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In this work, we consider a moving particle which drops down onto a stationary
rigid foundation and bounces off after its contact. The equation of its motion
is formulated by a second-order ordinary differential equation. The particle
satisfies the Signorini contact conditions which can be interpreted in terms of
complementarity conditions. The existence of weak solutions is shown by using
a finite time step and the necessary a priori estimates which allow us to pass to
the limit. The uniqueness of the solutions can be proved under some additional
assumptions. Conservation of energy is also investigated theoretically and numer-
ically. Numerical solutions are computed via both finite- and infinite-dimensional
approaches.

1. Introduction

Contact between two bodies happens in our life everyday. Consider, for example,
the contact between a floor and an elastic ball such as a basketball or a volleyball, or
contact between a brake pad and a disc of a car’s wheel. These contact phenomena
may seem to be simple from physical or engineering points of view. However, prov-
ing the existence of solutions for these contact models requires very sophisticated
mathematical analysis and is a mathematical challenge.

Historically, the study of contact mechanics may have originated with [Hertz
1881], where the physicist analyzed a static contact problem of two elastic bodies.
Mathematical research on contact problems has become more active since Signorini
[1933] formulated the general static contact problem of linearly elastic bodies. Most
mathematical research on contact mechanics has focused on static or quasistatic
problems and relatively little research on dynamic contact problems has been carried
out. This has started to change, as mathematical tools and numerical methods for
dynamic contact problems have been developed.
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Readers interested in contact problems may refer to the remarkable paper [Stewart
2000] for rigid-body dynamics with friction and impact which is described by
ordinary differential equations (ODEs) and [Kikuchi and Oden 1988] for contact
in elasticity which deals with elliptic, parabolic, or hyperbolic types of partial
differential equations (PDEs).

The study of one-dimensional contact problems is of considerable importance, in
its own right and because it provides a foundation for higher-dimensional problems.
There are many one-dimensional dynamic contact models involving vibrating strings,
elastic rods, and elastic beams modeled in various ways: Euler–Bernoulli beams
(linear), Timoshenko beams, and many kinds of nonlinear beams. Nonlinear Gao
beams [Gao 1996] are especially noteworthy, as their model allows for buckling, and
their contact problems have recently been the subject of many interesting studies;
see [Ahn et al. 2012], for example.

There are many open questions in dynamic contact problems. For example,
showing the uniqueness of solutions for rigid dynamics models or dynamic contact
models between an elastic body and a rigid foundation with Signorini contact
conditions is a challenging problem. In addition, proving the existence of solutions
for dynamic contact between a purely elastic body and a rigid foundation over
more than three dimensions is still an open question. Indeed, the dynamic contact
problem has been studied in [Ahn and Stewart 2009], where the viscosity is added
to prove the existence of solutions. Mathematically speaking, inserting the viscosity
into the equation of motion is a great idea to obtain more regularized solutions
and to show the existence of solutions for almost elastic bodies. “Almost elastic”
implies that a viscous quantity dealing with the viscosity is chosen by a very small
number, which enables viscoelastic bodies of Kelvin–Voigt type to get closer to
elastic bodies.

One of the major concerns of dynamic contact problems is to show conser-
vation of energy for the elastic case or energy balance for the viscoelastic case.
This is an open question and in [Ahn 2007; 2008; 2012] it has been investigated
theoretically and numerically. However, proving it for the general case may be
a very difficult task. In rigid-body dynamic problems with frictionless impact,
showing conservation of energy depends on the coefficient of restitution (COR).
If COR = 1, that is, for the elastic case, energy conserves, but if 0 ≤ COR < 1,
that is, for the inelastic case, energy decreases. Furthermore, considering COR for
particles results in showing the uniqueness of solutions, which is stated at the end
of Section 4.

This work is motivated by the three-dimensional dynamic contact problem,
although particles are neither elastic nor viscoelastic. Our dynamic contact model
may be basic but will provide a great opportunity to think about significant issues on
higher-dimensional dynamic contact problems with elastic bodies or rigid bodies.



DYNAMIC IMPACT OF A PARTICLE 149

rigid foundation

particle

N

f

Figure 1. Dynamic contact of a particle.

2. Continuous formulations and some mathematical backgrounds

The motion of a particle in this physical situation is described by the ordinary
differential equation (ODE)

ut t = N + f for all t ∈ (0, T ],

where u = u(t) is the displacement of a particle, f = f (t) is a given body force,
and N = N (t) is a contact force. The acceleration of the particle, ut t , is the second
derivative of u with respect to time t , and T is the final time for the motion of the
particle. When the particle drops down and hits the fixed flat rigid obstacle ϕ and
bounces off, the Signorini contact conditions are applied which can be understood
in terms of complementarity conditions (CCs). In general, the CCs 0≤ a ⊥ b ≥ 0
mean that the scalars a and b are nonnegative and either a or b is zero. Now,
we can see that the contact conditions satisfy the CCs (2-2) where the flat rigid
foundation ϕ does not depend on time t . When there is a gap between the particle
and the rigid foundation (u(t) > ϕ), the contact force N must be zero, and when
the particle is in contact with the rigid foundation (u(t) = ϕ), that is, there is no
gap, the contact force takes place (N (t)≥ 0). We note that u(t)≥ ϕ implies that
the particle does not penetrate the rigid foundation unless the normal compliance
applies to the stationary foundation. By Newton’s third law, the contact forces N
are always regarded as nonnegative. The physical situation is illustrated in Figure 1.

Thus, we establish the ODE and the CCs that describe the physical situation: for
all t ∈ (0, T ],

ut t(t)= N (t)+ f (t), (2-1)

0≤ u(t)−ϕ ⊥ N (t)≥ 0, (2-2)
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u0
= u(0), (2-3)

u0
t = ut(0), (2-4)

where u0 is the initial displacement and u0
t is the initial velocity of the particle. For

our convenience, it can be assumed that the flat rigid foundation ϕ = 0, without loss
of generality. In order to prove the existence of solutions, (2-1) has to be considered
in the sense of distributions and then we will seek solutions u : [0, T ] → R in
appropriate spaces.

Let q and g be any functions. Then we introduce the little o notation:

q = o(g) provided lim
t→∞

|q(t)|
|g(t)|

= 0.

This notation implies that the function g approaches infinity even faster than the
function q does as t ↑∞.

The Laplace transform of any function w, which is a useful tool for handling
ODEs, is defined by

(Lw(t))(s)=
∫
∞

0
w(t)e−st dt. (2-5)

It is important to take a restriction of the number s (possibly complex number)
into consideration, in order to see the convergence of (2-5). Lemma 1 in Section 3
requires Lerch’s theorem [Widder 1941, pp. 62–63]; generally speaking, it im-
plies that if (Lw)(s) = (L$)(s) with all s in some region of convergence, then
w(t)=$(t) for almost all t ∈ [0, T ]. This is called Lerch’s cancellation law.

3. Conservation of energy

In this dynamic contact problem, the energy function E(t) is defined by

E(t) := E[u, ut ] =
1
2 [ut(t)]2− f (t)u(t), (3-1)

where the first term and the second term in (3-1) are called the kinetic energy and
the potential energy, respectively, and ut denotes the velocity of a particle. One can
see that the velocity ut is replaced by the new variable v in Section 4.

If the conservation of energy is considered in terms of the atom level (see
[Moreau et al. 1988]), its mathematical proof will be much harder. Showing
conservation of energy might be the most difficult task in the dynamic contact
problems with Signorini contact conditions. However, if functions are piecewise
continuous, then the Laplace transform is one-to-one, which means that we can
apply Lerch’s cancellation law. In order to do so, we assume that the impact time
period is not instantaneous; that is, the impact time period is (t∗− ε, t∗+ ε) with
sufficiently small ε > 0. In the following lemma, the minimum requirement is
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that the displacement u is piecewise smooth which implies that u is differentiable
almost everywhere and ut has a jump discontinuity at a finite number of points.

Lemma 1. Assume that there is no change of body force and the solutions u satisfy-
ing the continuous formulations (2-1)–(2-4) are piecewise smooth and u(t)= ϕ for
all t ∈ (t∗− ε, t∗+ ε) with the fixed t∗ ∈ (0,∞). If E = o(et) as t ↑∞, then energy
conserves; that is, E(0)= E(t) for almost all t ∈ (0,∞).

Proof. Multiplying both sides of (2-1) by the velocity ut , we have ut t ut− f ut = Nut .
Since (d/dt)(u2

t /2)= ut t ut , we can obtain

d
dt

(
u2

t

2
− f u

)
= Nut .

Recall the CCs 0 ≤ u(t)− ϕ ⊥ N (t) ≥ 0 with 0 < t∗ < t ≤ T . There are two
cases; if N (t) = 0, then N (t)ut = 0 over the interval (0, T ], and if N (t) > 0
over (t∗ − ε, t∗ + ε) and N (t) = 0 outside of (t∗ − ε, t∗ + ε), then u(t) = ϕ over
(t∗− ε, t∗+ ε) and thus N (t)ut = 0 on (0, T ]. So E(0)= E(t) for t ∈ (0, T ]. Note
the velocity ut is piecewise continuous.

Now, we take the Laplace transform of both sides to get∫
∞

0

(
u2

t

2
− f u

)′
e−st dt =

∫
∞

0
Nut e−st dt. (3-2)

Here ′ means the derivative with respect to time t . Integrating by parts we get

0=
∫
∞

0

(
u2

t

2
− f u

)′
e−st dt

=
[(1

2 u2
t − f u

)
e−st]∞

0 + s
∫
∞

0

(
u2

t

2
− f u

)
e−st dt. (3-3)

Since E = o(et) as t ↑∞, there is a constant M > 0 such that

|E(t)| =
∣∣∣∣u2

t

2
− f u

∣∣∣∣≤ Met for some large t > 0.

Since we require the convergence of the improper integral on the right side of (3-3),
we need to impose the condition that 1− s < 0. Thus it follows from (3-3) that, for
s > 1,

(LE(t))(s)= (1/2s)
(
u2

t (0)− 2 f u(0)
)
.

We can also see that (LE(0))(s) = (1/2s)(u2
t (0)− 2 f u(0)) for s > 0. Thus, we

note that the Laplace transform requires one-to-one mapping for only s > 1. Since
(LE(t))(s) = (LE(0))(s) for s > 1, E(0) = E(t) for almost all t ∈ (0,∞), as
required. �
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Remarks 2. In Lemma 1, the displacement u may be semismooth (see its definition
in [Facchinei and Pang 2003b, Section 7.4]), since we have the condition u(t)= ϕ
for all t ∈ [t∗− ε, t∗+ ε] with the fixed t∗ ∈ (0,∞).

Unfortunately, the technique used in Lemma 1 does not work for the viscoelastic
or elastic cases, since it is relatively more difficult to handle the elastic energy
included in the energy function.

4. Numerical formulations and their convergence

In this section, we set up three numerical equations based on the continuous formu-
lations (2-1)–(2-2), with (4-2) being an extra equation where we set the change in
the displacement equal to the average velocity between the time steps. First, we
partition the time interval [0, T ] such that

0= t0 < t1 < t2 < · · ·< tl < · · ·< tn−1 < tn = T,

where n is the number of time steps. The uniform time step h = T/n is used and
thus the size of the time step is h = tl+1− tl and each discretized time is tl = l h
for any integers l ≥ 0. Then, the numerical approximations u(tl), v(tl) and N (tl)
are denoted by ul , vl and N l , respectively. Assume that there is no change of body
force f . Using the implicit Euler method (sometimes referred to as the backwards
Euler method) for the CCs, we are led to the following numerical formulations:

vl+1
− vl

h
= N l

+ f, (4-1)

ul+1
− ul

h
=
vl+1
+ vl

2
, (4-2)

0≤ ul+1
−ϕ ⊥ N l

≥ 0. (4-3)

The solutions (u, v, N ) of our contact problem (2-1)–(2-4) will be approximated
by the numerical trajectories (uh, vh, Nh), which satisfy the numerical formula-
tions (4-1)–(4-3); let uh(t) be a piecewise linear interpolant satisfying u(tl) = ul

and u(tl+1) = ul+1, and let vh(t) be a piecewise constant interpolant satisfy-
ing v(t) = vl+1 for t ∈ (tl, tl+1]. We also set up the numerical approximation
Nh(t) of the contact forces, which is the step function; that is, N (t) = N l for
t ∈ [tl, tl+1) and thus the approximation Nh has to be defined in the distributional
sense to be

Nh(t)= h
n−1∑
l=0

δ(t − (l + 1)h)N l, (4-4)

where δ is the Dirac delta function. We also define the energy function for the
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discrete case to be

E(tl) := E l
=

1
2(v

l)2− f ul, (4-5)

which plays a very important role in showing the boundedness of numerical solu-
tions from the theoretical perspective and addressing the stability in the numerical
perspective.

Thanks to our numerical scheme, the numerical formulations (4-1)–(4-3) con-
firm the regularity of numerical solutions (uh, vh, Nh) for any h > 0. Lemma 3
demonstrates a possibility of energy conservation and supports the regularity of
solutions.

Lemma 3. Suppose that our numerical solutions satisfy the numerical formula-
tions (4-1)–(4-3) for any time step h > 0 and the body force f is given as a constant
function. If the initial data u0, v0 are finite, we have the following estimates:

max
0≤l≤n

|vl
| ≤

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
<∞,

max
0≤l≤n

|ul
| ≤ |u0

| +
T
2

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
<∞.

Proof. Using (4-1) and (4-2), for any h > 0 we have

(vl+1)2− (vl)2

2h
=

N l(ul+1
− ul)

h
+

f (ul+1
− ul)

h
.

It follows from the numerical CCs that

(vl+1)2− (vl)2

2
− f (ul+1

− ul)= N l(ul+1
− ul)

= N l
[ul+1

−ϕ− (ul
−ϕ)]

= −N l(ul
−ϕ)≤ 0. (4-6)

Therefore, from (4-6),

E l+1
=

1
2(v

l+1)2− f ul+1
≤

1
2(v

l)2− f ul
= E l .

So repeating the inequality at each time step t = tl , we can get E l
≤ E0 for any l ≥ 1.

Thus,

1
2(v

l)2 ≤ E0
+ f ul

≤ E0
+ | f ||ul

| ≤ E0
+ | f |

(
|u0
| +

1
2

∫ tl

0
|vh(τ )| dτ

)
.

Note that

|ul
| ≤ |u0

| +
1
2

∫ tl

0
|vh(τ )| dτ. (4-7)
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Since vh is a constant interpolant, by Cauchy’s inequality, we can set up

|vh(tl)|2 ≤ 2E0
+ 2| f |

(
|u0
| +

1
2

T + 1
2

∫ tl

0
|vh(τ )|

2 dτ
)
.

Using Gronwall’s inequality, we have

(vl)2= |vh(tl)|2≤
(
2E0
+2| f ||u0

|+| f |T
)(

1+| f |T e| f |T
)

for any l ≥ 0. (4-8)

It also follows from (4-7)–(4-8) that

|ul
| ≤ |u0

| +
T
2

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
,

as desired. �

We note that the estimates in Lemma 3 can be obtained even if the body force f
is not a constant function. Now, we introduce notations to see how to show the
existence of solutions. If u : [0, T ] → R is continuous, then the p-th Hölder norm
of u is defined by

‖u‖C p[0,T ] = sup
t∈[0,T ]

|u(t)| + sup
s 6=t∈[0,T ]

|u(t)− u(s)|
|t − s|p

.

Considering Hölder spaces would be useful to show the compactness of continuous
solutions for PDEs. Applying Lemma 3 to the construction of numerical solutions,
we can see that uh ∈ C[0, T ] and vh ∈ L∞[0, T ] for any time step size h > 0.
However, showing the boundedness of solutions is not enough to prove the existence
of solutions. Thus, we need compactness to show that uh converges strongly
in C[0, T ] as h ↓ 0. Now, we choose any s1, s2 such that 0 ≤ s1 < s2 ≤ T ,
|s1− s2|< h, s1 ∈ (tl−1, tl], and s2 ∈ (tl, tl+1]. We can use Lemma 3 again to have

|uh(s2)− uh(s1)| = |uh(s2)− uh(s1)|
p
|uh(s2)− uh(s1)|

1−p

≤
1
2

(∫ s2

s1

|vh(t − h)+ vh(t)| dt
)p(
|uh(s2)| + |uh(s1)|

)1−p

≤ C |s2− s1|
p.

Consequently, we can see easily that the interpolant uh ∈ C p
[0, T ] with exponent

0 < p ≤ 1. By the Arzelà–Ascoli theorem, C p
[0, T ] is compactly embedded in

C[0, T ]. Therefore, there is a subsequence of uh (denoting this sequence by uh),
such that uh converges strongly to u, that is, uh→ u in C[0, T ], as h ↓ 0.

We regard the numerical contact force Nh as the Borel measure on the time
interval [0, T ]:

Nh([0, T ])=
∫
[0,T ]

Nh(t) dt.
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Using (4-4), we can show the boundedness of Nh easily. Recalling the numerical
formulation (4-1), we have∫

[0,T ]
Nh(t) dt = h

n−1∑
l=0

N l
= vn
− v0. (4-9)

Equation (4-9) does make sense from a physical point view, since the velocity v
moves down initially, and thus v0 < 0 and the particles bounce off, and thus their
velocity vn > 0. Therefore, for any h > 0 we have∫

[0,T ]
Nh(t) dt ≤

√(
2E0+ 2| f ||u0| + | f |T

)(
1+ | f |T e| f |T

)
− v0 <∞.

Applying the Riesz representation theorem [Renardy and Rogers 1993, p. 199] and
Alaoglu’s theorem [ibid., p. 209], Nh has a subsequence that is weakly∗ convergent
to N in the sense of measures as h ↓ 0. We denote the subsequence by Nh . Thus,
Nh ⇀

∗ N . Finally, we check if our solutions, which converged by numerical
trajectories, satisfy the CCs (2-2). Since uh −ϕ ≥ 0 and uh→ u as h ↓ 0, we have
u− ϕ ≥ 0. Since Nh ≥ 0 and Nh ⇀

∗ N as h ↓ 0, we have N ≥ 0. We claim that
N (u−ϕ)= 0 in the weak sense. Taking the integral of Nh(uh −ϕ), we have∫ T

0
Nh(t)(uh(t)−ϕ) dt = h

∫ T

0

n−1∑
l=0

δ(t − (l + 1)h)N l(uh(t)−ϕ) dt

= h
∫ T

0

n−1∑
l=0

N l(ul+1
−ϕ) dt = 0. (4-10)

We notice that (4-10) is identified by the numerical CCs (4-3). Finally, we claim
that

∫ T
0 Nh(t)(uh(t)−ϕ) dt→

∫ T
0 N (t)(u(t)−ϕ) dt . Since uh→ u and N ⇀∗ N

as h ↓ 0,∣∣∣∣∫ T

0
Nh(t)(uh(t)−ϕ) dt −

∫ T

0
N (t)(u(t)−ϕ) dt

∣∣∣∣
≤

∫ T

0

∣∣Nh(t)(uh(t)−ϕ)− N (t)(u(t)−ϕ)
∣∣ dt

=

∫ T

0

∣∣Nh(t)(uh(t)−ϕ)−Nh(t)(u(t)−ϕ)+Nh(t)(u(t)−ϕ)−N (t)(u(t)−ϕ)
∣∣ dt

≤

∫ T

0

∣∣Nh(t)(uh(t)− u)
∣∣ dt +

∫ T

0

∣∣(Nh(t)− N (t))(u(t)−ϕ)
∣∣ dt→ 0.

Therefore, by the squeeze theorem, we can obtain

0=
∫ T

0
Nh(t)(uh(t)−ϕ) dt→

∫ T

0
N (t)(u(t)−ϕ) dt as h ↓ 0.
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Thus, we conclude that there exist solutions u ∈ C[0, T ] ∩C p
[0, T ] ∩W 1,∞

[0, T ]
with 0< p ≤ 1 satisfying (2-1)–(2-4), where the space W 1,∞

[0, T ] is defined by
W 1,∞

[0, T ] = {u | sup0≤t≤T (|u(t)|+|ut(t)|)<∞}. We notice that the derivative ut

has to be considered in the weak sense.
Lemma 4 requires an additional condition that the solutions are absolutely

continuous. We denote by COR(u) the coefficient of restitution for the particle
which is defined by COR(u) = −va/vb, where va is the velocity after contact
and vb is the velocity before contact. Therefore, solutions that we seek have to be
considered in the stronger sense in order to prove their uniqueness. We note that
showing the uniqueness is trivial unless we take contact forces into consideration.

Lemma 4. Suppose that there exist two solutions (u, N1) and (w, N2) satisfying
(2-1)–(2-4). If either the initial velocity u0

t = 0 and ut(t) = wt(t) = 0 for some
t ∈ [0, T ] or COR(u)= COR(w)= 1, then the two solutions are the same; that is,
u(t)= w(t) for all t ∈ [0, T ] and N1(t)= N2(t) for almost all t ∈ [0, T ].

Proof. We assume that there exist two solutions (u, N1) and (w, N2) such that

ut t = N1(t)+ f (t) and wt t = N2(t)+ f (t). (4-11)

Letting z(t)= u(t)−w(t), it is easy to see that zt t = N1(t)− N2(t). Multiplying
by zt and taking the integral over [0, t] ⊂ [0, T ], we can obtain∫ t

0
zττ zτ dτ =

∫ t

0
(N1(τ )− N2(τ ))(uτ (τ )−wτ (τ )) dτ

=

∫ t

0
N1(τ )uτ (τ )− N1(τ )wτ (τ )− N2(τ )uτ (τ )+ N2(τ )wτ (τ ) dτ.

In Lemma 1, it has been shown from the CCs (2-2) that

N1(τ )uτ (τ )= N2(τ )wτ (τ )= 0.

Using the two equations in (4-11) and applying integration by parts, we have

1
2

∫ t

0

d
dτ
(z2
τ (τ )) dτ

=−

∫ t

0
N1(τ )wτ (τ )+N2(τ )uτ (τ ) dτ

=−

∫ t

0
uττ (τ )wτ (τ )+wττ (τ )uτ (τ ) dτ

=−

(
ut(t)wt(t)−ut(0)wt(0)−

∫ t

0
uτ (τ )wττ (τ ) dτ+

∫ t

0
wττ (τ )uτ (τ ) dτ

)
=−ut(t)wt(t)+ut(0)wt(0). (4-12)
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If the initial two velocities ut(0) = wt(0) = 0 and ut(t) = wt(t) = 0 for some
t ∈ [0, T ], it is easy to see from (4-12) that

1
2

∫ t

0

d
dτ
(z2
τ (τ )) dτ = z2

t (t)− z2
t (0)= 0. (4-13)

If COR(u)= COR(w)= 1, the identities (4-13) also hold. Since the two solutions
satisfy the initial data (2-4), from both cases we have z2

t (0) = 0, which gives
us ut(t)= vt(t) for almost all t ∈ [0, T ]. Therefore, u(t)= w(t) for all t ∈ [0, T ]
and the corresponding contact forces N1(t) = N2(t) for almost all t ∈ [0, T ], as
required. �

When we consider Equation (4-12), we could impose the more general condition
that COR(u),COR(w) ≥ 1. However, the condition requires that the obstacle is
deformed. Therefore, the uniqueness is shown under the assumption that particles
collide with the rigid foundation elastically.

5. Numerical results and discussion

In this section, numerical results are presented implementing several methods. For
the sake of simplicity, we assume that ϕ = 0 throughout this section. Even though
we use different methods with f = 0 and without considering the coefficient of
restitution, we obtain almost equivalent numerical results (simulations) which are
displayed in Figures 2–3. These results may enable us to demonstrate some evidence
for the numerical stability. Lemma 1 is proven by the main idea that our numerical
schemes guarantee that energy does not increase. We shall observe numerical
results later on that show the numerical evidence for energy conservation. This
means that the numerical solutions are stable, because they satisfy the criterion
that solutions never show increasing energy. The first method that we describe is
an infinite-dimensional approach that has a completely different perspective from
the other two numerical schemes. Indeed, the infinite-dimensional approach is
motivated by the normal compliance (see [Klarbring et al. 1988]). If the contact
conditions are rather changed to the normal compliance condition, the contact
forces N will be replaced by

N (t)= p(u(t)−ϕ),

where a prescribed function p can be defined by p(r)= cN max(r, 0) for cN ≥ 0
and cN is called the normal compliance stiffness coefficient. As we shall see in
Lemma 5, contact forces satisfying Signorini contact conditions (or CCs) can be
approximated as cN ↑∞. Instead of using Signorini contact conditions, the normal
compliance condition enables us to consider well-conditioned dynamic contact
problems and more realistic physical situations. In Section 5.1, we shall use the
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normal compliance to see how to construct approximations, depending on the
parameter of penetration, ε > 0. Mathematically speaking, the normal compliance
plays a fundamental role in showing better regularity of solutions and the uniqueness
of solutions for dynamic contact problems. In Section 5.2, we shall discuss two
numerical methods based on time discretization; one is directly implemented from
the numerical CCs (4-3) and another is carried out with the nonsmooth Newton’s
method. There is a classification for dynamic contact problems on Rd with d ≥ 1;
one class is a class of thick obstacle problems and the other is a class of boundary
thin obstacle problems. The meaning of “thick” is that obstacles (or constraints) are
applied over a subset of the whole domain, while the meaning of “thin” is that the
obstacles are applied on a subset of only the boundary of the domain. Readers who
are interested in this classification may refer to [Ahn and Stewart 2006]. Concerning
the corresponding numerical schemes for the two classes, the nonsmooth Newton’s
method will be very useful and efficient for thick obstacle problems and it is not
necessary for the boundary thin obstacle problems in the case that d = 1.

5.1. Numerical results via the infinite-dimensional approach. Our physical in-
terpretation is that particles touch and penetrate a rigid obstacle over the short
contact time period (t∗− ε, t∗+ ε) with ε > 0. We assume that the solutions to the
ODE (2-1) are smooth enough. Then, assuming that f (t)= 0, we can construct the
natural cubic splines to interpolate the solutions:S1(t)=−

3
2
(t − t∗+ ε)+

1
2ε2 (t − t∗+ ε)3 on (t∗− ε, t∗],

S2(t)=−ε+
3
2ε
(t − t∗)2−

1
2ε2 (t − t∗)3 on [t∗, t∗+ ε),

where ε is called an approximate parameter of penetration. The piecewise linear
functions below are included in the entire solution for the displacement:{

S3(t)=− 3
2(t − t∗)− 3

2ε on [0, t∗− ε],

S4(t)= 3
2(t − t∗)− 3

2ε on [t∗+ ε,∞).

So S3(t) and S4(t) are the outer functions for the piecewise solution for the dis-
placement of the particle. Let Sε = S1 ∪ S2 ∪ S3 ∪ S4 be an approximation of the
solutions u. Then, this approximation S is a smooth function, but it does not satisfy
Signorini contact conditions. In Lemma 5, we will see that the approximation of
the contact forces Nε satisfying the normal compliance condition converges to δ in
the distributional sense, as ε ↓ 0. Since we expect contact forces over the interval
(t∗−ε, t∗+ε), we consider the translated Dirac delta function δ(t− t∗) in Lemma 5.
Let � be a nonempty open set in R. Then, the set of all test functions on � is
denoted by D(�).
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Lemma 5. Let Nε = S′′1 ∪S′′2 be an approximation of contact forces over the interval
(t∗−ε, t∗+ε) for t∗> 0 with small ε > 0. Then, Nε→ δ in the sense of distributions.

Proof. We consider the sequence of contact forces as follows:

Nε(t) :=
1
6


S′′1 (t)=

3
ε2 (t − t∗+ ε) if t ∈ (t∗− ε, t∗],

S′′2 (t)=
3
ε
−

3
ε2 (t − t∗) if t ∈ [t∗, t∗+ ε),

0 if t ∈ (0, t∗− ε] ∪ [t∗+ ε,∞).

Then, we claim that, for any test function ψ ∈ D(R+),∫
∞

0
Nε(t)ψ(t) dt→

∫
∞

0
δ(t − t∗)ψ(t) dt as ε ↓ 0.

For any fixed t∗ > 0 and ε > 0 we define the integral functions F1 and F2 to be

F1(τ )=

∫ τ

t∗
(t − t∗+ ε)ψ(t) dt,

F2(τ )=

∫ τ

t∗

(
1−

1
ε
(t − t∗)

)
ψ(t) dt for τ > 0.

Thus, it follows that∫
∞

0
Nε(t)ψ(t) dt

=
1

2ε2

∫ t∗

t∗−ε
(t − t∗+ ε)ψ(t) dt +

1
2ε

∫ t∗+ε

t∗

(
1−

1
ε
(t − t∗)

)
ψ(t) dt

=
1
2ε

F1(t∗− ε)− F1(t∗)
−ε

+
1
2

F2(t∗+ ε)− F2(t∗)
ε

=
1
2ε

d F1(t∗)
dt

+
1
2

d F2(t∗)
dt

.

By the fundamental theorem of calculus, part 2, we can obtain∫
∞

0
Nε(t)ψ(t) dt = 1

2ψ(t∗)+
1
2ψ(t∗)= ψ(t∗)=

∫
∞

0
δ(t − t∗)ψ(t) dt as ε ↓ 0,

which implies that Nε→ δ in the distributional sense as ε ↓ 0, as desired. �

The approximation Sε computed with the small parameter ε = 10−3 is presented
in Figure 2. The top of Figure 2 is a visual representation of the natural cubic splines
(S1(t) and S2(t) and their applicable derivatives) for the displacement, velocity,
and contact forces. We can observe a little penetration of a particle due to the
parameter ε = 10−3. In addition, we can guess that the less the penetration depth
is, the larger the magnitude of the contact forces is. While the cubic splines only
consider the time period when the particle is in contact with the rigid obstacle,
the piecewise linear functions S3(t) and S4(t) and their applicable derivatives are
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Figure 2. For ε = 0.001 and t∗ = 5, the graphs on the left, (a)–(c),
represent the natural cubic splines for u, v, and N over the short
time period [t∗−ε, t∗+ε]; the graphs on the right, (d)–(f), represent
the entire piecewise functions for u, v, and N .

added to the ends of the splines to get the total picture of what is really happening
throughout the particle’s motion. This can be seen in the graphs in the right-hand
column of Figure 2. Unfortunately, this infinite approach does not work in the
dynamic adhesive contact model; see [Wolf 2012].

5.2. Numerical results via the finite-dimensional approach. In this subsection,
two different numerical schemes are introduced and it is assumed that the body
force f is a constant.
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First, we explain our numerical scheme where we can directly compute the next
step solution from the numerical CCs (4-3). The numerical equations (4-1)–(4-3)
can be manipulated so that we obtain the solutions (ul+1, N l) at the next time
step t = tl+1. Using (4-2), from (4-1) we can solve for the next step solution ul+1:

ul+1
= h

(
h(N l

+ f )
2

+ vl
)
+ ul . (5-1)

The next step solution ul+1 needs to satisfy the CCs (4-3). So, if ul+1 > ϕ, we
accept the solution (ul+1, N l) with N l

= 0. If ul+1
= ϕ, then we need to compute

the previous contact force N l :

N l
=

2
h

(
ϕ− ul

h
− vl

)
− f.

Once the next step solution ul+1 is obtained, we can compute the next step veloc-
ity vl+1 from the extra equation (4-2):

vl+1
=

2
h
(ul+1

− ul)− vl .

Secondly, we apply the nonsmooth Newton’s method to compute ul+1. Basically,
solutions of dynamic contact problems are not smooth, because of the nature of the
CCs. However, we can reformulate the approach by substituting a smooth function;
see [Facchinei and Pang 2003a, p. 73 ff.]. One of the functions commonly used for
this purpose is the Fischer–Burmeister function F , given by

F(a, b)= (a+ b)−
√

a2+ b2. (5-2)

It is not hard to see that 0≤ a⊥ b≥ 0 is equivalent to the equation F(a, b)= 0. This
function is not still applied practically. In order to avoid the singularity happening,
we set up the approximate function

Fε(a, b)= (a+ b)−
√

a2+ b2+ ε

for sufficiently small ε > 0, where ε is called a smoothing parameter. As ε ↓ 0,
Fε(a, b)→ F(a, b) in the strong sense.

Thanks to the equations (4-1)–(4-2), we can express the previous contact force N l

in terms of the next step solution ul+1:

N l
=

2
h

(
ul+1
− ul

h
− vl

)
− f.

Thus, finding the next step solution ul+1 satisfying the CCs (4-3) is equivalent to
finding the solution ul+1 satisfying the following nonlinear equation:
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ul+1
+

[
2
h

(ul+1

h
−

ul

h
− vl

)
− f

])

=

√
(ul+1)2+

[
2
h

(ul+1

h
−

ul

h
− vl

)
− f

]2

+ ε. (5-3)

Now, we move the right side of (5-3) and replace the left side by the nonlinear
function Sε(ul+1). So the next step solution ul+1 can be found for nonlinear
equation Sε(ul+1)= 0. In order to compute the next step solution ul+1, we can set
up Newton’s iterative formula:

ul+1
m+1 = ul+1

m −
Sε(ul+1

m )

S′ε(u
l+1
m )

,

where ul+1
m+1 is the next solution and ul+1

m is the previous solution for Newton’s
iteration. We note that S′ε does not contain any singularity.

Based on the numerical equations (4-1)–(4-3), we tested the two numerical
schemes. The results, which are almost indistinguishable, are shown in Figures 3
and 4, using an initial displacement of u0

= 5, an initial velocity of v0
= −1, an

end time T = 10, and the step size h = 0.001. The body force f is not applied in
this numerical experiment. When we implement the nonsmooth Newton’s method,
the smoothing parameter ε = 10−15 is used and 10−15 is used for the stop criterion.

As can be seen in the left column of graphs in Figure 3, with no coefficient of
restitution, the particle’s motion reflects that of an absolute value function. Also
note that we see a very similar graph as our natural cubic spline for the particle’s
displacement (as was displayed in Figure 2). Its velocity resembles the Heaviside
function, as expected from our continuous result for the velocity of the particle.
The impulse function δ can be seen in the graph of the contact force. The bottom
left picture in Figure 3 supports conservation of energy numerically.

Numerically, we would also like to consider the particle’s motion with a given
coefficient of restitution since this would be more realistic. To change our numerical
code to take the COR into account, we must alter the velocity at the instant that the
particle is in contact with the surface where

0≤ COR=
−va

vb
≤ 1.

As expected, when a coefficient of restitution is introduced into our numerical
formulations (in this inelastic case COR = 0.75), both the displacement and the
velocity of the particle are dampened after impact; see Figure 3, right column. The
implementation of a coefficient of restitution has no effect on the results of the
contact force, but does have a rather large effect on the graph of the energy function.
With a coefficient of restitution, we see that energy is lost after the particle’s impact,
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Figure 3. Numerical results without considering the coefficient of
restitution (left) and with COR= 0.75 (right).
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which can be shown theoretically. Also, the nonsmooth Newton’s method with the
Fischer–Burmeister equation still works very well when a coefficient of restitution
is thrown into the mix.

Going back to our original numerical equation of motion (4-1), we note that we
still need to incorporate a body force into the system. In a real-world sense of the
situation, there is no better choice for a body force to impose on the particle than
one that resembles Earth’s gravitational force.

With this gravity-like body force, f (t) = −9.80665, we see some interesting
graphs in Figure 4. The left column shows the simulations without a coefficient of
resitution. The top graph, for the displacement, shows that the body force causes the
particle to repeatedly bounce off the rigid obstacle until coming to a stop at around
t = 7.5 for the selected initial conditions. However, we note that the height of the
bounces does not decrease at a constant rate when only a body force is applied. The
velocity shows a continual “zig-zag” centered about a velocity of zero. Conceptually,
we can agree that the body force would continually pull the particle down, causing
an increasingly negative velocity before bouncing back up, causing a jump of the
function to a positive value, before falling again. Graphs of the contact forces each
show multiple Dirac deltas, whose magnitude decreases over time until the particle
comes to rest. With the energy function, like the contact and displacement graphs,
energy decreases in steps with just a body force applied. Without considering a
coefficient of restitution one might expect that energy conserves. Indeed, as the
time step size ht gets smaller and smaller, numerical simulations show that the
energy function becomes flatter than the graph in the left column of Figure 4.

The application of both a coefficient of restitution and a body force combines to
give us the most realistic solutions possible when thinking of a real-world situation.
As seen in the right-hand column of Figure 4, the coefficient of restitution, in
addition to the body force, gives us solutions for the displacement, velocity, and
energy function that trend more steadily in comparison to those on the left column.

6. Conclusion

In this paper, we consider a second-order ODE with constraints. The existence of
solutions is proved by using time discretization and passing to the limit as the time
step size h decreases to zero. Although conservation of energy and uniqueness are
proven in this paper under some restrictive assumptions, they are still open questions
in general. Several numerical methods are introduced to present simulations which
support conservation of energy. The two numerical methods provide almost identical
results when we use the same input data. Therefore, our numerical schemes seem to
be reasonably stable. In our future work, we will investigate a possibility of doing
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error analysis and study a more realistic contact model (see [Wolf 2012]) where we
add the effect of a bonding field.
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