\bullet
 involve

 a journal of mathematicsTheoretical properties of the length-biased inverse Weibull distribution

Jing Kersey and Broderick O. Oluyede

Theoretical properties of the length-biased inverse Weibull distribution

Jing Kersey and Broderick O. Oluyede
(Communicated by Kenneth S. Berenhaut)

Abstract

We investigate the length-biased inverse Weibull (LBIW) distribution, deriving its density function, hazard and reverse hazard functions, and reliability function. The moments, moment-generating function, Fisher information and Shannon entropy are also given. We discuss parameter estimation via the method of moments and maximum likelihood, and hypothesis testing for the LBIW and parent distributions.

1. Introduction

Weighted distributions occur in many areas, including medicine, ecology, reliability, and branching processes. Results and applications in these and other areas can be seen in [Patil and Rao 1978; Gupta and Kirmani 1990; Gupta and Keating 1986; Oluyede 1999]. In a weighted distribution problem, a realization x of X enters into the investigator's record with probability proportional to a weight function $w(x)$. The recorded x is not an observation of X, but rather an observation of a weighted random variable X_{w}.

In this article we are interested in the case where $w(x)=x$. This is called length bias; it approximates situations common in practice (see [Arratia and Goldstein 2009] for an introductory discussion). We will apply length bias to the inverse Weibull distribution (see Section 2 below), which has a wide range of applications in diverse areas such as medicine, reliability and ecology; for example, Keller et al. [1985] found it to be a good fit in their investigation of failures of mechanical components subject to degradation. As a result, the inverse Weibull distribution is well studied; see [Johnson et al. 1994] or [Rinne 2009] for a tabulation of results.

To proceed, we need some standard terminology. If X is a continuous, nonnegative random variable with distribution function F and probability density function (pdf) f (so that $f(u)=d F(u) / d u$), we call $\bar{F}(x)=1-F(x)$ the associated reliability function, from the situation where $\bar{F}(x)$ describes the probability that

[^0]some piece of equipment, say, will still be working at time x. The hazard function $\lambda_{F}(x)$ and mean residual life function $\delta_{F}(x)$ are defined by
\[

$$
\begin{equation*}
\lambda_{F}(x)=\frac{f(x)}{\bar{F}(x)} \quad \text { and } \quad \delta_{F}(x)=\int_{x}^{\infty} \frac{\bar{F}(u)}{\bar{F}(x)} d u . \tag{1}
\end{equation*}
$$

\]

The reverse hazard function is $\tau_{F}(x)=f(x) / F(x)$. When λ_{F} is monotone increasing, we say that F is an increasing hazard rate (IHR) distribution. Likewise, a decreasing mean residual life (DMRL) distribution is one where δ_{F} is monotone decreasing. It can be shown that IHR implies DMRL. IHR distributions have a number of nice properties, including finiteness of moments of all orders.

Now let $w(x), x \geq 0$, be a positive function, and assume that the expectation of $w(X)$ is positive and finite:

$$
\begin{equation*}
0<E[w(X)]:=\int_{0}^{\infty} f(x) w(x) d x<\infty . \tag{2}
\end{equation*}
$$

We define the weighted random variable X_{w} by specifying its pdf:

$$
\begin{equation*}
f_{w}(x)=\frac{w(x) f(x)}{E[w(X)]}, \quad x \geq 0 . \tag{3}
\end{equation*}
$$

(The denominator ensures that the total mass is 1.)
As mentioned, we will be interested in the case of length bias, where $w(x)=x$. In Section 2 we apply this weighting to the inverse Weibull distribution to obtain our main object of study, the LBIW (length-biased inverse Weibull) distribution. We briefly study the shape of the LBIW pdf. In Section 3 we calculate the LBIW moments and moment-generating function, together with the variance, skewness and kurtosis. Section 4 deals with Fisher information and Shannon entropy. In Section 5 we discuss the estimation of the parameters of an LBIW, and describe a test for the detection of length bias. Section 6 showcases a numerical example.

2. The inverse Weibull distribution and its length-biased version

The inverse Weibull distribution function is defined by

$$
\begin{equation*}
F\left(x ; x_{0}, \alpha, \beta\right)=\exp \left(-\left(\alpha\left(x-x_{0}\right)\right)^{-\beta}\right), \quad x \geq 0, \alpha>0, \beta>0, \tag{4}
\end{equation*}
$$

where α, x_{0} and β are the scale, location and shape parameters, respectively. We will consider only the case $x_{0}=0$, so our distribution function of departure is

$$
\begin{equation*}
F(x ; \alpha, \beta)=\exp \left(-(\alpha x)^{-\beta}\right), \quad x \geq 0, \alpha>0, \beta>0 . \tag{5}
\end{equation*}
$$

(When $\alpha=1$, this is known as the Fréchet distribution, and its value at $x=1$ is independent of β; it equals $e^{-1}=0.3679$, and is known as the characteristic life of
the distribution.) By differentiation we get the corresponding pdf:

$$
\begin{equation*}
f(x ; \alpha, \beta)=\beta \alpha^{-\beta} x^{-\beta-1} \exp \left(-(\alpha x)^{-\beta}\right), \quad x \geq 0, \alpha>0, \beta>0 . \tag{6}
\end{equation*}
$$

To introduce the length bias we first multiply this pdf by the weighting function $w(x)=x$, obtaining

$$
\begin{align*}
x f(x ; \alpha, \beta) & =\beta \alpha^{-\beta} x^{-\beta} \exp \left(-(\alpha x)^{-\beta}\right) \\
& =\beta F(x ; \alpha, \beta)(-\log F(x ; \alpha, \beta)), \quad x \geq 0, \alpha>0, \beta>0 . \tag{7}
\end{align*}
$$

As we saw in (3), we need to divide this function by its integral (2), which is of course the mean of the original distribution, denoted by μ_{F}. Evaluation yields

$$
\mu_{F}=\frac{\Gamma\left(1-\frac{1}{\beta}\right)}{\alpha} .
$$

Therefore the LBIW (length-biased inverse Weibull) pdf is

$$
\begin{align*}
g_{w}(x ; \alpha, \beta) & :=\frac{\alpha}{\Gamma\left(1-\frac{1}{\beta}\right)} \beta F(x ; \alpha, \beta)(-\log F(x ; \alpha, \beta)) \\
& =\frac{\beta \alpha^{-\beta+1} x^{-\beta}}{\Gamma\left(1-\frac{1}{\beta}\right)} \exp \left(-(\alpha x)^{-\beta}\right) \quad x \geq 0, \alpha>0, \beta>1 . \tag{8}
\end{align*}
$$

(We use the notation g_{w} instead of f_{w} as in (3) to make it more distinctive.) The corresponding distribution function is given by

$$
\begin{equation*}
G_{w}(x ; \alpha, \beta)=\int_{0}^{x} g_{w}(u ; \alpha, \beta) d u=\frac{1}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{0}^{(\alpha x)^{-\beta}} y^{-1 / \beta} \exp (-y) d y \tag{9}
\end{equation*}
$$

the last equality resulting from rewriting the integral in the variable $y=(\alpha u)^{-\beta}$.
We now turn to the shape of g_{w}. From (8) we see that $\lim _{x \rightarrow 0} g_{w}(x ; \alpha, \beta)=0$ and $\lim _{x \rightarrow \infty} g_{w}(x ; \alpha, \beta)=0$. Next we look for extrema. It is easier to work with the logarithmic derivative. Since

$$
\begin{equation*}
\eta_{w}(x):=\frac{\partial \log g_{w}(x ; \alpha, \beta)}{\partial x}=\frac{\beta}{x}\left((\alpha x)^{-\beta}-1\right), \tag{10}
\end{equation*}
$$

we see that an extremum requires that $(\alpha x)^{-\beta}=1$. Thus the only extremizer is $x=1 / \alpha$; the pdf increases to a maximum at $1 / \alpha$ and then decreases.

For the study of the hazard function it will be useful to consider the second derivative of $\log g_{w}(x ; \alpha, \beta)$, namely

$$
\begin{equation*}
\eta_{w}^{\prime}(x)=-\beta \frac{(\beta+1)(\alpha x)^{-\beta}-1}{x^{2}} . \tag{11}
\end{equation*}
$$

The numerator on the right has only one zero, at $x=x^{*}:=(\beta+1)^{1 / \beta} / \alpha$, so the
same is true of η_{w}^{\prime}. More precisely, we have

$$
\begin{array}{ll}
\eta_{w}^{\prime}(x)<0 & \text { if } x<x^{*}, \\
\eta_{w}^{\prime}(x)=0 & \text { if } x=x^{*}, \tag{12}\\
\eta_{w}^{\prime}(x)>0 & \text { if } x>x^{*}
\end{array}
$$

A criterion of Glaser [1980, Theorem on p. 668, case (d)(i), and Lemma on p. 669, case (iii)] then implies that the hazard function is "upside-down bathtub-shaped"; that is, it is initially increasing, reaches a maximum, and decreases thereafter. The conditions of the criterion are that the pdf is twice differentiable and positive for $x>0$, that it tends to 0 as $x \rightarrow 0+$, and that the second derivative of its \log satisfies (12) for some x^{*}. (Note that our η_{w} differs from Glaser's η by a sign.)

With the qualitative behavior of the hazard function in hand, there remains to write its formula. Recalling the definition in (1), we write

$$
\begin{equation*}
\bar{G}_{w}(x ; \alpha, \beta)=\frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{x}^{\infty} t^{-\beta} \exp \left(-(\alpha t)^{-\beta}\right) d t \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{G_{w}}(x ; \alpha, \beta)=\frac{g_{w}(x ; \alpha, \beta)}{\bar{G}_{w}(x)}=\frac{x^{-\beta} \exp \left(-(\alpha x)^{-\beta}\right)}{\int_{x}^{\infty} t^{-\beta} \exp \left(-(\alpha t)^{-\beta}\right) d t} . \tag{14}
\end{equation*}
$$

3. Moments and moment-generating function

In this section we derive the moments, moment-generating function, mean, variance, coefficients of variation, skewness, and kurtosis for the LBIW distribution.

The moments of a length-biased random variable X_{w} are related to those of the original or parent random variable X by

$$
\begin{equation*}
E_{G_{w}}\left[X_{w}^{k}\right]=\frac{E_{F}\left[X^{k+1}\right]}{E_{F}[X]}, \quad k=1,2, \ldots, \tag{15}
\end{equation*}
$$

provided $E_{F}\left[X^{k+1}\right]$ exists. Noting that the moments of F are given by

$$
\begin{equation*}
E_{F}\left[X^{k}\right]=\gamma_{k}:=\frac{\Gamma\left(1-\frac{k}{\beta}\right)}{\alpha^{k}}, \quad k \geq 1, \beta>k, \tag{16}
\end{equation*}
$$

we obtain the moments of X_{w} as follows:

$$
\begin{equation*}
E_{G_{w}}\left[X_{w}^{k}\right]=\frac{\Gamma\left(1-\frac{k+1}{\beta}\right)}{\alpha^{k} \Gamma\left(1-\frac{1}{\beta}\right)}=\frac{\gamma_{k+1}}{\gamma_{1}}, \quad k \geq 1, \beta>k . \tag{17}
\end{equation*}
$$

In particular, the mean of X_{w} is

$$
\begin{equation*}
\mu_{G_{w}}=E_{G_{w}}\left[X_{w}\right]=\frac{\Gamma\left(1-\frac{2}{\beta}\right)}{\alpha \Gamma\left(1-\frac{1}{\beta}\right)}=\frac{\gamma_{2}}{\gamma_{1}} \tag{18}
\end{equation*}
$$

and the variance is

$$
\begin{equation*}
\sigma_{G_{w}}^{2}=E_{G_{w}}\left[X_{w}^{2}\right]-E_{G_{w}}\left[X_{w}\right]^{2}=\frac{\gamma_{1} \gamma_{3}-\gamma_{2}^{2}}{\gamma_{1}^{2}} \tag{19}
\end{equation*}
$$

where $\gamma_{k}=\Gamma(1-k / \beta) / \alpha^{k}$. The coefficient of variation (CV) is

$$
\begin{equation*}
\mathrm{CV}=\frac{\sigma_{G_{w}}}{\mu_{G_{w}}}=\sqrt{\frac{\gamma_{3} \gamma_{1}}{\gamma_{2}^{2}}-1} \tag{20}
\end{equation*}
$$

The coefficients of skewness (CS) and kurtosis (CK) are given by

$$
\begin{equation*}
\mathrm{CS}=\frac{E\left[\left(X_{w}-\mu_{G_{w}}\right)^{3}\right]}{E\left[\left(X_{w}-\mu_{G_{w}}\right)^{2}\right]^{3 / 2}}=\frac{\gamma_{1}^{2} \gamma_{4}-3 \gamma_{1} \gamma_{2} \gamma_{3}+2 \gamma_{2}^{3}}{\left(\gamma_{1} \gamma_{3}-\gamma_{2}^{2}\right)^{3 / 2}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{C K}=\frac{E\left[\left(X_{w}-\mu_{G_{w}}\right)^{4}\right]}{E\left[\left(X_{w}-\mu_{G_{w}}\right)^{2}\right]^{2}}=\frac{\gamma_{1}^{3} \gamma_{5}-4 \gamma_{1}^{2} \gamma_{2} \gamma_{4}+6 \gamma_{1} \gamma_{2}^{2} \gamma_{3}-3 \gamma_{2}^{4}}{\gamma_{1}^{2} \gamma_{3}^{2}-2 \gamma_{1} \gamma_{2}^{2} \gamma_{3}+\gamma_{2}^{4}} . \tag{22}
\end{equation*}
$$

The moment-generating function is given by

$$
\begin{align*}
M_{X_{w}}(t) & =\frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{0}^{\infty} e^{t y} y^{-\beta} e^{-(\alpha y)^{-\beta}} d y \\
& =\frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \sum_{j=0}^{\infty} \frac{t^{j}}{j!} \int_{0}^{\infty} y^{j-\beta} e^{-(\alpha y)^{-\beta}} d y=\frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \sum_{j=0}^{\infty} \frac{t^{j}}{j!} \Psi_{j, \alpha, \beta}, \tag{23}
\end{align*}
$$

where

$$
\Psi_{j, \alpha, \beta}=\int_{0}^{\infty} y^{j-\beta} e^{-(\alpha y)^{-\beta}} d y
$$

4. Fisher information and Shannon entropy

The information (or Fisher information) that a random variable X contains about the parameter θ is given by

$$
\begin{equation*}
I(\theta)=E\left[\left(\frac{\partial}{\partial \theta} \log f(X, \theta)\right)^{2}\right] \tag{24}
\end{equation*}
$$

If, in addition, the second derivative with respect to θ of $f(x, \theta)$ exists for all x and θ, and if the second derivative with respect to θ of $\int f(x, \theta) d x=1$ can be obtained by differentiating twice under the integral sign, then

$$
\begin{equation*}
I(\theta)=-E_{\theta}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X, \theta)\right] \tag{25}
\end{equation*}
$$

The Shannon entropy of a random variable X is a measure of the uncertainty and is
given by $E_{F}[-\log f(X)]$, where $f(x)$ is the pdf of the random variable X.
For the LBIW distribution, the Fisher information that X_{w} (now renamed X for simplicity) contains about the parameters $\theta=(\alpha, \beta)$ is obtained as follows:

$$
\begin{align*}
& E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \alpha}\right)^{2}\right] \\
& \begin{aligned}
= & \int_{0}^{\infty}\left(\frac{1-\beta}{\alpha}+\beta \alpha^{-\beta-1} x^{-\beta}\right)^{2} g_{w}(x ; \alpha, \beta) d x
\end{aligned} \\
& =(1-\beta)^{2} \alpha^{-2} \int_{0}^{\infty} g_{w}(x ; \alpha, \beta) d x+\frac{2 \beta^{2}(1-\beta) \alpha^{-2 \beta-1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{0}^{\infty} x^{-2 \beta} e^{-(\alpha x)^{-\beta}} d x \\
& \\
& \quad+\frac{\beta^{3} \alpha^{-3 \beta-1}}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{0}^{\infty} x^{-3 \beta} e^{-(\alpha x)^{-\beta}} d x \\
& =
\end{aligned} \quad \begin{aligned}
& =(1-\beta)^{2} \alpha^{-2}+\frac{2 \beta(1-\beta) \alpha^{-2}}{\Gamma\left(1-\frac{1}{\beta}\right)} \Gamma\left(2-\frac{1}{\beta}\right)+\frac{\beta^{2} \alpha^{-2}}{\Gamma\left(1-\frac{1}{\beta}\right)} \Gamma\left(3-\frac{1}{\beta}\right) \tag{26}\\
& =\beta(\beta-1) \alpha^{-2},
\end{align*}
$$

$$
\begin{align*}
& E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \beta}\right)^{2}\right] \\
& \quad=\int_{0}^{\infty}\left(\frac{1}{\beta}-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta^{2} \Gamma\left(1-\frac{1}{\beta}\right)}+\log (\alpha x)\left((\alpha x)^{-\beta}-1\right)\right)^{2} g_{w}(x ; \alpha, \beta) d x \\
& =\left(\frac{1}{\beta}-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta^{2} \Gamma\left(1-\frac{1}{\beta}\right)}\right)^{2}-2\left(\frac{1}{\beta}-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta^{2} \Gamma\left(1-\frac{1}{\beta}\right)}\right) \frac{\Gamma^{\prime}\left(2-\frac{1}{\beta}\right)-\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta \Gamma\left(1-\frac{1}{\beta}\right)} \\
& +\frac{\beta^{2}\left(\Gamma^{\prime \prime}\left(3-\frac{1}{\beta}\right)-2 \Gamma^{\prime \prime}\left(2-\frac{1}{\beta}\right)+\Gamma^{\prime \prime}\left(1-\frac{1}{\beta}\right)\right)}{\Gamma\left(1-\frac{1}{\beta}\right)} \tag{27}
\end{align*}
$$

$$
\begin{aligned}
& E\left[\frac{\partial^{2} \log g_{w}(X ; \alpha, \beta)}{\partial \alpha \partial \beta}\right]=E\left[\frac{\partial^{2} \log g_{w}(X ; \alpha, \beta)}{\partial \beta \partial \alpha}\right] \\
& \quad=\int_{0}^{\infty}\left(\alpha^{-\beta-1} x^{-\beta}(1-\beta \log \alpha-\beta \log x)-\frac{1}{\alpha}\right) g_{w}(x ; \alpha, \beta) d x \\
& \quad=\alpha^{-\beta-1}(1-\beta \log \alpha) \int_{0}^{\infty} x^{-\beta} g_{w}(x ; \alpha, \beta) d x
\end{aligned}
$$

$$
-\frac{\alpha^{-2 \beta} \beta^{2}}{\Gamma\left(1-\frac{1}{\beta}\right)} \int_{0}^{\infty} x^{-2 \beta} \log x e^{-(\alpha x)^{-\beta}} d x-\frac{1}{\alpha} \int_{0}^{\infty} g_{w}(x ; \alpha, \beta) d x
$$

$$
\begin{equation*}
=\alpha^{-1} \beta^{-2}(1-\beta)+\alpha^{-1} \beta^{-3}(\beta-1) \frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)}=\frac{\beta-1}{\alpha \beta^{3}}\left(\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)}-\beta\right) \tag{28}
\end{equation*}
$$

Thus the information matrix, namely

$$
\boldsymbol{I}(\alpha, \beta)=\left(\begin{array}{cc}
E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \alpha}\right)^{2}\right] & E\left[\frac{\partial^{2} \log g_{w}(X ; \alpha, \beta)}{\partial \alpha \partial \beta}\right] \tag{29}\\
E\left[\frac{\partial^{2} \log g_{w}(X ; \alpha, \beta)}{\partial \beta \partial \alpha}\right] & E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \beta}\right)^{2}\right]
\end{array}\right)
$$

is given by

$$
\boldsymbol{I}(\alpha, \beta)=\left(\begin{array}{cc}
E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \alpha}\right)^{2}\right] & \frac{\beta-1}{\alpha \beta^{3}}\left(\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)}-\beta\right) \tag{30}\\
\frac{\beta-1}{\alpha \beta^{3}}\left(\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)}-\beta\right) & E\left[\left(\frac{\partial \log g_{w}(X ; \alpha, \beta)}{\partial \beta}\right)^{2}\right]
\end{array}\right)
$$

where the diagonal entries are stated in (26) and (27).
Note that, for fixed β, the top left entry of this matrix is monotonically decreasing in α, since

$$
\begin{equation*}
\frac{\beta(\beta-1)}{\alpha_{1}^{2}} \geq \frac{\beta(\beta-1)}{\alpha_{2}^{2}} \Longleftrightarrow \alpha_{2}^{2} \geq \alpha_{1}^{2} \Longleftrightarrow \alpha_{2} \geq \alpha_{1} \tag{31}
\end{equation*}
$$

On the other hand, for fixed α, the same function is monotonically increasing in β, since

$$
\begin{align*}
\frac{\beta_{1}\left(\beta_{1}-1\right)}{\alpha^{2}} \geq \frac{\beta_{2}\left(\beta_{2}-1\right)}{\alpha^{2}} & \Longleftrightarrow \beta_{1}\left(\beta_{1}-1\right) \geq \beta_{2}\left(\beta_{2}-1\right) \Longleftrightarrow \beta_{1}^{2}-\beta_{2}^{2}-\left(\beta_{1}-\beta_{2}\right) \geq 0 \\
& \Longleftrightarrow\left(\beta_{1}-\beta_{2}\right)\left(\beta_{1}+\beta_{2}-1\right) \geq 0 \Longleftrightarrow \beta_{1} \geq \beta_{2} \tag{32}
\end{align*}
$$

the last equivalence being a consequence of the inequalities $\beta_{1}>1, \beta_{2}>1$.
Under the LBIW distribution, the Shannon entropy is given by
$E_{G}\left(-\log g_{w}(X ; \alpha ; \beta)\right)$

$$
\begin{align*}
& =\int_{0}^{\infty}\left(-\log \frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)}+\beta \log x+(\alpha x)^{-\beta}\right) g_{w}(x ; \alpha, \beta) d x \\
& =-\log \frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)}+\beta \int_{0}^{\infty}(\log x) g_{w}(x ; \alpha, \beta) d x+\int_{0}^{\infty}(\alpha x)^{-\beta} g_{w}(x ; \alpha, \beta) d x \\
& =-\log \frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)}+\beta\left(-\log \alpha-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta \Gamma\left(1-\frac{1}{\beta}\right)}\right)+\frac{\beta-1}{\beta} \\
& =\log \frac{\Gamma\left(1-\frac{1}{\beta}\right)}{\alpha \beta}-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)}+\frac{\beta-1}{\beta} \tag{33}
\end{align*}
$$

5. Estimation of parameters

In this section we derive formulas to estimate the parameters α and β for an unknown LBIW distribution. We also present a test for the detection of length bias in a sample.
(For the inverse Weibull parent distribution, Calabria and Pulcini [1990; 1994] derived maximum likelihood, least squares and Bayes estimates for the parameters. They also obtained confidence limits for reliability and tolerance limits for the same distribution [Calabria and Pulcini 1989].)

We continue to use X for the LBIW random variable whose parameters α and β we wish to estimate. We use two standard methods to obtain the estimators: the method of moments and maximum likelihood.

Method of moments estimators. The method of moments with two parameters involves setting the first two moments $E[X]$ and $E\left[X^{2}\right]$ equal to the corresponding moments of an independent sample $X_{1}, X_{2}, \ldots, X_{n}$ of the LBIW random variable. In view of (18) and (19), this leads to the equations

$$
\begin{equation*}
\frac{\Gamma\left(1-\frac{2}{\beta}\right)}{\alpha \Gamma\left(1-\frac{1}{\beta}\right)}=\frac{1}{n} \sum_{j=1}^{n} X_{j} \quad \text { and } \quad \frac{\Gamma\left(1-\frac{3}{\beta}\right)}{\alpha^{2} \Gamma\left(1-\frac{1}{\beta}\right)}=\frac{1}{n} \sum_{j=1}^{n} X_{j}^{2} . \tag{34}
\end{equation*}
$$

These equations are then solved (numerically, for example) for α and β, leading to the estimators $\hat{\alpha}$ and $\hat{\beta}$.

If β is known, we only need the first equation in (34). In that case (i.e., for fixed $\beta>1$), the method of moments estimate (MME) of α is given by

$$
\begin{equation*}
\hat{\alpha}=\frac{n}{\sum_{j=1}^{n} X_{j}} \frac{\Gamma\left(1-\frac{2}{\beta}\right)}{\Gamma\left(1-\frac{1}{\beta}\right)} . \tag{35}
\end{equation*}
$$

Maximum likelihood estimators. In this method we take the log-likelihood function of the distribution, take its partial derivatives with respect to the parameters, and equate their expectations to 0 . The log-likelihood function for a single observation x of X is

$$
\begin{align*}
l(\alpha, \beta) & =\log \left(\frac{\beta \alpha^{-\beta+1}}{\Gamma\left(1-\frac{1}{\beta}\right)} x^{-\beta} \exp \left(-(\alpha x)^{-\beta}\right)\right) \\
& =\log \beta-(\beta-1) \log \alpha-\beta \log x-(\alpha x)^{-\beta}-\log \Gamma\left(1-\frac{1}{\beta}\right) \tag{36}
\end{align*}
$$

which leads to

$$
\begin{align*}
& \frac{\partial l}{\partial \alpha}=-\frac{\beta-1}{\alpha}+\frac{\beta(\alpha x)^{-\beta}}{\alpha} \tag{37}\\
& \frac{\partial l}{\partial \beta}=\frac{1}{\beta}-\log \alpha-\log x+(\alpha x)^{-\beta} \log (\alpha x)+\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta^{2} \Gamma\left(1-\frac{1}{\beta}\right)} \tag{38}
\end{align*}
$$

From $E[\partial l / \partial \alpha]=0$, we obtain

$$
\begin{equation*}
E\left[X^{-\beta}\right]=\frac{\alpha^{\beta}(\beta-1)}{\beta} \tag{39}
\end{equation*}
$$

and from $E[\partial l / \partial \beta]=0$, we have

$$
\begin{equation*}
E\left[-\log X+(\alpha X)^{-\beta} \log (\alpha X)\right]=\log \alpha-\frac{1}{\beta}-\frac{\Gamma^{\prime}\left(1-\frac{1}{\beta}\right)}{\beta^{2} \Gamma\left(1-\frac{1}{\beta}\right)} . \tag{40}
\end{equation*}
$$

The full log-likelihood function is given by
$L(\alpha, \beta)=n \log \beta-n(\beta-1) \log \alpha-\beta \sum_{j=1}^{n} \log x_{j}-\sum_{j=1}^{n}\left(\alpha x_{j}\right)^{-\beta}-n \log \Gamma\left(1-\frac{1}{\beta}\right)$.
The normal equations are

$$
\begin{align*}
& \frac{\partial L(\alpha, \beta)}{\partial \alpha}=\frac{-n(\hat{\beta}-1)}{\hat{\alpha}}+\hat{\beta} \hat{\alpha}^{-\hat{\beta}-1} \sum_{j=1}^{n} x_{j}^{-\hat{\beta}}=0 \tag{41}\\
& \frac{\partial L(\alpha, \beta)}{\partial \beta}=\frac{n}{\hat{\beta}}-n \log \hat{\alpha}-\sum_{j=1}^{n} \log x_{j}-\sum_{j=1}^{n} \frac{\log \left(\hat{\alpha} x_{j}\right)}{\left(\hat{\alpha} x_{j}\right)^{\hat{\beta}}}-\frac{n}{\hat{\beta}^{2}} \Psi(1-1 / \hat{\beta})=0 \tag{42}
\end{align*}
$$

From (41), the MLE of α is

$$
\begin{equation*}
\hat{\alpha}=\left(\frac{n(\hat{\beta}-1)}{\hat{\beta} \sum_{j=1}^{n} x_{j}^{-\hat{\beta}}}\right)^{-1 / \hat{\beta}} \tag{43}
\end{equation*}
$$

Now replace $\hat{\alpha}$ in (42) to obtain

$$
\begin{align*}
\left.\frac{\partial L(\alpha, \beta)}{\partial \beta}\right|_{\hat{\alpha}, \hat{\beta}}= & \frac{n}{\hat{\beta}}-n \log \left(\frac{n(\hat{\beta}-1)}{\hat{\beta} \sum_{j=1}^{n} x_{j}^{-\hat{\beta}}}\right)^{-1 / \hat{\beta}}-\sum_{j=1}^{n} \log x_{j} \\
& -\sum_{j=1}^{n}\left(\left(\frac{n(\hat{\beta}-1)}{\hat{\beta} \sum_{j=1}^{n} x_{j}^{-\hat{\beta}}}\right)^{-1 / \hat{\beta}} x_{j}\right)^{-\hat{\beta}} \log \left(\left(\frac{n(\hat{\beta}-1)}{\hat{\beta} \sum_{j=1}^{n} x_{j}^{-\hat{\beta}}}\right)^{-1 / \hat{\beta}} x_{j}\right) \\
& -\frac{1}{\hat{\beta}^{2}} \sum_{j=1}^{n} \frac{\Gamma^{\prime}(1-1 / \hat{\beta})}{\Gamma(1-1 / \hat{\beta})}=0 \tag{44}
\end{align*}
$$

This equation does not have a closed form solution and must be solved iteratively to obtain the MLE of the scale parameter β. When α is unknown and β is known, the MLE of α is obtained from (41) with the value of β in place of $\hat{\beta}$. When both α and β are unknown the MLEs of α and β are obtained by solving the normal
equations in (41) and (42). The MLEs of the reliability and hazard functions can be obtained by replacing α and β by their MLEs $\hat{\alpha}$ and $\hat{\beta}$.

The expectations in the Fisher information matrix (FIM) can be obtained numerically. Under the conditions that the parameters are in the interior of the parameter space, but not on the boundary, we have

$$
\sqrt{n}\binom{\hat{\alpha}-\alpha}{\hat{\beta}-\beta} \xrightarrow{d} N\left(\binom{0}{0}, I^{-1}(\alpha, \beta)\right) \quad \text { as } n \rightarrow \infty,
$$

where $I(\alpha, \beta)=\lim _{n \rightarrow \infty} n^{-1} I_{n}(\alpha, \beta)$ and

$$
I_{n}(\alpha, \beta)=n\left(\begin{array}{ll}
I(1,1) & I(1,2) \\
I(2,1) & I(2,2)
\end{array}\right) .
$$

The entries $I(i, j), i=1,2$ and $j=1,2$, are given in (30). The multivariate normal distribution with mean vector $(0,0)^{T}$ and covariance matrix $I_{n}(\alpha, \beta)$ can be used to construct confidence intervals for the model parameters.

Test for generalized length bias. We now seek to discriminate whether a random variable, represented by a random sample of size n, is likely to be the result of length-biased sampling. More precisely, we compare the null hypothesis H_{0}, to the effect that the random variable has the inverse Weibull pdf (6) with given α and β, to the alternative hypothesis H_{c}, which says that the random variable is LBIW $(c=1)$ or perhaps inverse Weibull with some other power weighting $w(x)=x^{c}$. In this context it's natural to allow this extra generality (and in our particular case this doesn't demand much extra effort). A calculation similar to the one leading to (8) shows that the pdf under the alternative hypothesis is

$$
\begin{align*}
& g_{w}(x ; \alpha, \beta, c)=\frac{\beta \alpha^{c-\beta}}{\Gamma(1-c / \beta)} x^{c-\beta-1} \exp \left(-(\alpha x)^{-\beta}\right) \\
& x \geq 0, \alpha>0, \beta>0, c>0 \tag{45}
\end{align*}
$$

To decide whether it's plausible that our random sample x_{1}, \ldots, x_{n} represents the parent inverse Weibull distribution (null hypothesis H_{0}) relative to the weighted inverse Weibull distribution (alternative hypothesis H_{c}), we use the following test statistic, where α and β are assumed known and c is also fixed (several values can be tried, including $c=1$ for the LBIW):

$$
\begin{align*}
& \Lambda=\prod_{i=1}^{n} \frac{g_{w}\left(x_{i} ; \alpha, \beta, c\right)}{f\left(x_{i} ; \alpha, \beta\right)}=\prod_{i=1}^{n} \frac{\beta \alpha^{c-\beta}}{\Gamma(1-c / \beta)} x_{i}^{c-\beta-1} \exp \left(-\left(\alpha x_{i}\right)^{-\beta}\right) \\
& \beta \alpha^{-\beta} x_{i}^{-\beta-1} \exp \left(-\left(\alpha x_{i}\right)^{-\beta}\right) \tag{46}\\
&=\prod_{i=1}^{n} \frac{\alpha^{c} x_{i}^{c}}{\Gamma\left(1-\frac{1}{\beta}\right)}=\frac{\alpha^{n c} \prod_{i=1}^{n} x_{i}^{c}}{\left(\Gamma\left(1-\frac{1}{\beta}\right)\right)^{n}} .
\end{align*}
$$

We reject H_{0} when

$$
\begin{equation*}
\Lambda=\frac{\alpha^{n c} \prod_{i=1}^{n} x_{i}^{c}}{\left(\Gamma\left(1-\frac{1}{\beta}\right)\right)^{n}}>K, \tag{47}
\end{equation*}
$$

where $K>0$ is some threshold chosen beforehand, indicating the level of confidence we want to have in our prediction. Equivalently, we reject the null hypothesis when

$$
\begin{equation*}
\Lambda^{*}=\prod_{i=1}^{n} x_{i}^{c}>K^{*}, \quad \text { where } K^{*}=\frac{K \Gamma(1-c / \beta)^{n}}{\alpha^{n c}}>0 \tag{48}
\end{equation*}
$$

The choice of K is related to the p-value, defined as the probability that, under H_{0}, the expected value of the test statistic Λ^{*} is at least as high as the one actually observed. For large n we have $2 \log \Lambda^{*} \sim \chi^{2}$, and from the χ^{2} one obtains the p-value using the χ^{2} table (or software). The p-value can also be readily computed via Monte Carlo simulation: simulate N samples from the distribution under H_{0}, for some large value of N, and compute the test statistic Λ_{i}^{*} for each sample. Then take

$$
p \text {-value }=\frac{\#\left\{i: \Lambda_{i}^{*}>\Lambda^{*}\right\}}{N} .
$$

Reject the null hypothesis if the p-value is less than the desired level of significance (typically 5% or 1%).

6. Examples

In this section we apply the formulas obtained in the previous section to two examples from the literature. The first set of data, given in Table 1, represents the waiting times (in minutes) before service of 100 bank customers [Ghitany et al. 2008]. The second data set, shown in Table 2, represents the number of millions of revolutions before failure of each of 23 ball bearings in a life testing experiment [Lawless 2003].

We modeled these data sets using the weighted inverse Weibull distribution with unknown parameters α and β (we keep the assumption made after (4) that $x_{0}=0$). The normal equations were solved by numerical methods to estimate the model parameters. Specifically, the MLEs of the parameters were computed by maximizing the objective function with the trust-region algorithm in the NLPTR subroutine in SAS. We present in Table 3 the estimated values of the parameters α and β and corresponding gradient objective functions (normal equations) under the length-biased inverse Weibull distribution for both sets of data.

We also conducted, for each set of data, a test for the detection of length bias, to compare the hypothesis that the waiting time distribution follows the LBIW distribution is to be preferred to the null hypothesis that the distribution is unweighted inverse Weibull.

0.8	0.8	4.3	5.0	6.7	8.2	9.7	11.9	14.1	19.9
0.8	0.8	4.3	5.3	6.9	8.6	9.8	12.4	15.4	20.6
1.3	1.3	4.4	5.5	7.1	8.6	10.7	12.5	15.4	21.3
1.5	1.5	4.4	5.7	7.1	8.6	10.9	12.9	17.3	21.4
1.8	1.8	4.6	5.7	7.1	8.8	11.0	13.0	17.3	21.9
1.9	1.9	4.7	6.1	7.1	8.8	11.0	13.1	18.1	23.0
1.9	1.9	4.7	6.2	7.4	8.9	11.1	13.3	18.2	27.0
2.1	2.1	4.8	6.2	7.6	8.9	11.2	13.6	18.4	31.6
2.6	2.6	4.9	6.2	7.7	9.5	11.2	13.7	18.9	33.1
2.7	2.7	4.9	6.3	8.0	9.6	11.5	13.9	19.0	38.5

Table 1. Waiting times of 100 bank customers, from [Ghitany et al. 2008].

17.88	28.92	33.00	41.52	42.12	45.60	48.80	51.84	51.96	54.12
55.56	67.80	68.64	68.64	68.88	84.12	93.12	98.64	105.12	105.84
127.92	128.04	173.40	-	-	-	-	-	-	-

Table 2. Lifetimes of 23 ball bearings, from [Lawless 2003].

Data	α	β	$\partial L / \partial \alpha$	$\partial L / \partial \beta$
I $(n=100)$	0.400	1.819	7.46×10^{-4}	-5.98×10^{-5}
II $(n=23)$	0.02795	2.4610	1.990×10^{-9}	1.930×10^{-11}

Table 3. Estimated values of the parameters.

For the set of waiting times given in Table 1, where (as shown in Table 3) the estimated values of the parameters α and β are $\hat{\alpha}=0.3997$ and $\hat{\beta}=1.81887$, we obtained for the test statistic the value $2 \log \Lambda=270.927$, and the p-value for the test was less than 0.000001 . Therefore, we have strong statistical evidence that the hypothesis that the waiting time distribution follows the LBIW distribution is to be preferred to the null hypothesis.

For the second set of data, the estimated values of the parameters are $\hat{\alpha}=0.027952$ and $\hat{\beta}=2.46097$. The value of the test statistic is $2 \log \Lambda=170.893$, and the p value is less than 0.00001 . Again, the null hypothesis corresponding to the parent distribution is rejected.

Acknowledgements

The authors wish to express their gratitude to the referees and editor for their valuable comments.

References

[Arratia and Goldstein 2009] R. Arratia and L. Goldstein, "Size bias, sampling, the waiting time paradox, and infinite divisibility: when is the increment independent?", 2009, Available at http:// bcf.usc.edu/~larry/papers/pdf/csb.pdf.
[Calabria and Pulcini 1989] R. Calabria and G. Pulcini, "Confidence limits for reliability and tolerance limits in the inverse Weibull distribution", Reliability Engineering and System Safety 24:1 (1989), 77-85.
[Calabria and Pulcini 1990] R. Calabria and G. Pulcini, "On the maximum likelihood and leastsquares estimation in the inverse Weibull distribution", Statistica Applicata 2:1 (1990), 53-66.
[Calabria and Pulcini 1994] R. Calabria and G. Pulcini, "Bayes 2-sample prediction for the inverse Weibull distribution", Comm. Statist. Theory Methods 23:6 (1994), 1811-1824. MR 1281239 Zbl 0825.62167
[Ghitany et al. 2008] M. E. Ghitany, B. Atieh, and S. Nadarajah, "Lindley distribution and its application", Math. Comput. Simulation 78:4 (2008), 493-506. MR 2009m:62040 Zbl 1140.62012
[Glaser 1980] R. E. Glaser, "Bathtub and related failure rate characterizations", J. Amer. Statist. Assoc. 75:371 (1980), 667-672. MR 83b:62194 Zbl 0497.62017
[Gupta and Keating 1986] R. C. Gupta and J. P. Keating, "Relations for reliability measures under length biased sampling", Scand. J. Statist. 13:1 (1986), 49-56. MR 87h:62173 Zbl 0627.62098
[Gupta and Kirmani 1990] R. C. Gupta and S. N. U. A. Kirmani, "The role of weighted distributions in stochastic modeling", Comm. Statist. Theory Methods 19:9 (1990), 3147-3162. MR 92e:62180 Zbl 0734.62093
[Johnson et al. 1994] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions, 1, 2nd ed., Wiley, New York, 1994. MR 96j:62028 Zbl 0811.62001
[Keller et al. 1985] A. Z. Keller, M. T. Goblin, and N. R. Farnworth, "Reliability analysis of commercial vehicle engines", Reliability Engineering 10:1 (1985), 15-25.
[Lawless 2003] J. F. Lawless, Statistical models and methods for lifetime data, 2nd ed., WileyInterscience, Hoboken, NJ, 2003. MR 2003i:62001 Zbl 1015.62093
[Oluyede 1999] B. O. Oluyede, "On inequalities and selection of experiments for length biased distributions", Probab. Engrg. Inform. Sci. 13:2 (1999), 169-185. MR 2000a:62266 Zbl 0960.62115
[Patil and Rao 1978] G. P. Patil and C. R. Rao, "Weighted distributions and size-biased sampling with applications to wildlife populations and human families", Biometrics 34:2 (1978), 179-189. MR 80e:62010 Zbl 0384.62014
[Rinne 2009] H. Rinne, The Weibull distribution: a handbook, CRC Press, Boca Raton, FL, 2009. MR 2010c:62001 Zbl 05509748

Received: 2010-05-07 Revised: 2012-03-01 Accepted: 2012-04-13

jkersey@ega.edu	Division of Mathematics and Science,
	East Georgia State College, 10449 US Highway 301 South,
	Statesboro, GA 30458, United States
boluyede@georgiasouthern.edu	Department of Mathematical Sciences, Georgia Southern University, 65 Georgia Avenue, Statesboro, GA 30460, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2012 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2012 vol. 5 no. 4

Theoretical properties of the length-biased inverse Weibull distribution 379 Jing Kersey and Broderick O. Oluyede
The firefighter problem for regular infinite directed grids 393
Daniel P. Biebighauser, Lise E. Holte and Ryan M. Wagner
Induced trees, minimum semidefinite rank, and zero forcing 411
Rachel Cranfill, Lon H. Mitchell, Sivaram K. Narayan and Taiji Tsutsui
A new series for π via polynomial approximations to arctangent 421
Colleen M. Bouey, Herbert A. Medina and Erika Meza
A mathematical model of biocontrol of invasive aquatic weeds 431
John Alford, Curtis Balusek, Kristen M. Bowers and Casey Hartnett
Irreducible divisor graphs for numerical monoids 449Dale Bachman, Nicholas Baeth and Craig Edwards
An application of Google's PageRank to NFL rankings 463
Laurie Zack, Ron Lamb and Sarah Ball
Fool's solitaire on graphs 473Robert A. Beeler and Tony K. Rodriguez
Newly reducible iterates in families of quadratic polynomials 481
Katharine Chamberlin, Emma Colbert, Sharon Frechette, Patrick Hefferman, Rafe Jones and Sarah Orchard
Positive symmetric solutions of a second-order difference equation 497
Jeffrey T. Neugebauer and Charley L. Seelbach

[^0]: MSC2010: 62E15, 62F03, 62N05, 62N01.
 Keywords: inverse Weibull distribution, weighted reliability functions, integrable function.

