# $\bullet$ <br> involve 

 a journal of mathematicsThe $n$-diameter of planar sets of constant width Zair Ibragimov and Tuan Le

# The $n$-diameter of planar sets of constant width 

Zair Ibragimov and Tuan Le<br>(Communicated by Michael Dorff)

We study the notion of $n$-diameter for sets of constant width. A convex set in the plane is said to be of constant width if the distance between two parallel support lines is constant, independent of the direction. The Reuleaux triangles are the well-known examples of sets of constant width that are not disks. The $n$-diameter of a compact set $E$ in the plane is

$$
d_{n}(E)=\max \left(\prod_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|\right)^{\frac{2}{n(n-1)}}
$$

where the maximum is taken over all $z_{k} \in E, k=1,2, \ldots, n$. We prove that if $n=5$, then the Reuleaux $n$-gons have the largest $n$-diameter among all sets of given constant width. The proof is based on the solution of an extremal problem for $n$-diameter.

## 1. Introduction

Sets of constant width have been an object of study by geometers for several centuries; some nontrivial examples of such sets were already known to Euler. A good summary of these studies is given in [Chakerian and Groemer 1983]; see also [Eggleston 1958]. A convex set in the plane is said to be of constant width if the distance between two parallel support lines is constant independent of the direction. Equivalently, a planar convex set $W$ with nonempty interior is said to be of constant width if for each $\xi \in \partial W$ there exists $\eta \in \partial W$ with $|\xi-\eta|=\operatorname{diam} W$. While the disks are easily seen to be of constant width, the Reuleaux triangles are the well-known examples of sets of constant width that are not disks. In fact, sets of constant width can be thought of as generalizations of disks in that they share many properties with disks. For example, closed disks are diametrically complete, that is, addition of any point increases their diameter. This completeness notion characterizes the sets of constant width. Namely, the family of all complete sets is precisely the family of sets of constant width [Eggleston 1958, Theorem 52]. Another common property is

[^0]that sets of constant width are precisely the sets of constant diameter. (A compact set $E$ is said to be of constant diameter if $\max \{|x-y|: y \in E\}=\operatorname{diam} E$ for each $x \in \partial E$ ). Also, the definition of constant width sets using parallel support lines is also based on a property of disks, namely that the distance between any two parallel support lines of a disk is constant. Finally, one more property of sets of constant width that is common with disks is that the length of the boundary arc of a disk is equal to $\lambda \pi$, where $\lambda$ is the diameter of the disk; the same is true of sets of constant width. Of course, not every property of the disks is shared by sets of constant width. For example, sets of constant width $\lambda>0$ do not have to have the same area as disks of diameter $\lambda$ or that sets of constant width do not have to have smooth boundaries. In fact, by the isoperimetric inequality disks of diameter $\lambda$ have the largest area while by the Blaschke-Lebesgue theorem the Reuleaux triangles of diameter $\lambda$ have the smallest area. The Reuleaux triangle (named after the nineteenth-century German engineer Franz Reuleaux) of diameter $\lambda$ is constructed by connecting the vertices of an equilateral triangle of sidelength $\lambda$ by arcs of circles of radius $\lambda$ and centered at the vertices.

Sets of constant width arise in many areas of mathematics. For instance, every odd-term Fourier series gives rise to a planar set of constant width [Kelly 1957]. Constant width sets are used in cinematography and engineering. For example, they are used in the design of the Wankel engine [Berger 1994]. They are also aesthetically pleasing, frequently turning up in art and design contexts. For example, some Irish coins have constant width shapes because of their appealing character.

The 3-diameter of sets of constant width as well as the related notions of $d_{3}$-complete sets and sets of constant 3-diameter were first studied in [Hästö et al. 2012]. As mentioned above the disks have the largest area and the Reuleaux triangles have the smallest area among all sets of given constant width. Surprisingly, the roles of the isoperimetric inequality and the Blaschke-Lebesgue theorem are reversed when it comes to 3 -diameter. More precisely, among the planar sets of constant width $\lambda$, Reuleaux triangles have the largest 3 -diameter, namely $\lambda$, and disks have the smallest 3 -diameter, $\sqrt{3} \lambda / 2$ [Hästö et al. 2012, Theorem 3.1]. On the other hand, the Reuleaux triangles have the largest area among all sets with both the diameter and 3-diameter equal to $\lambda$ [Hästö et al. 2012, Proposition 2.2]. As in the case of ordinary diameter, disks are both of constant 3 -diameter and $d_{3}$-complete, and $d_{3}$-complete sets are of constant 3-diameter [Hästö et al. 2012, Theorem 5.2].

In this paper we study $n$-diameter of sets of constant width. Our study is based on the following extremal problem: among all planar sets of cardinality $n$ and of diameter less than or equal to 2 , find one with the largest $n$-diameter. We conjecture that the vertices of regular $n$-gons have the largest $n$-diameter if $n$ is odd (Conjecture 2.8) and show the conjecture is equivalent to stating that the Reuleaux $n$-gons have the largest $n$-diameter among all sets of given constant width
(Theorem 4.3). Clearly, for $n=3$ the vertices of equilateral triangles provide a solution to the extremal problem. In contrast, the vertices of the regular 4 -gon do not have the largest 4-diameter (Lemma 2.9). We show that Conjecture 2.8 holds for $n=5$ (Theorem 3.1), and also verify the conjecture for $n=7$ under some additional assumptions (Proposition 3.3).

## 2. Extremal problem for $\boldsymbol{n}$-diameter

Definition 2.1. The $n$-diameter of a compact set $E$ in the complex plane $\mathbb{C}$ is defined by

$$
d_{n}(E)=\max \left(\prod_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|\right)^{\frac{2}{n(n-1)}},
$$

where the maximum is taken over all $z_{k} \in E, k=1,2, \ldots, n$.
Clearly, $d_{2}(E)$ is the ordinary diameter of $E$. That is,

$$
d_{2}(E)=\operatorname{diam} E=\sup \{|z-w|: z, w \in E\} .
$$

The $n$-diameter is weakly decreasing in $n$, that is, $d_{n}(E) \geq d_{n+1}(E)$ [Ahlfors 1973, p. 23]; see also [Hayman 1966, Theorem 1]. We give the proof for completeness. We have

$$
d_{n+1}(E)=\prod_{1 \leq i<j \leq n+1}\left|z_{i}-z_{j}\right|^{\frac{2}{n(n+1)}}
$$

thus

$$
\left(d_{n+1}(E)\right)^{n(n+1) / 2}=\prod_{k=2}^{n+1}\left|z_{1}-z_{k}\right| \prod_{2 \leq i<j \leq n+1}\left|z_{i}-z_{j}\right| \leq \prod_{k=2}^{n+1}\left|z_{1}-z_{k}\right|\left(d_{n}(E)\right)^{n(n-1) / 2}
$$

Similarly, for each $l=2,3, \ldots, n+1$ we have

$$
\left(d_{n+1}(E)\right)^{n(n+1) / 2} \leq \prod_{\substack{k=1 \\ k \neq l}}^{n+1}\left|z_{l}-z_{k}\right|\left(d_{n}(E)\right)^{n(n-1) / 2}
$$

Multiplying these expressions we obtain

$$
\left(d_{n+1}(E)\right)^{n(n+1)^{2} / 2} \leq\left(d_{n+1}(E)\right)^{n(n+1)}\left(d_{n}(E)\right)^{n(n-1)(n+1) / 2}
$$

which yields $d_{n+1}(E) \leq d_{n}(E)$, as required.
The transfinite diameter of $E$ is defined by

$$
d_{\infty}(E)=\lim _{n \rightarrow \infty} d_{n}(E) .
$$

The transfinite diameter of a line segment of length $L$ is $L / 4$ and the transfinite diameter of a disk of radius $r$ is equal to $r$ [Ahlfors 1973, p. 28; Goluzin 1969,
p. 298]. The notion of transfinite diameter is due to Fekete and plays an important role in complex analysis. It is related to the notions of logarithmic capacity and the Chebysheff constant [Ahlfors 1973; Hille 1962; Tsuji 1959]. Some extremal problems involving the transfinite diameter and $n$-diameter of planar sets were studied in [Burckel et al. 2008; Dubinin 1986; Duren and Schiffer 1991; Grandcolas 2000; Grandcolas 2002; Reich and Schiffer 1964].

The simplest examples of sets for computing the $n$-diameter are undoubtedly the $n$-tuples, that is, sets consisting of $n$ distinct points. Let $T_{n}$ denote the set of all $n$-tuples in $\mathbb{C}$ of diameter less than or equal to 2 .

Definition 2.2. By the extremal problem for $n$-diameter we mean the problem of finding

$$
\sup _{E \in T_{n}} d_{n}(E)
$$

According to Jung's theorem each $E \in T_{n}$ is contained in a disk of radius $r$, where $1 / 2 \leq r \leq 2 / \sqrt{3}$ [Berger 1994, Theorem 11.5.8]. Also, for any $E \subset \mathbb{C}$ and for any linear transformation $L(z)=a z+b(a, b \in \mathbb{C}, a \neq 0)$ we have $d_{n}(L(E))=|a| d_{n}(E)$. Consequently,

$$
\sup _{E \in T_{n}} d_{n}(E)=\sup _{E \in T_{n}^{\prime}} d_{n}(E), \quad \text { where } T_{n}^{\prime}=\left\{E \in T_{n}: E \subset \bar{B}(0,2 / \sqrt{3})\right\}
$$

Since the function $d_{n}: T_{n}^{\prime} \rightarrow[0,2]$ is continuous and since $T_{n}^{\prime}$ is a compact subset of the $n$-dimensional complex space $\mathbb{C}^{n}, d_{n}$ achieves its maximum in $T_{n}^{\prime}$.
Definition 2.3. An $n$-tuple $E^{\prime} \in T_{n}$ is called extremal if

$$
\sup _{E \in T_{n}} d_{n}(E)=d_{n}\left(E^{\prime}\right)
$$

Let $E_{n} \subset T_{n}$ denote the set of all extremal $n$-tuples in $T_{n}$. Thus, the $n$-diameter problem is equivalent to finding a member of $E_{n}$ and computing its n-diameter.

Lemma 2.4. Given $E \in E_{n}$, for each $z \in E$ there exists $w \in E$ with $|z-w|=2$. In particular, the n-gon with vertices in $E$ is convex.

Proof. Let $E=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \in E_{n}$ and suppose that there exists $k$ such that $\left|z_{k}-z_{l}\right|<2$ for all $l=1,2, \ldots, n$. Then there exists a disk $D$ centered at $z_{k}$ such that $\left|z-z_{l}\right|<2$ for all $z \in D$ and for all $l=1,2, \ldots, n$. Since the function

$$
P(z)=\prod_{\substack{l=1 \\ l \neq k}}^{n}\left(z-z_{l}\right)
$$

is analytic in $D$, its modulus $|P(z)|$ cannot achieve its maximum at $z_{k}$. Hence there exists a point $z_{k}^{\prime} \in D$ such that the $n$-tuple $E^{\prime}=\left\{z_{1}, z_{2}, \ldots, z_{k}^{\prime}, \ldots, z_{n}\right\}$ belongs to $T_{n}$ and that $d_{n}\left(E^{\prime}\right)>d_{n}(E)$. Hence $E \notin E_{n}$, which is the required contradiction.

Let $\mathscr{C}(E)$ be the convex hull of $E$, that is, the smallest convex set containing $E$. Then

$$
\mathscr{C}(E)=\left\{\sum_{k=1}^{3} \lambda_{k} \alpha_{k} \mid \alpha_{k} \in E, \lambda_{k} \geq 0, \sum_{k=1}^{3} \lambda_{k}=1\right\}
$$

by Carathéodory's theorem [Berger 1994, 11.1.8.6]. The first part of the lemma implies that the points $z_{1}, z_{2}, \ldots, z_{n}$ can only lie on the corners of $\mathscr{C}(E)$. Hence $\mathscr{C}(E)$ is the $n$-gon with vertices at the points $z_{1}, z_{2}, \ldots, z_{n}$.

The following corollary is an immediate consequence of Lemma 2.4.
Corollary 2.5. Let $n \geq 3$ be an odd integer. Then for each $E \in E_{n}$ there exist $z, w_{1}, w_{2} \in E$ such that $\left|z-w_{1}\right|=\left|z-w_{2}\right|=2$.

Let $\omega=e^{2 \pi i / n}$ be the $n$th root of unity and put

$$
\mathscr{\mathscr { C }}_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}
$$

Let $\overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}$ be the closed unit disk in $\mathbb{C}$. The following observation is credited to Pólya [Overholt and Schober 1989, p. 279]:

Theorem 2.6 (Pólya extremal problem).

$$
\max d_{n}\left(\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}\right)=d_{n}\left(\mathscr{C}_{n}\right)=n^{1 /(n-1)}
$$

where the maximum is taken over all points $z_{1}, z_{2}, \ldots, z_{n}$ in $\overline{\mathbb{D}}$.
Observe that

$$
\operatorname{diam} \mathscr{E}_{n}=2 \quad \text { if } n \text { is even. }
$$

On the other hand, if $n$ is odd, then
$\operatorname{diam} \mathscr{E}_{n}=\left|1-\omega^{(n-1) / 2}\right|=2 \sin ((n-1) \pi / 2 n)=2 \sin (\pi / 2-\pi / 2 n)=2 \cos (\pi / 2 n)$.
Put

$$
r_{n}= \begin{cases}1 & \text { if } n \text { is even }, \\ \sec (\pi / 2 n) & \text { if } n \text { is odd }\end{cases}
$$

and let

$$
r_{n} \mathscr{E}_{n}=\left\{r_{n}, r_{n} \omega, r_{n} \omega^{2}, \ldots, r_{n} \omega^{n-1}\right\}
$$

Note that

$$
d_{n}\left(r_{n} \mathscr{E}_{n}\right)=r_{n} d_{n}\left(\mathscr{C}_{n}\right)= \begin{cases}n^{1 /(n-1)} & \text { if } n \text { is even, }  \tag{2-7}\\ \sec (\pi / 2 n) n^{1 /(n-1)} & \text { if } n \text { is odd. }\end{cases}
$$

Since $r_{n} \mathscr{E}_{n} \in T_{n}^{\prime}$, we have

$$
\sup _{E \in T_{n}} d_{n}(E)=\sup _{E \in T_{n}^{\prime}} d_{n}(E) \geq d_{n}\left(r_{n} \mathscr{E}_{n}\right)= \begin{cases}n^{1 /(n-1)} & \text { if } n \text { is even, } \\ \sec (\pi / 2 n) n^{1 /(n-1)} & \text { if } n \text { is odd. }\end{cases}
$$

Conjecture 2.8. If $n$ is odd, then $d_{n}(E) \leq d_{n}\left(r_{n} \mathscr{E}_{n}\right)$ for each $E \in T_{n}$.
Conjecture 2.8 predicts that if $n$ is odd, then the vertices of the regular $n$-gons are extremal. In contrast, the vertices of the regular 4-gon are not extremal.
Lemma 2.9. Let $E=\left\{r_{3}, r_{3} \omega, r_{3} x, r_{3} \omega^{2}\right\}=r_{3}\left(\mathscr{C}_{3} \cup\{x\}\right)$, where $x=1-\sqrt{3}$. Then $d_{4}(E)>d_{4}\left(\mathscr{E}_{4}\right)$.
Proof. Recall that $r_{3}=2 / \sqrt{3}$ and $\mathscr{E}_{3}=\left\{1, \omega, \omega^{2}\right\}$, where $w=e^{2 \pi i / 3}$ is the third root of unity. Then $|x-1|=\sqrt{3}$ and $|x-\omega|=\left|x-\omega^{2}\right|=\sqrt{6-3 \sqrt{3}}$. Clearly, $E \in T_{4}$ and hence

$$
\begin{aligned}
d_{4}(E) & =r_{3}\left(|x-1||x-\omega|\left|x-\omega^{2}\right||1-\omega|\left|1-\omega^{2}\right|\left|\omega-\omega^{2}\right|\right)^{1 / 6} \\
& =\frac{2}{\sqrt{3}}\left(|x-1||x-\omega|\left|x-\omega^{2}\right|\right)^{1 / 6}\left[\left(|1-\omega|\left|1-\omega^{2}\right|\left|\omega-\omega^{2}\right|\right)^{1 / 3}\right]^{1 / 2} \\
& =\frac{2}{\sqrt{3}}(6 \sqrt{3}-9)^{1 / 6}\left(d_{3}\left(\mathscr{C}_{3}\right)\right)^{1 / 2}=\frac{2}{\sqrt{3}}(6 \sqrt{3}-9)^{1 / 6} 3^{1 / 4} \\
& =2(2-\sqrt{3})^{1 / 6}>4^{1 / 3}=d_{4}\left(\mathscr{C}_{4}\right),
\end{aligned}
$$

as required.
Unfortunately, this idea does not seem to extend to even integers greater than 4. More precisely, some tedious computations show that if

$$
E=r_{n-1}\left(\mathscr{C}_{n-1} \cup\left\{x_{n}\right\}\right), \quad \text { where } x_{n}=1-2 \cos \frac{\pi}{2(n-1)},
$$

then $d_{n}(E)<d_{n}\left(\mathscr{E}_{n}\right)$ for $n=6,8,10$.

## 3. Cases $\boldsymbol{n}=\mathbf{5}$ and $\boldsymbol{n}=\mathbf{7}$

In this section we discuss Conjecture 2.8 for $n=5$ and $n=7$. We will make a frequent use of the well-known Ptolemy's inequality and the AM-GM inequality as well as Reinhardt's theorem. Recall that Ptolemy's inequality says that $|a-b||c-d| \leq$ $|a-c||b-d|+|a-d||b-c|$ for all $a, b, c, d \in \mathbb{C}$ and that the equality occurs if and only if the points $a, b, c, d$ lie on a circle in this order. The AM-GM inequality says that

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq\left(x_{1} \cdot x_{2} \cdots x_{n}\right)^{1 / n}
$$

for all nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{n}$, and that the equality occurs when $x_{1}=x_{2}=\cdots=x_{n}$. Reinhardt's theorem says that if $n$ is odd, then the regular $n$-gon has the largest perimeter among all convex $n$-gons of fixed diameter [Mossinghoff 2006].

Theorem 3.1. Conjecture 2.8 is true for $n=5$.

Proof. Let $E=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$ be any 5 -tuple in $T_{5}$. Without loss of generality we can assume that $E$ is extremal, that is, $E \in E_{5}$. Let $\mathscr{P}_{5}(E)$ denote the 5 -gon with vertices in $E$. Note that $\mathscr{F}_{5}(E)$ is convex by Lemma 2.4. Let $P$ denote the perimeter of $\mathscr{P}_{5}(E)$. That is,

$$
P=\left|z_{1}-z_{2}\right|+\left|z_{2}-z_{3}\right|+\left|z_{3}-z_{4}\right|+\left|z_{4}-z_{5}\right|+\left|z_{5}-z_{1}\right| .
$$

Clearly,

$$
\left|z_{1}-z_{3}\right|\left|z_{1}-z_{4}\right|\left|z_{2}-z_{4}\right|\left|z_{2}-z_{5}\right|\left|z_{3}-z_{5}\right| \leq 2^{5}
$$

and the equality holds if $\mathscr{P}_{5}(E)$ is regular. Using the AM-GM inequality we obtain

$$
\left|z_{1}-z_{2}\right|\left|z_{2}-z_{3}\right|\left|z_{3}-z_{4}\right|\left|z_{4}-z_{5}\right|\left|z_{5}-z_{1}\right| \leq(P / 5)^{5} .
$$

Since $\mathscr{P}_{5}(E)$ is convex and diam $\mathscr{P}_{5}(E)=2$, by Reinhardt's theorem $P$ is less than or equal to the perimeter of a regular 5 -gon of diameter 2 . Computations show that such a 5 -gon has a side-length $l=\sec (\pi / 5)$ and is inscribed in a circle of radius

$$
r=\csc (2 \pi / 5)=\csc (\pi / 2-\pi / 10)=\sec (\pi / 10) .
$$

Hence

$$
d_{5}(E)=\prod_{1 \leq i<j \leq 5}\left|z_{i}-z_{j}\right|^{1 / 10} \leq \sqrt{2 \sec (\pi / 5)} .
$$

Observe that

$$
\sqrt{2 \sec (\pi / 5)}=\sec (\pi / 10) 5^{1 / 4}
$$

Indeed, by Theorem 2.6 we have $d_{5}\left(\mathscr{C}_{5}\right)=5^{1 / 4}$ and a direct computation yields

$$
d_{5}\left(\mathscr{C}_{5}\right)=\sqrt{|1-\omega|\left|1-\omega^{2}\right|}=2 \sqrt{\sin (\pi / 5) \sin (2 \pi / 5)} .
$$

Hence $2 \sqrt{\sin (\pi / 5) \sin (2 \pi / 5)}=5^{1 / 4}$ and it remains to show that

$$
2 \sec (\pi / 5)=4 \sec ^{2}(\pi / 10) \sin (\pi / 5) \sin (2 \pi / 5)
$$

Equivalently,

$$
\cos ^{2}(\pi / 10)=2 \cos (\pi / 5) \sin (\pi / 5) \sin (2 \pi / 5) .
$$

We have
$2 \cos (\pi / 5) \sin (\pi / 5) \sin (2 \pi / 5)=\sin ^{2}(2 \pi / 5)=\sin ^{2}(\pi / 2-\pi / 10)=\cos ^{2}(\pi / 10)$, as required.

Finally, the equality holds if $\mathscr{P}_{5}(E)$ is regular, that is, $E=L\left(r_{5} \mathscr{E}_{5}\right)$ for some $L(z)=a z+b$ with $|a|=1$. Thus,

$$
d_{5}(E) \leq \sqrt{2 \sec (\pi / 5)}=\sec (\pi / 10) 5^{1 / 4}=d_{n}\left(r_{5} \mathscr{E}_{5}\right),
$$

completing the proof.

Next, we discuss Conjecture 2.8 for $n=7$. While we cannot verify if the conjecture is true for $n=7$, we provide its validity under the following additional condition on 7 -tuples. Given a 7 -tuple $E=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}\right\}$, suppose that the 7 -gon $\mathscr{P}_{7}(E)$ with vertices in $E$ is convex and that

$$
\begin{align*}
\sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right| \mid z_{k+2}- & z_{k+3} \mid \\
& \leq \frac{1}{2} \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left(\left|z_{k+1}-z_{k+2}\right|+\left|z_{k+3}-z_{k+4}\right|\right) \tag{3-2}
\end{align*}
$$

where $z_{8}=z_{1}, z_{9}=z_{2}, z_{10}=z_{3}, z_{11}=z_{4}$. Observe that the regular 7-gons satisfy condition (3-2).
Proposition 3.3. Suppose that the 7 -tuple $E=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{7}\right\}$ is in $T_{7}$ and satisfies condition (3-2) and that $\mathscr{P}_{7}(E)$ is convex. Then

$$
d_{7}(E) \leq 2(2 \sin (\pi / 14))^{1 / 2}(1+2 \sin (\pi / 14))^{1 / 6} .
$$

Equality holds $\mathscr{\mathscr { P }}_{7}(E)$ is a regular 7-gon of side-length

$$
l=2 \sec (\pi / 14) \sin (\pi / 7)=4 \sin (\pi / 14)
$$

In particular,

$$
2(2 \sin (\pi / 14))^{1 / 2}(1+2 \sin (\pi / 14))^{1 / 6}=\sec (\pi / 14) 7^{1 / 6}
$$

Proof. The product $\prod_{1 \leq k<l \leq 7}\left|z_{k}-z_{l}\right|$ can be split into three parts:

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right|\left|z_{2}-z_{3}\right|\left|z_{3}-z_{4}\right|\left|z_{4}-z_{5}\right|\left|z_{5}-z_{6}\right|\left|z_{6}-z_{7}\right|\left|z_{1}-z_{7}\right|, \\
& \left|z_{1}-z_{4}\right|\left|z_{1}-z_{5}\right|\left|z_{2}-z_{5}\right|\left|z_{2}-z_{6}\right|\left|z_{3}-z_{6}\right|\left|z_{3}-z_{7}\right|\left|z_{4}-z_{7}\right|, \\
& \left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|\left|z_{3}-z_{5}\right|\left|z_{4}-z_{6}\right|\left|z_{5}-z_{7}\right|\left|z_{1}-z_{6}\right|\left|z_{2}-z_{7}\right| .
\end{aligned}
$$

It follows from the AM-GM inequality and Reinhardt's theorem that

$$
\left|z_{1}-z_{2}\right|\left|z_{2}-z_{3}\right|\left|z_{3}-z_{4}\right|\left|z_{4}-z_{5}\right|\left|z_{5}-z_{6}\right|\left|z_{6}-z_{7}\right|\left|z_{1}-z_{7}\right| \leq(P / 7)^{7},
$$

where $P$ is the perimeter of a regular 7 -gon with side-length $4 \sin \frac{\pi}{14}$. Therefore,

$$
\left|z_{1}-z_{2}\right|\left|z_{2}-z_{3}\right|\left|z_{3}-z_{4}\right|\left|z_{4}-z_{5}\right|\left|z_{5}-z_{6}\right|\left|z_{6}-z_{7}\right|\left|z_{1}-z_{7}\right| \leq[4 \sin (\pi / 14)]^{7}
$$

and since $E \in T_{7}$, we also obtain

$$
\left|z_{1}-z_{4}\right|\left|z_{1}-z_{5}\right|\left|z_{2}-z_{5}\right|\left|z_{2}-z_{6}\right|\left|z_{3}-z_{6}\right|\left|z_{3}-z_{7}\right|\left|z_{4}-z_{7}\right| \leq 2^{7} .
$$

Moreover, the equality holds for a regular 7 -gon in both of these inequalities.
It remains to find the maximum value of

$$
\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|\left|z_{3}-z_{5}\right|\left|z_{4}-z_{6}\right|\left|z_{5}-z_{7}\right|\left|z_{1}-z_{6}\right|\left|z_{2}-z_{7}\right| .
$$

To achieve this goal we will use Ptolemy's inequality. We have
$\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right| \leq\left|z_{1}-z_{4}\right|\left|z_{2}-z_{3}\right|+\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right| \leq 2\left|z_{2}-z_{3}\right|+\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right|$.
Hence

$$
\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right| \leq 2\left|z_{2}-z_{3}\right|+\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right| .
$$

In a similar fashion we obtain

$$
\begin{aligned}
& \left|z_{2}-z_{4}\right|\left|z_{3}-z_{5}\right| \leq 2\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right|\left|z_{4}-z_{5}\right|, \\
& \left|z_{3}-z_{5}\right|\left|z_{4}-z_{6}\right| \leq 2\left|z_{4}-z_{5}\right|+\left|z_{3}-z_{4}\right|\left|z_{5}-z_{6}\right|, \\
& \left|z_{4}-z_{6}\right|\left|z_{5}-z_{7}\right| \leq 2\left|z_{5}-z_{6}\right|+\left|z_{4}-z_{5}\right|\left|z_{6}-z_{7}\right|, \\
& \left|z_{5}-z_{7}\right|\left|z_{1}-z_{6}\right| \leq 2\left|z_{6}-z_{7}\right|+\left|z_{5}-z_{6}\right|\left|z_{1}-z_{7}\right|, \\
& \left|z_{1}-z_{6}\right|\left|z_{2}-z_{7}\right| \leq 2\left|z_{1}-z_{7}\right|+\left|z_{6}-z_{7}\right|\left|z_{1}-z_{2}\right|, \\
& \left|z_{2}-z_{7}\right|\left|z_{1}-z_{3}\right| \leq 2\left|z_{1}-z_{2}\right|+\left|z_{1}-z_{7}\right|\left|z_{2}-z_{3}\right| .
\end{aligned}
$$

Notice that the equalities hold if $\mathscr{P}_{7}(E)$ is a regular 7 -gon in $T_{7}$, since the vertices of such a 7 -gon lie on a circle and that $\left|z_{k}-z_{k+3}\right|=2$ for each $k=1,2, \ldots, 7$.

Multiplying these inequalities and applying the AM-GM inequality we obtain

$$
\begin{aligned}
\prod_{1 \leq k \leq 7}\left|z_{k}-z_{k+2}\right|^{2} & =\left(\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|\left|z_{3}-z_{5}\right|\left|z_{4}-z_{6}\right|\left|z_{5}-z_{7}\right|\left|z_{1}-z_{6}\right|\left|z_{2}-z_{7}\right|\right)^{2} \\
& \left.\leq \prod_{1 \leq k \leq 7}\left(2\left|z_{k+1}-z_{k+2}\right|+\left|z_{k}-z_{k+1}\right|\left|z_{k+2}-z_{k+3}\right|\right)\right) \\
& \leq \frac{1}{7^{7}}\left(2 \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|+\sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left|z_{k+2}-z_{k+3}\right|\right)^{7} .
\end{aligned}
$$

Reinhardt's theorem implies

$$
2 \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right| \leq 2 P=56 \sin \frac{\pi}{14}
$$

Once again we have the equality if $\mathscr{P}_{7}(E)$ is a regular 7 -gon in $T_{7}$.
By our assumption we have

$$
\sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left|z_{k+2}-z_{k+3}\right| \leq \frac{1}{2} \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left(\left|z_{k+1}-z_{k+2}\right|+\left|z_{k+3}-z_{k+4}\right|\right)
$$

with equality for a regular 7-gon. Applying the AM-GM inequality for each pair of $\left|z_{k}-z_{k+1}\right|^{2}+\left|z_{l}-z_{l+1}\right|^{2}(1 \leq k<l \leq 7)$ and Reinhardt's theorem we have

$$
\begin{aligned}
28^{2} \sin ^{2} \frac{\pi}{14} & \geq\left(\sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\right)^{2} \\
& \geq \frac{7}{3} \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left(\left|z_{k+2}-z_{k+3}\right|+\left|z_{k+1}-z_{k+2}\right|+\left|z_{k+3}-z_{k+4}\right|\right) \\
& \geq 7 \sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left|z_{k+2}-z_{k+3}\right|
\end{aligned}
$$

Thus,

$$
\sum_{k=1}^{7}\left|z_{k}-z_{k+1}\right|\left|z_{k+2}-z_{k+3}\right| \leq 112 \sin ^{2} \frac{\pi}{14}
$$

which means that

$$
\prod_{k=1}^{7}\left|z_{k}-z_{k+2}\right| \leq\left(8 \sin \frac{\pi}{14}+16 \sin ^{2} \frac{\pi}{14}\right)^{7 / 2} .
$$

This completes our proof in this case. The equality indeed occurs when $z_{k}$ 's are vertices of the regular 7 -gon whose side-length $l=4 \sin \pi / 14$.

## 4. The $\boldsymbol{n}$-diameter of sets of constant width

Let $n$ be odd and consider the $n$-tuple $r_{n} \mathscr{E}_{n}$. Recall that $r_{n}=\sec (\pi / 2 n)$ and $\mathscr{C}_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$. Put $z_{k}=r_{n} \omega^{k}, k=0,1,2, \ldots, n-1$. Connect the consecutive points $z_{k}$ and $z_{k+1}$ by an arc of a circle whose center is the unique point $z_{l}$ in the set $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ which is equidistant from the points $z_{k}$ and $z_{k+1}$. The radii of all such circles are the same and is equal to 2 . For example, the circle centered at $z_{n}$ and radius $\lambda$ joins the points $z_{(n-1) / 2}$ and $z_{(n+1) / 2}$. The resulting set, denoted by $\mathscr{R}_{n}$, is of constant width 2 . It is called a Reuleaux $n$-gon and the points $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ are called the vertices of $\mathscr{R}_{n}$ [Chakerian and Groemer 1983, p. 59]. It follows from the construction of $\mathscr{R}_{n}$ that if $W$ is any set of constant width 2 containing $r_{n} \mathscr{E}_{n}$, then $W \subset \mathscr{R}_{n}$. A Reuleaux $n$-gon of width $\lambda>0$ is constructed in a similar fashion.

A Reuleaux polygon of width $\lambda$ is a set of constant width $\lambda$ whose boundary consists of a finitely many (necessarily odd) circular arcs of radius $\lambda$ [Eggleston 1958, p. 128]. Let $\mathscr{R}$ be a Reuleaux polygon and let $D$ be a unique disk of smallest radius containing $\mathscr{R}$. If all the corners of $\mathscr{R}$ (i.e., the intersection points of the boundary $\operatorname{arcs}$ of $\mathscr{R}$ ) are contained on $\partial D$, then $\mathscr{R}$ is a Reuleaux $n$-gon, where $n$ is the number of corners.

Lemma 4.1. If $n$ is odd, then $d_{n}\left(\mathscr{R}_{n}\right)=d_{n}\left(r_{n} \mathscr{E}_{n}\right)$.

Proof. Let $D=\bar{B}\left(0, r_{n}\right)$. Since $\mathscr{R}_{n} \subset D$, we have $d_{n}\left(\mathscr{R}_{n}\right) \leq d_{n}(D)$. Since the corners $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ of $\mathscr{R}_{n}$ are equally spaced on $\partial D$, we have

$$
d_{n}\left(\mathscr{R}_{n}\right) \geq \prod_{1 \leq k<l \leq n}\left|z_{k}-z_{l}\right|^{\frac{2}{n(n-1)}}=d_{n}(D) .
$$

Thus, $d_{n}\left(\mathscr{R}_{n}\right)=d_{n}(D)=r_{n} d_{n}(\overline{\mathbb{D}})=\sec (\pi / 2 n) n^{1 /(n-1)}=d_{n}\left(r_{n} \mathscr{E}_{n}\right)$.
Conjecture 4.2. If $n$ is odd, the Reuleaux $n$-gons have the largest $n$-diameter among all sets of the same constant width.

Theorem 4.3. Conjecture 4.2 is equivalent to Conjecture 2.8.
Proof. Suppose that Conjecture 2.8 is true and let $W$ be a set of constant width $\lambda$. Let $\mathscr{R}_{n}(\lambda)$ be a Reuleaux $n$-gon of width $\lambda$. Note that if $L(z)=a z+b$ with $a \neq 0$, then the set $L(W)$ is of constant width $|a| \lambda$. Let $E$ be an $n$-tuple of points in $\partial W$ with $d_{n}(W)=d_{n}(E)$. Since $(2 / \lambda) E \in T_{n}$, using Conjecture 2.8 and Lemma 4.1 we obtain

$$
d_{n}(W)=d_{n}(E)=\frac{\lambda}{2} d_{n}((2 / \lambda) E) \leq \frac{\lambda}{2} d_{n}\left(r_{n} \mathscr{E}_{n}\right)=\frac{\lambda}{2} d_{n}\left(\mathscr{R}_{n}\right)=d_{n}\left(\mathscr{R}_{n}(\lambda)\right) .
$$

Conversely, suppose that Conjecture 4.2 is true and let $E$ be any $n$-tuple in $T_{n}$. Then $E$ is contained in a set $W$ of constant width 2 [Eggleston 1958, Theorem 54]. Using Conjecture 4.2 and Lemma 4.1 we obtain

$$
d_{n}(E) \leq d_{n}(W) \leq d_{n}\left(\mathscr{R}_{n}\right)=d_{n}\left(r_{n} \mathscr{E}_{n}\right)
$$

Conjecture 4.2, if true, would imply the following corollary (see also [Hille 1962]).

Corollary 4.4. Let $A \subset \mathbb{C}$ be any set with $\operatorname{diam} A=\lambda>0$ and let $D$ be a disk with $\operatorname{diam} A=\lambda$. Then

$$
d_{\infty}(A) \leq d_{\infty}(D)=\frac{\lambda}{2} .
$$

Proof. Clearly, $d_{\infty}(D)=\lambda / 2$. The set $A$ is contained in a set $W$ of constant width $\lambda$. If $n$ is odd, then using (2-7), Lemma 4.1 and Conjecture 4.2 we obtain

$$
d_{n}(A) \leq d_{n}(W) \leq \frac{\lambda}{2} d_{n}\left(\mathscr{R}_{n}(\lambda)=\frac{\lambda}{2} \sec (\pi / 2 n) n^{1 /(n-1)} .\right.
$$

By letting $n$ tend to infinity we obtain $d_{\infty}(A) \leq \lambda / 2$.

## References

[Ahlfors 1973] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGrawHill, New York, 1973. MR 50 \#10211 Zbl 0272.30012
[Berger 1994] M. Berger, Geometry, I, II, Springer, Berlin, 1994. MR 95g:51001 Zbl 0606.51001
[Burckel et al. 2008] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini, and T. J. Ransford, "Area, capacity and diameter versions of Schwarz's lemma", Conform. Geom. Dyn. 12 (2008), 133-152. MR 2010j:30050 Zbl 1233.30016
[Chakerian and Groemer 1983] G. D. Chakerian and H. Groemer, "Convex bodies of constant width", pp. 49-96 in Convexity and its applications, edited by P. M. Gruber and J. M. Wills, Birkhäuser, Basel, 1983. MR 85f:52001 Zbl 0518.52002
[Dubinin 1986] V. N. Dubinin, "A symmetrization method and transfinite diameter", Sibirsk. Mat. Zh. 27:2 (1986), 39-46. In Russian; translated in Sib. Math. J. 27 (1986), 174-180. MR 88j:30053 Zbl 0595.30031
[Duren and Schiffer 1991] P. L. Duren and M. M. Schiffer, "Univalent functions which map onto regions of given transfinite diameter", Trans. Amer. Math. Soc. 323:1 (1991), 413-428. MR 92d:30013 Zbl 0724.30018
[Eggleston 1958] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics 47, Cambridge University Press, New York, 1958. MR 23 \#A2123 Zbl 0086.15302
[Goluzin 1969] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs 26, American Mathematical Society, Providence, RI, 1969. MR 40 \#308 Zbl 0183.07502
[Grandcolas 2000] M. Grandcolas, "Regular polygons and transfinite diameter", Bull. Austral. Math. Soc. 62:1 (2000), 67-74. MR 2001k:52005 Zbl 0976.52004
[Grandcolas 2002] M. Grandcolas, Problems of diameters in the plane, the Cauchy problem for a derivor, thesis, Université de Rouen, Mont-Saint Aignan, 2002.
[Hästö et al. 2012] P. Hästö, Z. Ibragimov, and D. Minda, "Convex sets of constant width and 3-diameter", Houston J. Math 38:2 (2012), 421-443.
[Hayman 1966] W. K. Hayman, Transfinite diameter and its applications, Matscience Report 45, Institute of Mathematical Sciences, Madras, 1966. MR 52 \#14272
[Hille 1962] E. Hille, Analytic function theory, vol. 2, Ginn, Boston, 1962. MR 34 \#1490 Zbl 0102. 29401
[Kelly 1957] P. J. Kelly, "Curves with a kind of constant width", Amer. Math. Monthly 64 (1957), 333-336. MR 19,1073b Zbl 0080.15602
[Mossinghoff 2006] M. J. Mossinghoff, "A \$1 problem", Amer. Math. Monthly 113:5 (2006), 385-402. MR 2006m:51021 Zbl 1170.51007
[Overholt and Schober 1989] M. Overholt and G. Schober, "Transfinite extent", Ann. Acad. Sci. Fenn. Ser. A I Math. 14:2 (1989), 277-290. MR 90m:30028 Zbl 0699.30009
[Reich and Schiffer 1964] E. Reich and M. Schiffer, "Estimates for the transfinite diameter of a continuum", Math. Z. 85 (1964), 91-106. MR 30 \#4921 Zbl 0129.29304
[Tsuji 1959] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 \#5712 Zbl 0087.28401

Received: 2011-09-12
zibragimov@fullerton.edu
tuanl@wpi.edu

Revised: 2011-12-14 Accepted: 2011-12-16
Department of Mathematics, California State University, Fullerton, McCarthy Hall 154, Fullerton, CA 92831, United States

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States

# involve <br> <br> msp.org/involve <br> <br> msp.org/involve EDITORS 

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

| Board of Editors |  |  |  |
| :---: | :---: | :---: | :---: |
| Colin Adams | Williams College, USA colin.c.adams@williams.edu | David Larson | Texas A\&M University, USA larson@math.tamu.edu |
| John V. Baxley | Wake Forest University, NC, USA baxley@wfu.edu | Suzanne Lenhart | University of Tennessee, USA lenhart@math.utk.edu |
| Arthur T. Benjamin | Harvey Mudd College, USA benjamin@hmc.edu | Chi-Kwong Li | College of William and Mary, USA ckli@math.wm.edu |
| Martin Bohner | Missouri U of Science and Technology, USA bohner@mst.edu | Robert B. Lund | Clemson University, USA lund@clemson.edu |
| Nigel Boston | University of Wisconsin, USA boston@math.wisc.edu | Gaven J. Martin | Massey University, New Zealand g.j.martin@massey.ac.nz |
| Amarjit S. Budhiraja | U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu | Mary Meyer | Colorado State University, USA meyer@stat.colostate.edu |
| Pietro Cerone | Victoria University, Australia pietro.cerone@vu.edu.au | Emil Minchev | Ruse, Bulgaria eminchev@hotmail.com |
| Scott Chapman | Sam Houston State University, USA scott.chapman@shsu.edu | Frank Morgan | Williams College, USA frank.morgan@williams.edu |
| Joshua N. Cooper | University of South Carolina, USA cooper@math.sc.edu | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir |
| Jem N. Corcoran | University of Colorado, USA corcoran@colorado.edu | Zuhair Nashed | University of Central Florida, USA znashed@mail.ucf.edu |
| Toka Diagana | Howard University, USA tdiagana@howard.edu | Ken Ono | Emory University, USA ono@mathcs.emory.edu |
| Michael Dorff | Brigham Young University, USA mdorff@math.byu.edu | Timothy E. O'Brien | Loyola University Chicago, USA tobrie1@luc.edu |
| Sever S. Dragomir | Victoria University, Australia sever@matilda.vu.edu.au | Joseph O'Rourke | Smith College, USA orourke@cs.smith.edu |
| Behrouz Emamizadeh | The Petroleum Institute, UAE bemamizadeh@pi.ac.ae | Yuval Peres | Microsoft Research, USA peres@microsoft.com |
| Joel Foisy | SUNY Potsdam foisyjs@potsdam.edu | Y.-F. S. Pétermann | Université de Genève, Switzerland petermann@math.unige.ch |
| Errin W. Fulp | Wake Forest University, USA fulp@wfu.edu | Robert J. Plemmons | Wake Forest University, USA plemmons@wfu.edu |
| Joseph Gallian | University of Minnesota Duluth, USA jgallian@d.umn.edu | Carl B. Pomerance | Dartmouth College, USA carl.pomerance@dartmouth.edu |
| Stephan R. Garcia | Pomona College, USA stephan.garcia@pomona.edu | Vadim Ponomarenko | San Diego State University, USA vadim@sciences.sdsu.edu |
| Anant Godbole | East Tennessee State University, USA godbole@etsu.edu | Bjorn Poonen | UC Berkeley, USA poonen@math.berkeley.edu |
| Ron Gould | Emory University, USA rg@mathcs.emory.edu | James Propp | U Mass Lowell, USA jpropp@cs.uml.edu |
| Andrew Granville | Université Montréal, Canada andrew@dms.umontreal.ca | Józeph H. Przytycki | George Washington University, USA przytyck@gwu.edu |
| Jerrold Griggs | University of South Carolina, USA griggs@math.sc.edu | Richard Rebarber | University of Nebraska, USA rrebarbe@math.unl.edu |
| Sat Gupta | U of North Carolina, Greensboro, USA sngupta@uncg.edu | Robert W. Robinson | University of Georgia, USA rwr@cs.uga.edu |
| Jim Haglund | University of Pennsylvania, USA jhaglund@math.upenn.edu | Filip Saidak | U of North Carolina, Greensboro, USA f_saidak@uncg.edu |
| Johnny Henderson | Baylor University, USA johnny_henderson@baylor.edu | James A. Sellers | Penn State University, USA sellersj@math.psu.edu |
| Jim Hoste | Pitzer College jhoste@pitzer.edu | Andrew J. Sterge | Honorary Editor andy@ajsterge.com |
| Natalia Hritonenko | Prairie View A\&M University, USA nahritonenko@pvamu.edu | Ann Trenk | Wellesley College, USA atrenk@wellesley.edu |
| Glenn H. Hurlbert | Arizona State University,USA hurlbert@asu.edu | Ravi Vakil | Stanford University, USA vakil@math.stanford.edu |
| Charles R. Johnson | College of William and Mary, USA crjohnso@math.wm.edu | Antonia Vecchio | Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it |
| K. B. Kulasekera | Clemson University, USA kk@ces.clemson.edu | Ram U. Verma | University of Toledo, USA verma99@msn.com |
| Gerry Ladas | University of Rhode Island, USA gladas@math.uri.edu | John C. Wierman | Johns Hopkins University, USA wierman@jhu.edu |
|  |  | Michael E. Zieve | University of Michigan, USA zieve@umich.edu |

## PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ( $+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

## PUBLISHED BY

mathematical sciences publishers

# involve 2012 vol. 5 no. 3 

Analysis of the steady states of a mathematical model for Chagas disease ..... 237
Mary Clauson, Albert Harrison, Laura Shuman, Meir Shillor and anna Maria Spagnuolo
Bounds on the artificial phase transition for perfect simulation of hard core Gibbs ..... 247 processes
Mark L. Huber, Elise Villella, Daniel Rozenfeld and Jason Xu
A nonextendable Diophantine quadruple arising from a triple of Lucas numbers ..... 257
A. M. S. Ramasamy and D. Saraswathy
Alhazen's hyperbolic billiard problem ..... 273
Nathan Poirier and Michael McDaniel
Bochner ( $p, Y$ )-operator frames ..... 283
Mohammad Hasan Faroughi, Reza Ahmadi and Morteza Rahmani
$k$-furcus semigroups ..... 295
Nicholas R. Baeth and Kaitlyn Cassity
Studying the impacts of changing climate on the Finger Lakes wine industry ..... 303
Brian McGauvran and Thomas J. Pfaff
A graph-theoretical approach to solving Scramble Squares puzzles ..... 313
Sarah Mason and Mali Zhang
The $n$-diameter of planar sets of constant width ..... 327
Zair Ibragimov and Tuan Le
Boolean elements in the Bruhat order on twisted involutions ..... 339
Delong Meng
Statistical analysis of diagnostic accuracy with applications to cricket ..... 349
Lauren Mondin, Courtney Weber, Scott Clark, Jessica Winborn, Melinda M. Holt and Ananda B. W. Manage
Vertex polygons ..... 361
Candice Nielsen
Optimal trees for functions of internal distance ..... 371
Alex Collins, Fedelis Mutiso and Hua Wang


[^0]:    MSC2010: primary 30C65; secondary 05C25.
    Keywords: n-diameter, constant width sets, Pólya extremal problem.

