\bullet
 involve

 a journal of mathematicsk-furcus semigroups
Nicholas R. Baeth and Kaitlyn Cassity

k-furcus semigroups

Nicholas R. Baeth and Kaitlyn Cassity
(Communicated by Scott Chapman)

Abstract

A bifurcus semigroup is a semigroup in which every nonunit nonatom can be written as the product of exactly two atoms. We generalize this notion to k-furcus semigroups: every element that can be factored as the product of at least k nonunits can be factored as the product of exactly k atoms. We compute some fac-torization-theoretic invariants of k-furcus semigroups that generalize the bifurcus results. We then define two variations on the k-furcus property, one stronger (presumabaly strictly) and the other strictly weaker than the k-furcus property.

1. Introduction

Vadim Ponomarenko and coworkers [Adams et al. 2009] introduced and studied the notion of bifurcus semigroups, a class of semigroups with "bad" factorization properties: a semigroup S is bifurcus if every nonunit nonatom can be bifurcated, that is, expressed as the product of exactly two atoms in S. They gave examples, showed that certain important families of semigroups cannot be bifurcus, and calculated several factorization-theoretic invariants of bifurcus semigroups. Further examples of bifurcus semigroups can be found in [Baeth et al. 2011]. Our goal is to generalize the concept of bifurcus and to provide analogous results for what we call k-furcus semigroups. We also give in Section 3 two modified definitions, one which appears to strengthen and one which weakens the original definition. Finally, in Section 4, we consider irreducible divisor graphs - a graphical interpretation of the factorization of an element in a semigroup - of elements in k-furcus semigroups.

First, some basic background. The reader is referred to [Geroldinger and HalterKoch 2006] for a thorough treatment of factorization theory.

A semigroup is a set together with an associative operation. A nonunit a of a semigroup S is an atom if it is impossible to write $a=b \cdot c$ with b and c nonunits. The set $\mathscr{A}(S)$ denotes the set of all atoms of S. We will restrict our attention to atomic semigroups, those in which every element can be expressed as a (finite)

[^0]product of atoms. We now define several important invariants which describe how unique or nonunique factorization is in a given semigroup.

An element $a \in S$ is a strong atom if whenever $a^{m}=b c$ for some $b, c \in S$ with $b \neq 1$, then $b=\epsilon a^{n}$ for some unit ϵ and some integer $n \leq m$. If $x \in S$, then $\mathfrak{L}(x)=\left\{n: x=a_{1} a_{2} \cdots a_{n}\right.$ with each a_{i} an atom of $\left.S\right\}$ is called the set of factorization lengths of x. The elasticity of an element x, defined by

$$
\rho(x)=\frac{\sup \mathfrak{L}(x)}{\inf \mathfrak{L}(x)}
$$

gives a coarse measure of how far away x is from having unique factorization. The elasticity of the semigroup S is then $\rho(S)=\sup \{\rho(x): x$ is a nonunit of S$\}$. If $\mathfrak{L}(x)=\left\{t_{1}, t_{2}, \ldots\right\}$ is the set of factorization lengths of x with $t_{i}<t_{i+1}$ for each i, the delta set of x is defined to be $\Delta(x)=\left\{t_{i+1}-t_{i}: t_{i}, t_{i+1} \in \mathfrak{L}(x)\right\}$ and $\Delta(S)=$ $\bigcup \Delta(x)$. If $\Lambda=\{\min \mathfrak{L}(x): x$ is a nonunit of $S\}$, then the critical length of S is $\operatorname{cr}(S)=\max \Lambda+1$. The catenary degree of S, denoted $C(S)$, is the smallest integer N such that for all $a \in S$, and for any two factorizations z and z^{\prime} of a, there exists factorizations z_{0}, \ldots, z_{k} of a such that for all $i \in[1, k], z_{i}$ arises from z_{i-1} by replacing at most N atoms from z_{i-1} by at most N new atoms; that is, $d\left(z_{i}, z_{i-1}\right) \leq N$. Finally, we define the tame degree $t(S)$ of the semigroup S to be the smallest natural number N such that whenever $a \in S$ and x is an atom of S occurring in some factorization of a, given a factorization z of a, there exists a factorization z^{\prime} of a containing x such that $d\left(z, z^{\prime}\right) \leq N$.

2. \boldsymbol{k}-furcus semigroups

Let S be an atomic semigroup and let $k \geq 2$ be an integer. We say S is k-furcus if whenever an element can be factored as a product of at least k nonunits, then it can be factored as the product of exactly k atoms of S. Note that when $k=2$, a semigroup is k-furcus if and only if it is bifurcus.

The following result generalizes (2)-(9) of [Adams et al. 2009, Theorem 1.1] for k-furcus semigroups, and can be proved by straightforward modifications of the arguments in that paper.

Theorem 2.1. Let S be a nontrivial k-furcus semigroup, and let $0 \neq x \in S$ be a nonunit nonatom. Then:
(1) S contains no strong atoms.
(2) If $k \geq \sup \mathfrak{L}(x)$, then $[k, \sup \mathfrak{L}(x)] \subseteq \mathfrak{L}(x) \subseteq[2, \sup \mathfrak{L}(x)]$.
(3) $k \rho(x) \in \mathbb{N} \cup\{\infty\}$.
(4) $\rho(S)=\infty$.
(a) If $k \in\{2,3\}$, then $\Delta(S)=\{1\}$.
(b) If $k>3$, then $\{1\} \subseteq \Delta(S) \subseteq\{1,2, \ldots, k-2\}$.
(6) $3 \leq C(S) \leq k+1$.
(7) $t(S)=\infty$.
(8) $3 \leq \operatorname{cr}(S) \leq k+1$.

We note that the statements (2), (5), and (8) of Theorem 2.1 are strictly weaker than their analogs (3), (6), and (9) from [Adams et al. 2009, Theorem 1.1]. Any improvements on these statements would require knowledge of how elements with no factorizations of length k or greater can be written as products of atoms.

Suppose that S is a k-furcus semigroup and that m is an integer larger than k. Further suppose that $x \in S$ can be written as the product of at least m nonunits of S. Then $k \leq m \leq \sup \mathfrak{L}(x)$ and thus, by Theorem $2.1(2), m \in \mathfrak{L}(x)$ and so x can be factored into exactly m atoms. Therefore:
Corollary 2.2. If a semigroup S is k-furcus then S is m-furcus for every $m \geq k$.
Example 2.3. As shown in [Adams et al. 2009, Section 2], the following semigroups are bifurcus, and hence (by Corollary 2.2) k-furcus for all $k \geq 2$:
(1) $n \mathbb{Z}$, where n is not a prime power;
(2) $m \mathbb{Z} \times n \mathbb{Z}$ for natural numbers $m, n>1$;
(3) the multiplicative subsemigroup of $n \times n$ matrices with all entries identical integers, for n not a prime power.
To be more concrete, consider the semigroup $n \mathbb{Z}$, where $n=p q r$ with p and q distinct primes, and suppose that $x \in n \mathbb{Z}$ can be written as $x=\left(n x_{1}\right)\left(n x_{2}\right) \cdots\left(n x_{k}\right)$ for some $k \geq 2$. Then we can factor x in \mathbb{Z} as $x=p^{a} q^{b} r^{k} s$ where $a, b \geq k$ and $p, q \nmid s$. Then we can factor x as $x=\left(n p^{a-k} s\right)\left(n q^{b-k}\right)(n)^{k-2}$ as a product of exactly k atoms of $n \mathbb{Z}$. Therefore, $n \mathbb{Z}$ is k-furcus for all $k \geq 2$.

We now provide an example of a k-furcus semigroup that is not m-furcus for any $m<k$, showing that the term k-furcus properly extends the term bifurcus. We thank Vadim Ponomarenko (private communication) for providing this example.

Example 2.4. Consider k distinct primes $p_{1}, p_{2}, \ldots, p_{k}$ and let $N=p_{1} p_{2} \cdots p_{k}$. Define S to be the multiplicative semigroup with the infinitely many generators $N p_{1}^{a_{1}}, N p_{2}^{a_{2}} \ldots, N p_{k}^{a_{k}}$, where each a_{i} is a nonnegative integer. If x is an element of S that can be written as the product of at least k elements of S, then $x=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ for some $a_{1}, a_{2}, \ldots, a_{k}$. Note that $a_{i} \geq k$ for each i because $N=p_{1} p_{2} \cdots p_{k}$ divides (in \mathbb{Z}) every element in S. Now we can write $x=\left(N p_{1}^{\left(a_{1}-k\right)}\right)\left(N p_{2}^{\left(a_{2}-k\right)}\right) \cdots\left(N p_{k}^{\left(a_{k}-k\right)}\right)$ as a product of exactly k atoms and hence S is k-furcus. However, we shall see that it is impossible to write x as the product of less than k atoms.

Suppose $x=b_{1} b_{2} \cdots b_{k-1}$, where each b_{i} is an atom of S. Since p_{1} occurs at least k times in the factorization of x, it must occur at least twice in a factorization of some b_{i} and hence each factorization of x must contain, for each i, an atom of the form $N p_{i}^{c_{i}}$ with $c_{i} \geq 1$. Thus every factorization of x must have length at least k. Since S is k-furcus we know that N will occur at least k times in any factorization of x. By factoring x into $k-1$ elements we can see that N will still have to occur k times, so x can not be written as a product of atoms of length less than k.

In [Adams et al. 2009], it is shown that several important families of semigroups are not bifurcus. Straightforward modifictions show that these same families of semigroups cannot be k-furcus for any $k \geq 2$.
Proposition 2.5. These classes of semigroups are not k-furcus for any $k \geq 2$:
(1) block monoids $B\left(G_{0}\right)$ for any subset G_{0} of an abelian group G;
(2) Krull monoids;
(3) diophantine monoids.

3. Variations of \boldsymbol{k}-furcus semigroups

In this section we consider variations of k-furcus semigroups, one weaker and one stronger.

We call a semigroup S quasi k-furcus if every nonunit has a factorization of length at most k. This definition is motivated by the following example, which follows from [Banister et al. 2007, Theorem 2.3]:
Example 3.1. If $M(a, b)=\left\{a+k b: k \in \mathbb{N}_{0}\right\} \cup\{1\}$ is an arithmetical congruence monoid with $\operatorname{gcd}(a, b)$ not a prime power, then $M(a, b)$ is quasi k-furcus for some k.

If S is k-furcus, then whenever an element can be factored into at least k elements, it can be factored as the product of exactly k atoms of S; thus every nonunit has a factorization of length at most k. This yields:
Proposition 3.2. A k-furcus semigroup S is also quasi k-furcus.
The converse to Proposition 3.2 is false, as the following example illustrates.
Example 3.3. Consider the arithmetical congruence monoid $S=M(6,30)$ (in the notation of Example 3.1); its first few elements are 1, 6, 36, 66, 96, 126, 156, ... From the proof of Theorem 2.3 in [Banister et al. 2007] we know that S is quasi 15 -furcus. We will now consider all factorizations of the element 6^{16} in S. In $\mathbb{N}, 6^{16}$ factors as $6^{16}=2^{16} 3^{16}$. Since elements of S are multiples of 6 that are congruent to 1 modulo 5 , the only factorizations of 6^{16} in S are

$$
6^{16}, \quad 96 \cdot 486 \cdot 6^{10}, \quad 1536 \cdot 39366 \cdot 6^{6}, \quad \text { and } \quad 24576 \cdot 3188646 \cdot 6^{2} .
$$

Therefore, $\mathfrak{L}\left(6^{16}\right)=\{4,8,12,16\}$ and S is quasi 15 -furcus but not 15 -furcus.

In spite of the nonequivalence of k-furcus and quasi k-furcus semigroups, these classes of semigroups share many properties. We illustrate this in Theorem 3.4, which parallels Theorem 2.1 in both statement and proof.

Theorem 3.4. Let S be a nontrivial quasi k-furcus semigroup and let $0 \neq x \in S$ be a nonunit nonatom. Then:
(1) S contains no strong atoms.
(2) $\rho(S)=\infty$.
(3) $C(S) \leq k+1$.
(4) $3 \leq \operatorname{cr}(S) \leq k+1$.

We now give a definition that appears stronger than that of k-furcus, although we have no examples to justify this claim. From Example 2.4, the semigroup with generators $N p_{1}^{a_{1}}, N p_{2}^{a_{2}}, \ldots, N p_{k}^{a_{k}}$ has the property that every factorization of an element x with $\mathfrak{L}(x) \geq k$ must have length at least k. This motivates the following definition. We call a semigroup S strongly k-furcus if S is k-furcus and no element that can be written as the product of k atoms can be written as the product of less than k atoms. The following theorem gives improvements to Theorem 2.1 when S is strongly k-furcus.

Theorem 3.5. Let S be a nontrivial strongly k-furcus semigroup, and let $0 \neq x \in S$ be a nonunit nonatom. Then:
(1) $\mathfrak{L}(x)=[k, \sup \mathfrak{L}(x)]$ or $\mathfrak{L}(x) \subseteq\{2,3, \ldots, k-1\}$.
(2) $\Delta(x)=\{1\}$ or $\Delta(x) \subseteq\{1,2, \ldots, k-3\}$.
(3) $\{1\} \subseteq \Delta(S) \subseteq\{1,2, \ldots, k-3\}$.

We now give an analog to [Adams et al. 2009, Theorem 1.1(1)] when S is strongly k-furcus. This analog was omitted from our Theorem 2.1 since the hypothesis of S being k-furcus but not strongly k-furcus seems not to be enough information to guarantee these results. Again, we point out that we have no example of a k-furcus semigroup that is not also strongly k-furcus.

Proposition 3.6. If S is a nontrivial strongly k-furcus semigroup and is either left or right cancellative, then S contains infinitely many atoms.

4. Irreducible divisor graphs

In this section we give a means of visually representing the factorization of an element in a k-furcus semigroup. The concept of the irreducible divisor graph of an element in a commutative integral domain was introduced in [Coykendall and Maney 2007] and further studied in [Axtell et al. 2011]. We now give a similar definition for the irreducible divisor graph of an element in a multiplicative semigroup. Given
a semigroup S and an element $x \in S$, the irreducible divisor graph of x, denoted $G(x)$, is defined as follows. The vertices of $G(x)$ are the atoms $a \in S$ such that $a \mid x$. Two vertices a and b of $G(x)$ are connected by an edge provided $a b \mid x$. Moreover, we place n loops (for $n>1$ this is denoted by a single loop labeled with an n) on vertex a if $a^{n} \mid x$ but yet $a^{n+1} \nmid x$. We now provide two examples to illustrate this definition.

Example 4.1. Consider the element $y=1728$ in the multiplicative bifurcus semigroup $S=6 \mathbb{Z}$. The only factorizations of y in S are

$$
\begin{aligned}
1728 & =6 \cdot 6 \cdot 48 \\
& =12 \cdot 12 \cdot 12 \\
& =6 \cdot 12 \cdot 24 \\
& =18 \cdot 96 .
\end{aligned}
$$

Therefore, $G(y)$, the irreducible divisor graph of y in S is

Example 4.2. Let S be the strongly 4 -furcus multiplicative semigroup with generators $210 \cdot 2^{a_{1}}, 210 \cdot 3^{a_{2}}, 210 \cdot 5^{a_{3}}, 210 \cdot 7^{a_{4}}$, where each a_{i} is a nonnegative integer given in Example 2.4. Let $x=2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7^{5} \in S$ and note that x factors only as

$$
\begin{aligned}
x & =\left(210 \cdot 2^{4}\right)\left(210 \cdot 3^{3}\right)\left(210 \cdot 5^{2}\right)(210 \cdot 7) \\
& =\left(210 \cdot 2^{3}\right)\left(210 \cdot 3^{2}\right)(210 \cdot 5)(210)(210) \\
& =\left(210 \cdot 2^{3}\right)(210 \cdot 3)(210 \cdot 5)(210 \cdot 3)(210) \\
& =\left(210 \cdot 2^{2}\right)\left(210 \cdot 3^{2}\right)(210 \cdot 5)(210 \cdot 2)(210) \\
& =\left(210 \cdot 2^{2}\right)(210 \cdot 3)(210 \cdot 5)(210 \cdot 2)(210 \cdot 3) \\
& =(210 \cdot 2)\left(210 \cdot 3^{2}\right)(210 \cdot 5)(210 \cdot 2)(210 \cdot 2)
\end{aligned}
$$

Setting $\alpha_{b^{j}}:=210 \cdot b^{j}$, the irreducible divisor graph $G(x)$ is

The fundamental result in the theory of irreducible divisor graphs, proved in [Coykendall and Maney 2007; Axtell et al. 2011] tells us that an atomic integral domain R is a UFD if and only if $G(x)$ is connected (equivalently, complete) for all nonunits $x \in R$. In fact, the proof of this result goes through for any commutative, cancellative semigroup. As should be no surprise, the examples above give disconnected graphs. In fact, the following theorem illustrates that this is nearly always the case for strongly k-furcus semigroups, thus giving another demonstration of how "bad" factorization is in k-furcus semigroups.

Theorem 4.3. Let S be a commutative, cancellative strongly k-furcus semigroup. Then $G(x)$ is disconnected for every nonatom, nonunit x of S with $\sup \mathfrak{L}(x)>k$.

Proof. Divide the set of vertices of $G(x)$ into two subsets:

$$
A=\left\{a \in \mathscr{A}(S): x=a a_{1} a_{2} \cdots a_{k-1} ; a_{i} \in \mathscr{A}(S)\right\}
$$

containing the vertices involved in factorizations of length k, and

$$
B=\left\{b \in \mathscr{A}(S): x=b b_{1} b_{2} \cdots b_{m} ; b_{i} \in \mathscr{A}(S), m \geq k\right\},
$$

containing those involved in factorizations of length greater than k. Assume $b \in \mathscr{A}(S)$ with $b \in A \cap B$.

Since $b \in A, x=b c_{1} c_{2} \cdots c_{t}$, where $t=k-1$. Since $b \in B, x=b d_{1} \cdots d_{s}, s \geq k$. Thus $\frac{x}{b}=c_{1} c_{2} \cdots c_{t}=d_{1} d_{2} \cdots d_{s}$ has a factorization of length greater than or equal to k and a factorization of length less than k, which is impossible since S is strongly k-furcus. Therefore $A \cap B=\varnothing$.

Now assume $a \in A$ and $b \in B$ with an edge connecting a and b in $G(x)$. Then $x=a b c_{1} \cdots c_{t}$ with c_{i} atoms of S. If $t=k-2$, then $b \in A$, a contradiction since $b \in B$. If $t>k-2$, then $a \in B$, a contradiction since $a \in A$. Therefore no edges connect vertices in A with vertices in B, and hence $G(x)$ is disconnected.

The requirement that $\sup \mathfrak{L}(x)>k$ is necessary as the following example illustrates.

Example 4.4. Consider the element $x=2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{3}$ in the strongly 4 -furcus semigroup from Example 4.2 which factors only as $x=(210 \cdot 2)(210 \cdot 3)(210 \cdot 5)$ with $\alpha_{b^{j}}=210 \cdot b^{j}$. Since x has no factorization of length greater than 3 , its irreducible divisor graph, shown below is connected.

Acknowledgement

The authors would like to thank Scott Chapman for insightful comments and for the referee's thorough reading of an earlier draft and for several comments that improved the exposition.

References

[Adams et al. 2009] D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, V. Ponomarenko, and R. Rosenbaum, "Bifurcus semigroups and rings", Involve 2:3 (2009), 351-356. MR 2011b:20161 Zbl 1190.20046
[Axtell et al. 2011] M. Axtell, N. R. Baeth, and J. Stickles, "Irreducible divisor graphs and factorization properties of domains", Comm. Algebra 39:11 (2011), 4148-4162. MR 2855118
[Baeth et al. 2011] N. R. Baeth, V. Ponomarenko, D. Adams, R. Ardila, D. Hannasch, A. Kosh, H. McCarthy, and R. Rosenbaum, "Number theory of matrix semigroups", Linear Algebra Appl. 434:3 (2011), 694-711. MR 2012c:11265 Zbl 05833978
[Banister et al. 2007] M. Banister, J. Chaika, S. T. Chapman, and W. Meyerson, "On the arithmetic of arithmetical congruence monoids", Colloq. Math. 108:1 (2007), 105-118. MR 2007m:20096 Zbl 1142.20038
[Coykendall and Maney 2007] J. Coykendall and J. Maney, "Irreducible divisor graphs", Comm. Algebra 35:3 (2007), 885-895. MR 2008a: 13001 Zbl 1114.13001
[Geroldinger and Halter-Koch 2006] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: algebraic, combinatorial and analytic theory, Pure and Applied Mathematics 278, CRC, Boca Raton, FL, 2006. MR 2006k:20001 Zbl 1113.11002

Received: 2011-06-23 Revised: 2012-02-07 Accepted: 2012-02-09
baeth@ucmo.edu
cassity@ucmo.edu
Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States

Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2012 vol. 5 no. 3

Analysis of the steady states of a mathematical model for Chagas disease 237
Mary Clauson, Albert Harrison, Laura Shuman, Meir Shillor and anna Maria Spagnuolo
Bounds on the artificial phase transition for perfect simulation of hard core Gibbs 247 processes
Mark L. Huber, Elise Villella, Daniel Rozenfeld and Jason Xu
A nonextendable Diophantine quadruple arising from a triple of Lucas numbers 257
A. M. S. Ramasamy and D. Saraswathy
Alhazen's hyperbolic billiard problem 273
Nathan Poirier and Michael McDaniel
Bochner (p, Y)-operator frames 283
Mohammad Hasan Faroughi, Reza Ahmadi and Morteza Rahmani
k-furcus semigroups 295
Nicholas R. Baeth and Kaitlyn Cassity
Studying the impacts of changing climate on the Finger Lakes wine industry 303
Brian McGauvran and Thomas J. Pfaff
A graph-theoretical approach to solving Scramble Squares puzzles 313
Sarah Mason and Mali Zhang
The n-diameter of planar sets of constant width 327
Zair Ibragimov and Tuan Le
Boolean elements in the Bruhat order on twisted involutions 339
Delong Meng
Statistical analysis of diagnostic accuracy with applications to cricket 349
Lauren Mondin, Courtney Weber, Scott Clark, Jessica Winborn, Melinda M. Holt and Ananda B. W. Manage
Vertex polygons 361
Candice Nielsen
Optimal trees for functions of internal distance 371
Alex Collins, Fedelis Mutiso and Hua Wang

[^0]: MSC2010: 11Y05.
 Keywords: semigroups, factorization.

