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The factorization of an element x from a numerical monoid can be represented
visually as an irreducible divisor graph G(x). The vertices of G(x) are the monoid
generators that appear in some representation of x , with two vertices adjacent
if they both appear in the same representation. In this paper, we determine
precisely when irreducible divisor graphs of elements in monoids of the form
N = 〈n, n+ 1, . . . , n+ t〉 where 0 ≤ t < n are complete, connected, or have a
maximum number of vertices. Finally, we give examples of irreducible divisor
graphs that are isomorphic to each of the 31 mutually nonisomorphic connected
graphs on at most five vertices.

1. Introduction and preliminaries

Irreducible divisor graphs related to commutative rings were introduced and studied
in [Coykendall and Maney 2007] and later studied in [Maney 2008; Axtell and
Stickles 2008; Axtell et al. 2011]. In these papers, the authors represent elements
of commutative rings using graphs which provide information about factorization
properties of these elements. The general goal is to use graph-theoretic information
to study factorization properties in the ring. As a notable example, it was shown in
[Coykendall and Maney 2007; Axtell et al. 2011] that an atomic domain is a unique
factorization domain precisely when every irreducible divisor graph over that ring
is complete (equivalently, connected). We note that graphical representations of
numerical semigroups have also been useful in computing a minimal set of relations,
as in [Rosales 1996].

In this paper, we study irreducible divisor graphs of elements in numerical
monoids — additive submonoids of the nonnegative integers. Our results indirectly
apply to irreducible divisor graphs of elements of the form xn in a polynomial
ring of the form F [xn1, xn2, . . . , xnt ] where F is a field, x is an indeterminate and
n1 < n2 < · · ·< nt are positive integers. By considering a specific family of monoids
(and hence commutative rings) we are able to provide more precise information
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about which graphs can be realized as irreducible divisor graphs of elements in
various monoids and hence rings.

In this section we formally introduce irreducible divisor graphs of elements
in numerical monoids and give some preliminary results that both motivate and
provide useful tools for later sections. In Section 2 we consider numerical monoids
generated by intervals of positive integers. Using the results of [García-Sánchez and
Rosales 1999], where numerical monoids generated by intervals were thoroughly
studied, we are able to classify exactly when the irreducible divisor graph of an
element is complete and/or connected. We conclude Section 2 by presenting a
method that can be used to determine whether or not a connected graph can be
realized as the irreducible divisor graph of an element in a numerical monoid
generated by a given interval. In Section 3 we show, by way of examples, that
every connected graph with between one and five vertices can be realized as the
irreducible divisor graph of an element in some numerical monoid. This leads us to
ask the following question:

Question 1.1. Can every connected graph be realized as the irreducible divisor
graph of an element in some numerical monoid?

Throughout, N will denote the set of all positive integers and N0 = N∪ {0}.
Recall that a numerical monoid is an additive submonoid of N0. More precisely,
if 0 < n1 < n2 < · · · < nt are t positive integers such that for all i ∈ {2, . . . , t},
ni = a1n1+· · ·+ai−1ni−1 has no nonnegative integer solutions {a1, a2, . . . , ai−1},
then

N = 〈n1, n2, . . . , nt 〉 = {a1n1+· · ·+at nt : ai ∈ N0} ⊆ N0

is the numerical monoid minimally generated by the set {n1, n2, . . . , nt }. We now
give a formal definition of the irreducible divisor graph of an element in a numerical
monoid, mimicking the definition of the irreducible divisor graph of a nonzero
nonunit of an atomic domain.

Definition 1.2. Let N = 〈n1, n2, . . . , nt 〉 be a minimally generated numerical
monoid. If x ∈N, the irreducible divisor graph of x , denoted by G N (x), is defined
as follows:

(1) The vertex set V [G N (x)] of G N (x) consists of the ni for all i such that there
exist a1, a2, . . . , at ∈ N0 with x =

∑t
j=1 a j n j and ai 6= 0.

(2) The edge set E[G N (x)] of G N (x) has an edge from ni to n j for all pairs (i, j)
for which there exist a1, a2, . . . , at ∈ N0 with x =

∑t
k=1 aknk , and ai , a j 6= 0.

(3) We put Ai −1 ≥ 0 loops on vertex ni , where Ai = max{ai : x =
∑t

k=1 aknk

for some a1, . . . , at ∈ N0}.
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Thus, if x 6∈ N , the graph G N (x) is empty (has no vertices or edges). We write
G(x) in place of G N (x) if N is clear from context. Although we represent an edge
as (ni , n j ), this is not to be considered as an ordered pair and (n j , ni ) represents
the same edge.

This definition is consistent with the definition from [Coykendall and Maney
2007], in that if R is the semigroup ring R = F[yn1, yn2, . . . , ynt ] for some field F

and some variable y, the graphs G N (x) and G R(yx) are isomorphic.

Example 1.3. Let N have minimal generating set {5, 11, 12, 13, 14} and let x = 30.
In N we can express x only as x = 5+11+14, x = 5+12+13 and x = 6 ·5. Thus
G(30) contains 5, 11, 12, 13 and 14 as vertices, with edges connecting vertices 5
and 11, 5 and 12, 5 and 13, 5 and 14, 11 and 14, and 12 and 13. Moreover, there are
5 loops on vertex 5, since 30= 6 ·5. Thus, the irreducible divisor graph of x = 30
in N = 〈5, 11, 12, 13, 14〉 is as follows:

11

14 5
5

12

13

The following equivalent definition of an irreducible divisor graph will be useful
when determining which vertices and edges occur in an irreducible divisor graph
G(x) and will be used extensively in the following sections.

Definition 1.4. Let N = 〈n1, n2, . . . , nt 〉 be a numerical monoid. If x ∈ N , the
irreducible divisor graph of x , denoted by G N (x), is defined as follows:

(1) ni ∈ V [G(x)] if and only if x−ni ∈ N .

(2) (ni , n j ) ∈ E[G(x)] if and only if x−(ni+n j ) ∈ N .

Remark 1.5. Let x ∈ N , where N = 〈n1, n2, . . . , nt 〉 and {n1, n2, . . . , nt } is a
minimal generating set for N , and let M = 〈rn1, rn2, . . . , rnt 〉.

(1) Clearly r x ∈ M , and {rn1, rn2, . . . , rnt } is a minimal generating set for M .

(2) For any i ,
ni ∈ V [G N (x)] ⇐⇒ rni ∈ V [G M(r x)].

(3) For any distinct i and j ,

(ni , n j ) ∈ E[G N (x)] ⇐⇒ (rni , rn j ) ∈ E[G M(r x)].

Thus it is sensible, when studying irreducible divisor graphs of numerical
monoids, to study only primitive numerical monoids — those for which the generat-
ing set is relatively prime. For the balance of this article (except for some examples
in Section 3) we consider numerical monoids of the form 〈n, n+1, . . . , n+t〉. These
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are primitive, and the relationship described above allows results to be applied to
associated nonprimitive numerical monoids as well.

For a primitive numerical monoid N , the Frobenius number, F(N ), of N is the
largest natural number not in N . The following easy proposition, whose proof
we leave to the reader, gives extreme conditions for when an irreducible divisor
graph is either complete (all pairs of vertices are adjacent) or is completely devoid
of edges. This result tells us is that the problem of describing G N (x) for a given
numerical monoid N is finite — once x is large enough, it is obvious that G N (x)

contains all possible vertices and edges. We will improve this result for certain
classes of numerical monoids in Section 2.

Proposition 1.6. Let N = 〈n1, n2, . . . , nt 〉 be a primitive minimally generated
numerical monoid with n1 < n2 < · · ·< nt .

(1) If x > F(N )+nt−1+nt , then G(x) is complete.

(2) If x < 2n1, then G(x) has no edges.

An example shows that the converses of (1) and (2) in Proposition 1.6 are false.
Let N = 〈12, 13, 14〉. Then G(65) is complete because 65= (12)+3(13)+(14).
However, F(N ) = 71 and 65 < F(N )+13+14. Moreover, G(29) is an empty
graph since 29 = 12a+13b+14c has no nonnegative integer solutions (a, b, c).
However, 29≥ 2 ·12.

2. Numerical monoids generated by intervals

In this section we study numerical monoids generated by intervals; that is, minimally
generated by the set {n, n+1, . . . , n+ t}, where n ≥ 1 and 0≤ t ≤ n−1. For the
balance of this paper we will use the notation [a, b] (where a ≤ b) to represent the
interval of natural numbers {a, a+1, . . . , b}. We start with two results that we will
apply often.

Proposition 2.1 [García-Sánchez and Rosales 1999, Lemma 1 and Corollary 5].
Let n, t ∈ N and let N = 〈n, . . . , n+ t〉.

(1) x ∈ N if and only if x ∈ [pn, p(n+ t)] for some p ∈ N.

(2) F(N )=
⌈ n−1

t

⌉
n−1.

For ease of discussion, we name the intervals (as subsets of the natural numbers)
contained in the monoid. We let Np = [pn, p(n+ t)], where p ∈ N0, and note
that |Np| = pt + 1. We define a gap in N to be a maximal (with respect to set
containment) nonempty interval of natural numbers that is not contained in N .
In order to help with visualization, Figure 1 shows the intervals and gaps for the
monoid N = 〈n, . . . , n+ t〉. Notice in particular that the first gap (between N0 and
N1) has size n−1, and that subsequent gaps decrease in size by t .
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Figure 1. Intervals contained in the monoid N = 〈n, . . . , n+ t〉.

Graph-theoretic properties of G(x). The next result shows that the only irreducible
divisor graphs of elements in a numerical monoid generated by an interval containing
no loops are disjoint unions of components each isomorphic to K1 or K2, the
complete graphs on one and two vertices. Since loops almost always occur, we
omit consideration of loops in the sequel.

Proposition 2.2. Let n ∈N and N = 〈n, n+1, n+2, . . . , n+t〉 where 0≤ t ≤ n−1.
If x ∈ N , then G(x) has no loops if and only if G(x) is isomorphic to a disjoint
union of components each isomorphic to K1 or K2.

Proof. If x ∈ N , then by Proposition 2.1 x ∈ [pn, p(n+t)] for some positive integer
p. Thus x = pn+k where 0≤ k ≤ pt . First assume p≥ 3 and write x = pn+ps+r
where either 0 ≤ s < t and 0 ≤ r < p or else s = t and r = 0. If 0 ≤ s < t and
0 ≤ r < p, then x = r(n+ s+1)+ (p− r)(n+ s). Since p ≥ 3, either r ≥ 2 or
p−r ≥ 2. Thus there is at least one loop on either the vertex n+ s or the vertex
n+s+1. If x = p(n+ t) then there are p−1≥ 2 loops on vertex n+ t . Therefore,
if p ≥ 3, G(x) contains at least one loop.

If p = 1, then x = n+ i where i ∈ [0, t] and G(x) is isomorphic to K1. If p = 2,
then x = 2n+ j where 1≤ j ≤ 2t−1. If j is even, then x = 2n+ j = 2 (n+ j/2),
resulting in a loop on the vertex n + j/2. If j is odd, then note that, for any
n+ i ∈ V [G(x)], x−(n+ i)= 2n+ j−(n+ i)= n+ j− i and hence 0≤ j− i ≤ t .
Thus x− [(n+ i)+(n+ j− i)] = 0 and so n+ i is adjacent only to n+ j− i . As
this holds for all i with n+ i ∈ V [G(x)], G(x) consists of multiple components
isomorphic to K2, which by definition has no loops. �

The next set of theorems — our main results — give complete classifications of
when G(x) has t+1 vertices, is connected with t+1 vertices, or is complete with
t+1 vertices whenever x ∈ 〈n, n+1, . . . , n+ t〉.

Proposition 2.3. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n. Then G(x)

has t+1 vertices if and only if x ∈ [(p+1)n+t, (p+1)n+pt] with p > 0. Moreover,
if x > F(N )+n+ t then G(x) has t+1 vertices.

Proof. By Definition 1.4, vertex n+ i is in the graph if and only if x−n− i ∈ N .
Thus the t+1 vertices {n, . . . , n+ t} are in the graph if and only if

S := [x−n− t, x−n] ⊂ N .
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Since N =
⋃

p≥0 Np (by Proposition 2.1) and since |Np| ≥ t + 1 for p > 0,
we have S ⊂ Np for some p > 0 when pn ≤ x−n− t and x−n ≤ p(n+ t), i.e.,
x ∈ [(p+1)n+ t, (p+1)n+ pt].

The last condition expresses the case when x is sufficiently large that the integers
in S are all larger than F(N ); since there are no gaps above this point, S ⊆ N . This
is also the point above which

[(p+1)n+ t, (p+1)n+ pt]∩[(p+2)n+ t, (p+2)n+(p+1)t] 6=∅. �

Proposition 2.4. Let N = 〈n, . . . , n+t〉, where n > 1 and 0 < t < n. Then G(x) is
complete on t+1 vertices if and only if x ∈[(p+2)n+2t−1, (p+2)n+pt+1] for p≥0
(if t = 1), p > 0 (if t = 2) and p > 1 otherwise. Moreover, if x > F(N )+2n+2t+1
then G(x) is complete on t+1 vertices.

Proof. By Definition 1.4 the graph is complete if and only if x−(n+i)−(n+ j)∈ N
for each pair of distinct i and j in [0, t], that is, when S = [x−(n+t)−(n+t−1),

x − n− (n+ 1)] ⊂ N . Note that |S| = 2t − 1 and |Np| = pt + 1 ≥ 2t − 1 when
p≥ (2t−2)/t , which produces the bounds on p. When Np is large enough to contain
S, it is also required that pn ≤ x−(n+t)−(n+t−1) and x−n−(n+1)≤ p(n+t)
which implies x ∈ [(p+2)n+2t−1, (p+2)n+ pt+1].

As in Proposition 2.3, the second condition occurs when all elements of S are
larger than F(N ), that is, S ⊂ N whenever x−2n−2t+1 > F(N ). �

The goal now is to give a result analogous to Propositions 2.3 and 2.4 for
connected graphs with t+1 vertices. First we require two technical lemmas which
relate the vertex degrees of G(x) to the set S = [x−2n−2t+1, x−2n−1]. We
then use this set to characterize when G(x) is connected on t+1 vertices.

Lemma 2.5. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n, and let S =
[x−2n−2t+1, x−2n−1]. Then

(1) If S contains an interval of length t+1 that is contained in N then G(x) has a
vertex of degree t.

(2) If S contains an interval of length t+1 that is disjoint from N then G(x) has a
vertex of degree 0.

Proof. Let Sk = [x−2n−k− t, x−2n−k] be an interval of length t+1 in S.
For the first statement, we can find k so that Sk ⊂ N . The edge (n+k, n+ j) is

in E[G(x)] if and only if x−2n−k− j ∈ N . Since Sk ⊂ N , x−2n−k− j ∈ N for
0≤ j ≤ t . Thus (ignoring loops on n+k) the vertex n+k has degree t .

For the second statement, we can find k so that Sk is disjoint from N . As above,
we see that vertex n+k is not adjacent to any other vertex. �

If not for the vertices n and n+ t , the preceding statements could each be made
into equivalences. In fact, these vertices will require examination during the course
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of the next proof; we did not complicate the statement of Lemma 2.5 because these
special cases each occur only once.

Lemma 2.6. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n, and let S =
[x−2n−2t+1, x−2n−1]. Then G(x) is connected on t+1 vertices if and only if
|S∩N | ≥ t .

Proof. We note that an edge (n+i, n+ j) is in E(G(x)) when x−(n+i)−(n+ j)∈ N .
Since x−2n−2t+1 ≤ x−2n− i− j ≤ x−2n−1, E(G(x)) is characterized by
the intersection of S and N .

Furthermore, either S ∩ N ⊂ Np or S ∩ N ⊂ Np ∪ Np+1 for some p. To see
this, we assume that S ∩ Np 6= ∅. Then x − 2n− 2t + 1 ≤ p(n+ t), and hence
x−2n−1≤ (p+1)(n+t)−n+t−2 < (p+1)(n+t). Thus the largest element of S
is smaller than the largest element of Np+1. We may therefore consider two cases:

Case 1: S ∩ N = S ∩ Np for some p. We divide this case into three subcases:
|S∩N |> t , |S∩N | = t or |S∩N |< t .

In the first subcase, we notice that there is an interval of length at least t+1 in
S∩ N (in fact, S∩ N is a single interval), so by Lemma 2.5 there is a vertex of
degree t and hence G(x) is connected on t+1 vertices.

For the second subcase we assume |S ∩ N | = t . Since |Np| = pt + 1, we
certainly have |Np| 6= t unless p = 0 and t = 1, in which case G(x)= K2, which
is connected on two vertices. Otherwise, S∩N ⊂ Np, so |Np|> t . Since both Np

and S are intervals, S∩ Np comprises precisely either the first t elements of Np

or the last. If S∩Np = [x−2n−2t+1, x−2n− t] then deg(n+ t) = t , while if
S∩Np = [x−2n− t, x−2n−1] then deg(n)= t .

In the last subcase, we note that if S∩N =∅ then there is an interval of length
at least t+1 (namely, all of S) that is not contained in N , so by Lemma 2.5 G(x)

is not connected. We assume for the balance of this case that S∩N is nonempty.
If |Np|> t , that is, p > 0, then since |S∩Np|< t , S cannot extend the interval

Np in two directions, hence the intersection of S with the complement of N is a
single interval. Thus there is an interval of length at least t+1 that is not in N , so
by Lemma 2.5 there is a vertex of degree 0 and G(x) is not connected.

If p = 0, then S∩N = {0}, and the degree of each vertex is at most 1. If t > 1,
this shows that G(x) is not connected. If t = 1, then the hypothesis of the subcase
|S∩N |< t is not satisfied.

Case 2: S intersects the two intervals Np−1 and Np, as shown in Figure 2. We
choose k so that x−2n−k = pn, the smallest element of Np, and we let S∩N =
[x−2n−2t+1, x−2n−k− j]∪[x−2n−k, x−2n−1].

We divide this case into the three subcases |S∩ N | > t−1 (i.e., |S∩ N | ≥ t),
|S∩N | = t−1 and |S∩N |< t−1.
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x � 2n � k � j
p �1

x � 2n � k

S

N Np 

Figure 2. Case 2: S overlaps two intervals.

n+k

n n+t

n+k+1

n+1

Figure 3. G N (x), in Case 2 when |S∩N | ≥ t , with a connected
subgraph highlighted.

The graph for the first subcase is shown in Figure 3. In this case j ≤ t , and the
verification that the darkened subgraph exists is straightforward. In particular, the
element of S associated with the edge (n+k, n+t) is x−2n−k−t , so this element
and the ones associated with the other darkened edges involving n+ t are contained
in the lower portion of S∩N , while the ones associated with the edges involving n
are contained in the upper portion.

If |S∩N |< t−1, the gap between Np−1 and Np contains at least t+1 consecutive
integers, so by Lemma 2.5 there is a vertex of degree 0, and G(x) is not connected.

We are left with the subcase |S∩N | = t−1. The graph for this case is shown
in Figure 4, and we verify that the subgraph on vertices {n, . . . , n+k} and that on
{n+k+1, . . . , n+t} have no edges between them. Indeed, the missing edges between
the subgraphs are associated with the elements x−(n+k)−(n+t)= x−2n−k−t
through x−n−(n+k+1)= x−2n−k−1, none of which is in N . �

Proposition 2.7. Let N = 〈n, . . . , n+ t〉, where n > 1 and 0 < t < n. Then G(x)

is connected on t+1 vertices if and only if at least one of the following conditions
holds:

(1) x ∈ [(p+2)n+t, (p+2)n+(p+1)t] for p ≥ 0 (if t = 1) and p > 0 otherwise.

(2) x > C(N ), where C(N ) = F(N )+2n+ t+1 if t divides n−1, and C(N ) =

F(N )+n+ t+1 otherwise.
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n+k

n n+t

n+k+1

n+1

Figure 4. G N (x), in Case 2 when |S∩N | = t−1.

Proof. We define S = [x − 2n− 2t + 1, x − 2n− 1] as before and recall that by
Lemma 2.6, G(x) is connected on t+1 vertices if and only if |S∩N | ≥ t .

If S intersects exactly one interval Np, then |S∩N |≥ t when the smallest element
of S is close enough to the left end of the interval, that is, x−2n−2t+1≥ pn−(t−1),
or is not too close to the right end, that is, x − 2n− 2t + 1 ≤ p(n+ t)− (t − 1).
These inequalities give the first condition, and the conditions on p follow from the
requirement that |Np| ≥ t .

If S spans a gap of size larger than t − 1, then G(x) is not connected, while
if S spans a gap of size at most t−1 then G(x) is connected. Since consecutive
gaps decrease in size by t (refer to Figure 1), the last gap, G, has size at most t .
Assume that S∩G 6=∅. If |S∩G|< t , then G(x) is connected. If |S∩G| = t , that
is, F(N ) ∈ S, then G(x) is not connected. Moreover, the last gap has size less than
t if and only if t does not divide the size of the first gap, namely that between N0

and N1, which has size n−1. In this case, G(x) is connected on t+1 vertices for
all x > y satisfying y−2n−2t +1 = np− (t −1) where Np is the last interval
before F(N ), that is, if F(N )= qn−1, then p = q−1. If the last gap is of size t ,
the relevant p belongs to the interval after F(N ), that is, p = q. �

Note that Proposition 2.7 is worded differently from Propositions 2.3 and 2.4.
In Proposition 2.7, when t does not divide n−1, there are values of x that do not
satisfy the first condition, but do produce connected graphs.

The following corollary is a concise restatement of the previous results in the
case t = n− 1. Though it follows from these results, the direct proof is more
straightforward, so it is sketched.

Corollary 2.8. Let n > 2, N = 〈n, . . . , 2n−1〉 and x ∈ N.

(1) G(x) has n vertices if and only if x ≥ 3n−1.

(2) The following statements are equivalent.
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(a) G(x) is connected with n vertices.
(b) deg (n)= n−1.
(c) x ≥ 4n−1.

(3) G(x) is complete on n vertices if and only if x ≥ 5n−3.

Proof. Notice that N = {0}∪[n,∞).
For (1) we require that [x−(2n−1), x−n] ⊂ N , which is true precisely when

x−(2n−1)≥ n.
For (2) we note that deg (n)= n−1 (omitting loops, as usual), when [x−n−(2n−

1), x−n−(n−1)] ⊂ N , which is true precisely when x−3n+1≥ n, so conditions
(b) and (c) are equivalent. It is clear that in this case G(x) is connected. Conversely,
if G(x) is connected then vertex 2n−1 is adjacent to at least one other vertex, that is,
x−(2n−1)−(n+ j)∈ N for some j ∈ [0, n], so x−(3n−1)≥ x−(3n−1)− j ≥ n,
and the inequality (c) is established.

For (3) we note that vertices 2n−1 and 2n−2 must be adjacent, so x−4n+3=
x−(2n−1)−(2n−2)≥n, which produces the inequality. Moreover, if the inequality
is satisfied all pairs of vertices are adjacent since x−(n+ i)−(n+ j)≥ x−4n+3
if i and j are distinct integers in [0, n−1]. �

Remark 2.9. For n = 2, statements (2) and (3) in Corollary 2.8 would not quite
be correct, because the set S comprises the single element x − 5, and can thus
coincide with N0 = {0}. Thus, in addition to the ranges listed, G(5) is complete
(and therefore connected).

Constructions. The goal of this section is to address the following question: “When
N is a numerical monoid generated by an interval, which connected graphs occur
as G(x) for some x ∈ N?” Throughout, we assume N = 〈n, n+1, . . . , n+ t〉 with
0≤ t ≤ n−1 and require G(x) to have t+1 vertices. It remains an open question
as to what graphs can be realized when not all generators are required to occur as a
vertex.

There are
(t+1

2

)
ways to choose two distinct values n+ i, n+ j ∈ [n, n+ t] and

yet only 2t −1 distinct sums (n+ i)+ (n+ j). By Definition 1.4, vertices n+ i
and n+ j are adjacent in G(x) if x−[(n+ i)+ (n+ j)] ∈ N . Thus, to determine
the number of edges that can occur in the irreducible divisor graph G(x) for some
x ∈ 〈n, n+1, . . . , n+t〉 we consider the 2t−1 possible sums in [2n+1, 2n+2t−1]
along with Proposition 2.1.

We have no general result for what graphs occur when t > 4, but the methods of
this section may be extended for larger values of t . We now show how to determine
which connected 5-vertex graphs with exactly four edges can be realized as G(x)

for x ∈ N = 〈n, n+1, . . . , n+4〉. The results of the remaining cases are outlined
in Section 3.
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a Number of edges Edges

2n+1 1 (n, n+1)

2n+2 1 (n, n+2)

2n+3 2 (n, n+3), (n+1, n+2)

2n+4 2 (n, n+4), (n+1, n+3)

2n+5 2 (n+1, n+4), (n+2, n+3)

2n+6 1 (n+2, n+4)

2n+7 1 (n+3, n+4)

Table 1. Edges associated with values of x−a.

Using Definition 1.4 we can determine which of the
(4+1

2

)
= 10 possible edges

occur in G(x) by considering which values x−
(
(n+i)+(n+ j)

)
are in N as distinct

i and j range over the set {0, 1, 2, 3, 4}. Since (n+ i)+(n+ j) ∈ [2n+1, 2n+7],
we may summarize the relationships among values x−a and edges in G(x) as in
Table 1.

We will use this table as a guide for constructing irreducible divisor graphs
G(x) with x ∈ 〈n, n+1, n+2, n+3, n+4〉 such that G(x) has exactly 5 vertices
and exactly four edges. By Proposition 2.1, the smallest number of consecutive
positive integers in N is 5. Moreover, the number of consecutive integers in N
must be p(n+4)− pn+1= 4p+1 for some p ∈ N and the length of a sequence
of consecutive integers not in N must be (p+1)n− p(n+4)−1= n−4p−1 for
some integer p with 1≤ p ≤ (n−1)/4; that is, the gap sizes are congruent to n−1
modulo 4.

Referring to Table 1, we see that in order to guarantee exactly 4 edges in G(x),
we need to have either 3 or 4 consecutive integers not in N . Indeed, the set
[x − (2n + 7), x − (2n + 1)], which we called S in Lemmas 2.5 and 2.6, must
intersect N in at most two intervals; see Figure 2. In the former case we are left
with 4 edges exactly when x−(2n+5), x−(2n+4), and x−(2n+3) are not in N .
In the latter case we have 4 edges exactly when either x− (2n+7), x− (2n+6),
x−(2n+5) and x−(2n+4) are not in N or x−(2n+4), x−(2n+3), x−(2n+2)

and x−(2n+1) are not in N .
Suppose first that x−(2n+5), x−(2n+4), and x−(2n+3) are not in N and

hence x−(2n+1), x−(2n+2), x−(2n+6), and x−(2n+7) are in N . That is

E[G(x)] =
{
(n, n+1), (n, n+2), (n+2, n+4), (n+3, n+4)

}
.

To guarantee exactly 3 consecutive integers not in N we need, from Proposition 2.1,
n−4p−1= 3 where p ≥ 1. In order for the correct three consecutive values to be
outside of N , we require x−(2n+6)= p(n+4) since x−(2n+6) is the largest
value in N preceding this sequence. Since n = 4p+4, x = 1

4 n2
+2n+2 and we
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obtain the graph G
( 1

4 n2
+2n+2

)
in N = 〈n, n+1, n+2, n+3, n+4〉 whenever

n = 4k with k > 1.

n+1 n n+2 n+4 n+3

Now suppose that either x−(2n+3), x−(2n+2), x−(2n+1)∈ N or x−(2n+7),
x−(2n+6), x−(2n+5) ∈ N . In the first case,

E[G(x)] = {(n, n+1), (n, n+2), (n, n+3), (n+1, n+2)}

in which case G(x) has only 4 vertices. In the second case,

E[G(x)] = {(n+3, n+4), (n+2, n+4), (n+1, n+4), (n+2, n+3)}

N x

1 〈n〉, n > 0 pn, p > 0
2 〈n, n+1〉, n > 1 2n+1
3 〈n, n+1, n+2〉, n = 2k, k > 1 1

2 n2
+2n

4 〈n, n+1, n+2〉, n > 3 x ∈ [pn+3, p(n+2)−3], p > 3
4 〈3, 4, 5〉 x > 11
6 〈n, . . , n+3〉, n = 3k, k > 1 1

3 n2
+2n+2

7 〈n, . . , n+3〉, n = 3k, k > 1 1
3 n2
+2n+3

8 〈n, . . , n+3〉, n = 3k+2, k > 0 1
3 n2
+

7
3 n+2

9 〈n, . . , n+3〉, n = 3k+2, k > 0 1
3 n2
+

7
3 n

10 〈n, . . , n+3〉, n > 4 x ∈ [pn+5, p(n+3)−5], p > 3
10 〈4, 5, 6, 7〉 x > 16
13 〈n, . . , n+4〉, n = 4k, k > 1 1

4 n2
+2n+2

16 〈n, . . , n+4〉, n = 4k, k > 1 1
4 n2
+2n+3

19 〈n, . . , n+4〉, n = 4k, k > 1 1
4 n2
+2n

22 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+2

26 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+4

28 〈n, . . , n+4〉, n = 4k+3, k > 0 1
4 n2
+

9
4 n+5

29 〈n, . . , n+4〉, n = 4k+2, k > 0 1
4 n2
+

5
2 n+4

30 〈n, . . , n+4〉, n = 4k+2, k > 0 1
4 n2
+

5
2 n+6

31 〈n, . . , n+4〉, n > 5 x ∈ [pn+7, p(n+4)−7], p > 3
31 〈5, 6, 7, 8, 9〉 x > 21

Table 2. Construction families. The first column refers to the
numbering in Figure 5. We use the abbreviation 〈n, . . , n+3〉 for
〈n, n+1, n+2, n+3〉, and likewise for 〈n, . . , n+4〉.
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and again we have a graph with only 4 vertices. Therefore, the graph shown above
is the only graph with 5 vertices and 4 edges that can be realized as G(x) for some
x ∈ 〈n, n+1, n+2, n+3, n+4〉.

Similar arguments can be made to determine which connected graphs on t+1
vertices can be realized as G(x) with x ∈ 〈n, n+1, . . . , n+t〉, and these conditions
are listed in Table 2 on the previous page.

3. Connected graphs with at most five vertices

In this section we give examples showing that each of the 31 nonisomorphic
connected graphs with one to five vertices can be realized as the irreducible divisor
graph of an element in a primitive minimally generated numerical monoid. In
Figure 5, if the positive integers n1, . . . , nt occur as vertices in the graph G(x),

1 G(1)

1

2 G(5)

2 3

3 G(16)
6

4 5

4 G(12)
3

4 5

5 G(32)
5

9 11

17

6 G(26)
7

9 6

8
7 G(27)

6

7 9

8

8 G(22)
5

6 7

8

9 G(20)
7

5 6

8

10 G(17)
4

5 6

7

11 G(46)
10

15 8 19

22

12 G(65)
16

11 21 23

18

13 G(34)
9

8 10 12

11

14 G(47)
16

18 5 22

14

15 G(39)
10

9 11 17

15

16 G(35)
9

10 8 11

12

17 G(96)
21

33 18 26

30

18 G(50)
11

17 16 14

18

19 G(32)
9

11 12 8

10

20 G(78)
21

27 30 18

20

21 G(30)
11

14 5 12

13

22 G(30)
10

9 11 8

7

23 G(216)
22

30 50 75

33

24 G(37)
10

11 6 15

19

25 G(78)
21

12 14 18

30

26 G(32)
11

10 7 9

8

27 G(31)
7

8 12 10

11

28 G(33)
9

7 10 8

11

29 G(28)
7

9 6 8

10

30 G(30)
9

6 7 8

10

31 G(22)
5

6 7 8

9

Figure 5. Connected graphs with at most five vertices.
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then x ∈ N = 〈n1, . . . , nt 〉. In Table 2 we give, when possible, a family of examples
realizing a given graph using the methods of Section 2. When such a family is not
given, it is because that graph cannot be realized as the irreducible divisor graph of
an element in a numerical monoid generated by an interval.
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