $\frac{1}{2}$. Now let P be a point inside the Poincaré disk. Use Poincaré (i.e., Euclidean) ruler and compass to draw any two hyperbolic lines crossing at P; this is possible by Fact 1 . Mark the intersections of these lines with the Poincaré red circle (like points H_{1} and H_{2} in Figure 2). Apply ϕ to the four points thus determined on the Poincaré red circle, to find the corresponding points on the Klein red circle. Obtain $\phi(P)$ as the intersection of the two line segments connecting pairs of opposite points.

The key observation now is that the hyperbolic Alhazen problem in D_{H} with initial data A, B has S as a solution if and only if the Euclidean Alhazen problem in D_{E} with initial data $\phi(A), \phi(B)$ has $\phi(S)$ as a solution. Here we're thinking of the solution as a single point - the reflection point on the circle between A and B.

The statement in italics applies to solutions in general, whether or not they are constructible. To wrap up the proof, we resort again to the bridge idea used for the first two lemmas. We spell it out here, since we didn't before. Because ϕ and its inverse are constructible, they preserve the constructibility status of solutions. That is, if we can get from A and B to the solution S, then we can get from $\phi(A)$ and $\phi(B)$ to $\phi(S)$, via $A\left(=\phi^{-1}(\phi(A))\right)$ and B and then S. Conversely, if we can get from $\phi(A)$ and $\phi(B)$ to $\phi(S)$, we can get from A and B to S. This finishes the proof of the Theorem.

Remark 1. What makes the Alhazen problem special is that we can write that boldfaced "Euclidean" above. For any problem, ϕ transforms hyperbolic solutions in the Poincaré model into hyperbolic solutions in the Klein model; but only here is the hyperbolic solution also a Euclidean solution, and only because we chose D_{H} and D_{E} judiciously in Lemmas 1 and 2, rendering irrelevant the difference between the Euclidean metric and the hyperbolic metric in the Klein model. That's why the proof fails for a problem such as finding a point T a third of the way from A to B (as already mentioned, the hyperbolic version of this problem is not constructible).
Remark 2. The bijection we have constructed between $D_{H^{-}}$and $D_{E^{-}}$-Alhazen configurations is just a componentwise application of the Poincaré-to-Klein map ϕ, and is therefore very well behaved (homeomorphic, locally bi-Lipschitz). It follows that, for each circle radius, not only are there D_{H}-Alhazen configurations that are not solvable with ruler and compass, but in fact they are the rule. Solvable configurations are the exception - they form a set of measure zero in $D_{H} \times D_{H}$, corresponding to a set of measure zero of solvable configurations in the Euclidean case [Neumann 1998, p. 527]. This proves the Corollary.

[^3]
Acknowledgement

We thank the Mohler-Thompson Fund for sponsoring our research. The referee's suggestions transformed our mishmash of ideas into an article: a valuable contribution.

References

[Curtis 1990] R. R. Curtis, "Duplicating the cube and other notes on constructions in the hyperbolic plane", J. Geom. 39:1-2 (1990), 38-59. MR 91i:51027 Zbl 0717.51018
[Elkin 1965] J. M. Elkin, "A deceptively easy problem", Math. Teacher 58 (1965), 194-199.
[Goodman-Strauss 2001] C. Goodman-Strauss, "Compass and straightedge in the Poincaré disk", Amer. Math. Monthly 108:1 (2001), 38-49. MR 1857068 Zbl 1013.51010
[Martin 1975] G. E. Martin, The foundations of geometry and the non-Euclidean plane, Intext Educational, New York, 1975. Reprinted Springer, 1998. Zbl 0321.50001
[Neumann 1998] P. M. Neumann, "Reflections on reflection in a spherical mirror", Amer. Math. Monthly 105:6 (1998), 523-528.
[Riede 1989] H. Riede, "Reflexion am Kugelspiegel, oder das Problem des Alhazen", Praxis Math. 31:2 (1989), 65-70. MR 90g:51048
[Sabra 1982] A. I. Sabra, "Ibn al-Haytham's lemmas for solving 'Alhazen's Problem'", Arch. Hist. Exact Sci. 26:4 (1982), 299-324.
poirinat@aquinas.edu
mcdanmic@aquinas.edu

Received: 2011-01-18 Revised: 2011-06-24 Accepted: 2011-06-26
Department of Mathematics, Aquinas College, 1607 Robinson Road SE, Grand Rapids 49506, United States

Department of Mathematics, 1903 W. Michigan Ave., Western Michigan University, Kalamazoo, MI 49008-5248, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2012 vol. 5 no. 3

Analysis of the steady states of a mathematical model for Chagas disease 237
Mary Clauson, Albert Harrison, Laura Shuman, Meir Shillor and anna Maria Spagnuolo
Bounds on the artificial phase transition for perfect simulation of hard core Gibbs 247 processes
Mark L. Huber, Elise Villella, Daniel Rozenfeld and Jason Xu
A nonextendable Diophantine quadruple arising from a triple of Lucas numbers 257
A. M. S. Ramasamy and D. Saraswathy
Alhazen's hyperbolic billiard problem 273
Nathan Poirier and Michael McDaniel
Bochner (p, Y)-operator frames 283
Mohammad Hasan Faroughi, Reza Ahmadi and Morteza Rahmani
k-furcus semigroups 295
Nicholas R. Baeth and Kaitlyn Cassity
Studying the impacts of changing climate on the Finger Lakes wine industry 303
Brian McGauvran and Thomas J. Pfaff
A graph-theoretical approach to solving Scramble Squares puzzles 313
Sarah Mason and Mali Zhang
The n-diameter of planar sets of constant width 327
Zair Ibragimov and Tuan Le
Boolean elements in the Bruhat order on twisted involutions 339
Delong Meng
Statistical analysis of diagnostic accuracy with applications to cricket 349
Lauren Mondin, Courtney Weber, Scott Clark, Jessica Winborn, Melinda M. Holt and Ananda B. W. Manage
Vertex polygons 361
Candice Nielsen
Optimal trees for functions of internal distance 371
Alex Collins, Fedelis Mutiso and Hua Wang

[^0]: MSC2010: primary $51 \mathrm{M} 04,51 \mathrm{M} 10,51 \mathrm{M} 15$; secondary 51M09.
 Keywords: hyperbolic geometry, Alhazen.

[^1]: ${ }^{1}$ We haven't defined the hyperbolic plane. The reader new to hyperbolic geometry can imagine that it is the Poincaré model: the set of points (x, y) in \mathbb{R}^{2} satisfying $x^{2}+y^{2}<1$, with further features called (hyperbolic) distance, lines, angles, and so on, which we now describe.

[^2]: ${ }^{2}$ The hyperbolic plane has no similarities other than isometries, so we cannot hope to reduce the hyperbolic Alhazen problem to a single circle size, as we're accustomed to doing with Euclidean problems. Another way to say this is that hyperbolic disks of different sizes are not scaled images of one another - in fact, the larger the circle, the greater the ratio between circumference and diameter!

[^3]: ${ }^{3}$ That these points are not in the hyperbolic plane itself doesn't matter: we're using them as stepping stones, and ϕ is obviously defined on them.

