0

 inglve

 inglve} a journal of mathematics

Decomposing induced characters of the centralizer of an n-cycle in the symmetric group on $2 n$ elements

Joseph Ricci

Decomposing induced characters of the centralizer of an n-cycle in the symmetric group on $2 n$ elements

Joseph Ricci
(Communicated by Nigel Boston)

We give explicit multiplicities and formulas for multiplicities of the characters appearing in the decomposition of the induced character $\operatorname{Ind}_{C_{S_{2 n}}(\sigma)}^{S_{2 n}}{ }_{C}$, where σ is an n-cycle, $C_{S_{2 n}}(\sigma)$ is the centralizer of σ in $S_{2 n}$, and 1_{C} is the trivial character on $C_{S_{2 n}}(\sigma)$.

1. Introduction

Throughout this paper we work only over the complex numbers, dealing with $\mathbb{C} S_{n}$ characters, where S_{n} is the symmetric group on n elements. Let $\sigma \in S_{n}$. In a natural way, by fixing $n+1, \ldots, 2 n$, we can regard σ as an element of $S_{2 n}$ as well. Let $C:=C_{S_{2 n}}(\sigma)$ be the centralizer of σ in $S_{2 n}$. Let ψ be any linear character of C. Hemmer [2011] showed that for $m \geq n$ the induced character $\operatorname{Ind}_{C}^{S_{m}} \psi$ becomes representation stable for $m=2 n$. Therefore, these induced characters arise naturally when studying braid group cohomology. (For more on representation stability and braid group cohomology, see [Church and Farb 2010].) It was proposed that in general the decomposition of the induced character $\operatorname{Ind}{ }_{C}^{S_{2 n}} \psi$ into irreducible characters of $S_{2 n}$ was an open problem.

However, the case when $\sigma=(12 \cdots n)$ was studied in [Jöllenbeck and Schocker 2000; Kraśkiewicz and Weyman 2001]. In this case, $C_{S_{n}}(\sigma)=\langle\sigma\rangle$. Then the linear characters of C are precisely the irreducible characters, which are indexed by the numbers $k=0,1, \ldots, n-1$ and take σ to $e^{\frac{2 \pi i k}{n}}$. It was shown that, for an irreducible character χ^{λ} of S_{n}, the multiplicity of χ^{λ} in the decomposition of $\operatorname{Ind}_{\langle\sigma\rangle}^{S_{n}} \psi_{k}$ is equal to the number of standard Young tableaux of shape λ with major index congruent to $k \bmod n$. Once this is computed, one can use the Littlewood-Richardson rule or the branching rule to induce the resulting characters up to $S_{2 n}$. So, in theory, the decomposition of $\operatorname{Ind}_{C}^{S_{2 n}} \psi_{k}$ is known; however, no explicit formula is available in general.

[^0]In this paper we will deal with the case when σ is an n-cycle of S_{n} and $\psi_{k}=1_{C}$ (i.e., $k=0$), the trivial character. We present a partial result toward an explicit formula as well as a formula for the multiplicities of certain irreducible $\mathbb{C} S_{2 n}$ characters appearing in the decomposition.

2. Preliminaries

Partitions and Young diagrams.

Definition 2.1. We say that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is a partition of n, written $\lambda \vdash n$, if $\lambda_{i} \geq \lambda_{i+1} \geq 0$ for each $\lambda_{i} \in \mathbb{Z}$ and $\lambda_{1}+\cdots+\lambda_{r}=n$. We say each λ_{i} is a part of λ. Definition 2.2. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \vdash n$. The Young diagram, $[\lambda]$, of λ is the set

$$
[\lambda]=\left\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid j \leq \lambda_{i}\right\}
$$

We say each $(i, j) \in[\lambda]$ is a node of $[\lambda]$.
If $\lambda \vdash n$, we represent $[\lambda]$ by an array of boxes. As an example, consider the partition $\lambda=(5,3,2,2,1) \vdash 13$. Then we visualize $[\lambda]$ as

where the upper left box is defined to be the ordered pair $(1,1)$, the upper right is $(1,5)$, the lower left is $(5,1)$, just like the entries of a matrix.

We will often drop the bracket notation and use λ and $[\lambda]$ interchangeably, though it will be clear by context to which we are referring. If λ_{i} is a part of $\lambda \vdash n$, then λ / λ_{i} is the partition of $n-\lambda_{i}$ formed by deleting λ_{i} from λ. So $(5,3,2,2,1) / \lambda_{2}=(5,2,2,1)$. If $b=(i, j)$ is a node in the Young diagram of λ, we will write $b \in \lambda$. Suppose $\mu=(3,2,1)$. Returning to our previous example, it is easy to see that each node $b \in \mu$ is also a node of λ. We will denote this in the obvious way, $\mu \subseteq \lambda$. With this idea in mind, we make a definition.
Definition 2.3. Let λ and μ be partitions such that $\mu \subseteq \lambda$. Then the skew diagram λ / μ is the set of nodes

$$
\xi=\lambda / \mu=\{b \in \lambda \mid b \notin \mu\} .
$$

In the case of our example, the skew diagram λ / μ would be this:

One important aspect of Young diagrams that will be of great important in this paper are rim hooks.

Definition 2.4. For a skew diagram ξ, we say the unique node $\left(i_{0}, j_{0}\right)$ such that $i_{0} \leq i$ and $j_{0} \geq j$ for all $(i, j) \in \xi$ is the top node of ξ.

Definition 2.5. A rim hook is a skew diagram ξ such that if (i, j) is not the top node of ξ then either $(i-1, j) \in \xi$ or $(i, j+1) \in \xi$, but not both.

We will say a rim k-hook or simply a k-hook is a rim hook consisting of k nodes. We will say that a partition λ has a k-hook if it is possible to remove a k-hook from λ and have the resulting diagram be the Young diagram of some partition λ^{\prime}. To each rim hook ξ is assigned the leg length of ξ.

Definition 2.6. Let ξ be a rim hook. The leg length of ξ, denoted by $l l(\xi)$, is

$$
l l(\xi)=(\text { the number of rows in } \xi)-1
$$

Once again returning to our example where $\lambda=(5,3,2,2,1)$, we see that λ has three rim 4-hooks:

In the first and third cases, the 4 -hooks have leg length 2, while in the second case the 4 -hook has leg length 1 . One can also see that λ does not have any rim 5 -hooks, since it is not possible to remove a 5 -hook from λ and have the resulting diagram be the Young diagram of a partition.

Character theory of the symmetric group. The basics of representation and character theory will be assumed, and can be found in [James and Liebeck 2001]. It is well known [Sagan 2001, 2.3.4, 2.4.4] that there is a one-to-one correspondence between the set of partitions of n and the set of irreducible characters of S_{n}. For example, $\chi^{(n)}$ corresponds to the trivial character, $\chi^{(n-1,1)}$ corresponds to the number of fixed points minus one, and $\chi^{\left(1^{n}\right)}$ corresponds to the sign character. Also, the conjugacy classes of S_{n} have a natural correspondence to the partitions of n. If $\tau \in S_{n}$ is of cycle type $\lambda, \lambda \vdash n$, then we will denote the conjugacy class of τ by K_{λ}. Let $\lambda, \mu \vdash n$. Suppose one wants to evaluate the character χ^{λ} on the conjugacy class K_{μ}, which we will denote by χ_{μ}^{λ}. The following theorem, known as the Murnaghan-Nakayama rule, allows one to recursively compute χ_{μ}^{λ} :

Theorem 2.7 [Sagan 2001, 4.10.2]. Let $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ and assume $\mu, \lambda \vdash n$. Then

$$
\chi_{\mu}^{\lambda}=\sum_{\xi}(-1)^{l l(\xi)} \chi_{\mu / \mu_{1}}^{\lambda / \xi}
$$

where the sum is taken over all rim hooks ξ of λ containing μ_{1} nodes.
Now, in a natural way, one can think of S_{n-1} as a subgroup of S_{n}. Suppose χ^{λ} is the character of S_{n} corresponding to λ and χ^{μ} is the character of S_{n-1} corresponding to μ. Then one can easily compute the restricted character $\chi^{\lambda} \downarrow_{S_{n-1}}$ and the induced character $\operatorname{Ind}_{S_{n-1}}^{S_{n}} \chi^{\mu}$ using the branching rule.
Definition 2.8. Let $\lambda \vdash n$. We say an inner corner of $[\lambda]$ is a node $(i, j) \in[\lambda]$ such that $[\lambda]-\{(i, j)\}$ is the Young diagram of some partition of $n-1$. We denote any such partition by λ^{-}. We say an outer corner is a node $(i, j) \notin[\lambda]$ such that $[\lambda] \cup\{(i, j)\}$ is the Young diagram of some partition of $n+1$. We denote any such partition by λ^{+}.
Theorem 2.9 (branching rule [Sagan 2001, 2.8.3]). Let $\mu \vdash n-1, \lambda \vdash n$. Then

$$
\chi^{\lambda} \downarrow_{S_{n-1}}=\sum_{\lambda^{-}} \chi^{\lambda^{-}} \quad \text { and } \quad \operatorname{Ind}_{S_{n-1}}^{S_{n}} \chi^{\mu}=\sum_{\mu^{+}} \chi^{\mu^{+}}
$$

As an example, suppose $\lambda=(3,3,2)$ and $\mu=(5,2)$. Using Theorem 2.9 we calculate

$$
\begin{aligned}
\chi^{(3,3,2)} \downarrow S_{7} & =\chi^{(3,2,2)}+\chi^{(3,3,1)} \\
\operatorname{Ind}_{S_{7}}^{S_{8}} \chi^{(5,2)} & =\chi^{(6,2)}+\chi^{(5,3)}+\chi^{(5,2,1)}
\end{aligned}
$$

3. The decomposition of ϕ

Some preliminary results. Recall that in the introduction we defined $C:=C_{S_{2 n}}(\sigma)$, with $\sigma=\left(\begin{array}{ll}1 & 2 \cdots n\end{array}\right)$. One can compute that $C \cong\langle\sigma\rangle \times S_{n}$ [Dummit and Foote 2004, 4.3]. Keeping this in mind we have the following notation:
Notation. For $\tau \in C$, we will write $\tau=\left(\sigma^{k}, \pi\right)$ for $k \in \mathbb{Z}$ and $\pi \in S_{n}$.
Also, if $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \vdash n$ then

$$
(n, \lambda):=\left(n, \lambda_{1}, \ldots, \lambda_{r}\right) \vdash 2 n \quad \text { and } \quad\left(\lambda, 1^{n}\right):=\left(\lambda_{1}, \ldots, \lambda_{r}, 1^{n}\right) \vdash 2 n
$$

Notation. When evaluating any character χ on the conjugacy class of $S_{2 n}$ corresponding to (n, λ) or $\left(\lambda, 1^{n}\right)$, we will write $\chi_{(n, \lambda)}$ and $\chi_{\left(\lambda, 1^{n}\right)}$, respectively.

For the remainder of this paper, we will write $\phi=\operatorname{Ind}_{C}^{S_{2 n}} 1$.
Proposition 3.1. Let $n \geq 1$. Let $\chi^{(2 n)}$ be the irreducible character of $S_{2 n}$ corresponding to the partition (2n). Then

$$
\left\langle\phi, \chi^{(2 n)}\right\rangle_{S_{2 n}}=1
$$

Proof. Using Frobenius reciprocity, we have

$$
\left\langle\phi, \chi^{(2 n)}\right\rangle_{S_{2 n}}=\left\langle 1_{C}, \chi^{(2 n)} \downarrow_{C}\right\rangle_{C}
$$

But since $\chi^{(2 n)}$ is the trivial character, $\chi^{(2 n)} \downarrow_{C}=1_{C}$, so we have

$$
\left\langle\phi, \chi^{(2 n)}\right\rangle_{S_{2 n}}=1
$$

Proposition 3.2. Let $n \geq 2$. Let $\chi^{(2 n-1,1)}$ be the irreducible character of $S_{2 n}$ corresponding to $(2 n-1,1)$. Then

$$
\left\langle\phi, \chi^{(2 n-1,1)}\right\rangle_{S_{2 n}}=1
$$

Proof. First note that this character records the number points fixed by a permutation and subtracts 1. Using Frobenius reciprocity, we expand the inner product as follows:

$$
\begin{equation*}
\left\langle\phi, \chi^{(2 n-1,1)}\right\rangle_{S_{2 n}}=\left\langle 1_{C}, \chi^{(2 n-1,1)} \downarrow_{C}\right\rangle_{C}=\frac{1}{n n!} \sum_{\tau \in C} \chi^{(2 n-1,1)}(\tau) \tag{3-1}
\end{equation*}
$$

By remarks made at the beginning of this section, the last term in (3-1) becomes

$$
\frac{1}{n n!} \sum_{k=0}^{n-1} \sum_{\pi \in S_{n}} \chi^{(2 n-1,1)}\left(\left(\sigma^{k}, \pi\right)\right)
$$

When $k=0,\left(\sigma^{k}, \pi\right)=(1, \pi)$ and $(1, \pi)$ fixes $n+\chi^{(n-1,1)}(\pi)+1$ points. When $k \neq 0,\left(\sigma^{k}, \pi\right)$ fixes $\chi^{(n-1,1)}(\pi)+1$ points, giving

$$
\begin{align*}
\frac{1}{n n!} \sum_{k=0}^{n-1} \sum_{\pi \in S_{n}} & \chi^{(2 n-1,1)}\left(\left(\sigma^{k}, \pi\right)\right) \\
& =\frac{1}{n n!}\left(\sum_{\pi \in S_{n}}\left(n+\chi^{(n-1,1)}(\pi)\right)+(n-1) \sum_{\pi \in S_{n}} \chi^{(n-1,1)}(\pi)\right) \\
& =\frac{1}{n n!}\left(\sum_{\pi \in S_{n}} n+\sum_{\pi \in S_{n}} \chi^{(n-1,1)}(\pi)+(n-1) \sum_{\pi \in S_{n}} \chi^{(n-1,1)}(\pi)\right) \\
& =\frac{1}{n n!}\left(n n!+n n!\left\langle\chi^{(n)}, \chi^{(n-1,1)}\right\rangle_{S_{n}}\right) \tag{3-2}
\end{align*}
$$

But since both $\chi^{(n)}$ and $\chi^{(n-1,1)}$ are irreducible, their inner product is 0 . So (3-2) becomes

$$
\frac{1}{n n!} n n!=1
$$

Proposition 3.3. Let $n \geq 2$. Let $\chi^{(n, n)}$ be the irreducible character of $S_{2 n}$ corresponding to (n, n). Then

$$
\left\langle\phi, \chi^{(n, n)}\right\rangle_{S_{2 n}}=1
$$

Proof. Throughout, let $d_{k}=\operatorname{gcd}(n, k)$. Using Frobenius reciprocity, we write

$$
\left\langle\phi, \chi^{(n, n)}\right\rangle_{S_{2 n}}=\left\langle 1_{C}, \chi^{(n, n)} \downarrow_{C}\right\rangle_{C}=\frac{1}{n n!} \sum_{k=0}^{n-1} \sum_{\pi \in S_{n}} \chi^{(n, n)}\left(\left(\sigma^{k}, \pi\right)\right) .
$$

We break the sum up into three pieces: one for $k=0$, one for $d_{k}=1$ (of which there are $\varphi(n)$ such k, where φ denotes Euler's totient function) and one for $d_{k} \neq 1$:

$$
\begin{aligned}
& \left\langle\phi, \chi^{(n, n)}\right\rangle_{S_{2 n}} \\
& =\frac{1}{n n!}\left(\sum_{\pi \in S_{n}} \chi^{(n, n)}((1, \pi))+\varphi(n) \sum_{\pi \in S_{n}} \chi^{(n, n)}((\sigma, \pi))+\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\pi \in S_{n}} \chi^{(n, n)}\left(\left(\sigma^{k}, \pi\right)\right)\right)
\end{aligned}
$$

In order to use Theorem 2.7, we sum over all partitions of n and rewrite the sum as

$$
\begin{align*}
\left\langle\phi, \chi^{(n, n)}\right\rangle_{S_{2 n}}=\frac{1}{n n!}\left(n!\left\langle\chi^{(n)}, \chi^{(n, n)} \downarrow_{S_{n}}\right\rangle_{S_{n}}\right. & +\varphi(n) \sum_{\lambda \vdash n} \chi_{(n, \lambda)}^{(n, n)}\left|K_{\lambda}\right| \\
& \left.+\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{k}}\right) d_{k, \lambda}\right.}^{(n, n)}\left|K_{\lambda}\right|\right) \tag{3-3}
\end{align*}
$$

By Theorem 2.9, we write

$$
\chi^{(n, n)} \downarrow_{S_{n}}=\chi^{(n)}+\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} a_{\lambda} \chi^{\lambda}
$$

where $a_{\lambda} \in\{0,1,2, \ldots\}$. Then, by linearity, we have

$$
\begin{align*}
\left\langle\chi^{(n)}, \chi^{(n, n)} \downarrow_{S_{n}}\right\rangle_{S_{n}} & =\left\langle\chi^{(n)}, \chi^{(n)}\right\rangle_{S_{n}}+\sum_{\substack{\lambda \vdash n \\
\lambda \neq(n)}} a_{\lambda}\left\langle\chi^{(n)}, \chi^{\lambda}\right\rangle_{S_{n}} \\
& =\left\langle\chi^{(n)}, \chi^{(n)}\right\rangle_{S_{n}}=1 \tag{3-4}
\end{align*}
$$

since all the χ^{λ} are irreducible. Using Theorem 2.7,

$$
\chi_{(n, \lambda)}^{(n, n)}=\chi_{\lambda}^{(n)}-\chi_{\lambda}^{(n-1,1)}
$$

so that

$$
\begin{align*}
\sum_{\lambda \vdash n} \chi_{(n, \lambda)}^{(n, n)}\left|K_{\lambda}\right| & =\sum_{\lambda \vdash n}\left(\chi_{\lambda}^{(n)}-\chi_{\lambda}^{(n-1,1)}\right)\left|K_{\lambda}\right| \\
& =\sum_{\lambda \vdash n} \chi_{\lambda}^{(n)}\left|K_{\lambda}\right|-\sum_{\lambda \vdash n} \chi_{\lambda}^{(n-1,1)}\left|K_{\lambda}\right| \\
& =n!\left\langle\chi^{(n)}, \chi^{(n)}\right\rangle S_{n}-n!\left\langle\chi^{(n)}, \chi^{(n-1,1)}\right\rangle_{S_{n}}=n! \tag{3-5}
\end{align*}
$$

Now let $d_{k} \neq 1$, for some k. Again with Theorem 2.7, we write

$$
\chi_{\left(\left(\frac{n}{d_{k}}\right)^{\left.d_{k}, \lambda\right)}\right.}^{(n, n)}=\chi_{\lambda}^{(n)}+\sum_{\substack{\mu \vdash n \\ \mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu}
$$

where $c_{\lambda} \in \mathbb{Z}$. Then

$$
\begin{align*}
\sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{\left.d_{k}, \lambda\right)}\right.}^{(n, n)}\left|K_{\lambda}\right| & =\sum_{\lambda \vdash n} \chi_{\lambda}^{(n)}\left|K_{\lambda}\right|+\sum_{\lambda \vdash n} \sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu}\left|K_{\lambda}\right| \\
& =n!\left\langle\chi^{(n)}, \chi^{(n)}\right\rangle_{S_{n}}+\sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} n!c_{\mu}\left\langle\chi^{(n)}, \chi^{\mu}\right\rangle_{S_{n}}=n!. \tag{3-6}
\end{align*}
$$

We note that there are $n-\varphi(n)-1$ numbers k strictly between 1 and n so that $d_{k} \neq 1$, so substituting (3-4), (3-5), and(3-6) into (3-3) we have

$$
\left\langle\phi, \chi^{(n, n)}\right\rangle_{S_{2 n}}=\frac{1}{n n!}(n!+\varphi(n) n!+(n-\varphi(n)-1) n!)=\frac{1}{n n!} n n!=1
$$

In the case of $n=2$ it turns out that Propositions 3.1, 3.2, and 3.3 give a full decomposition. That is,

$$
\operatorname{Ind}_{C_{S_{4}}((12))}^{S_{4}}{ }^{1} C=\chi^{(4)}+\chi^{(3,1)}+\chi^{(2,2)}
$$

We notice that our first three results all showed that there are certain irreducible characters appearing in the decomposition of ϕ that have constant or stable multiplicities, independent of n. Our next result shows that this is not the case for all constituents, but a closed-form formula for the multiplicity is known in some cases.
Proposition 3.4. Let $n \geq 2$. Let $\chi^{(2 n-2,2)}$ be the irreducible character of $S_{2 n}$ corresponding to $(2 n-2,2)$. Then

$$
\left\langle\phi, \chi^{(2 n-2,2)}\right\rangle_{S_{2 n}}=\left\{\begin{array}{cl}
\frac{n}{2} & \text { if } n \text { is even } \\
\frac{n-1}{2} & \text { if } n \text { is odd }
\end{array}\right.
$$

Proof. Throughout, $d_{k}=\operatorname{gcd}(n, k)$. Using Frobenius reciprocity we write

$$
\left\langle\phi, \chi^{(2 n-2,2)}\right\rangle_{S_{2 n}}=\left\langle 1_{C}, \chi^{(2 n-2,2)} \downarrow_{C}\right\rangle_{C}=\frac{1}{n n!} \sum_{k=0}^{n-1} \sum_{\pi \in S_{n}} \chi^{(2 n-2,2)}\left(\left(\sigma^{k}, \pi\right)\right)
$$

If $n=2$, we are done, by Proposition 3.3. Throughout the rest of the proof we assume $n \geq 3$. As in the proof of Proposition 3.3, we break the sum into three
pieces:

$$
\begin{align*}
&\left\langle\phi, \chi^{(2 n-2,2)}\right\rangle_{S_{2 n}} \\
&= \frac{1}{n n!}\left(\sum_{\pi \in S_{n}} \chi^{(2 n-2,2)}((1, \pi))+\right. \\
&\left.+\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\pi \in S_{n}} \chi^{(2 n-2,2)}\left(\left(\sigma^{k}, \pi\right)\right)\right) \\
&=\frac{1}{n n!}\left(n ! \left\langle\chi^{(n)}, \chi^{(2 n-2,2)}((\sigma, \pi))\right.\right. \\
&\left.+\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{(2 n)}\right)^{\left.d_{k}, \lambda\right)}}^{(2 n-2,2)}\left|K_{\lambda}\right|\right) \tag{3-7}
\end{align*}
$$

From Theorem 2.9, we have

$$
\begin{equation*}
\left\langle\chi^{(n)}, \chi^{(2 n-2,2)} \downarrow S_{n}\right\rangle_{S_{n}}=\binom{n}{2} \tag{3-8}
\end{equation*}
$$

Using Theorem 2.7 we write $\chi_{(n, \lambda)}^{(2 n-2,2)}=\chi_{\lambda}^{(n-2,2)}$, so that

$$
\begin{equation*}
\sum_{\lambda \vdash n} \chi_{(n, \lambda)}^{(2 n-2,2)}\left|K_{\lambda}\right|=\sum_{\lambda \vdash n} \chi_{\lambda}^{(n-2,2)}\left|K_{\lambda}\right|=n!\left\langle\chi^{(n)}, \chi^{(n-2,2)}\right\rangle S_{n}=0 \tag{3-9}
\end{equation*}
$$

When n is even, $\frac{n}{2}$ divides n. Then $d \frac{n}{2}=\frac{n}{2}$. We can then remove the 2 -hook from bottom row of $(2 n-2,2)$, and then successively remove $\frac{n}{2}-1$ hooks of length 2 from the top row of $(2 n-2,2)$. There are $\binom{n / 2}{1}=\frac{n}{2}$ ways to do this. We combine this with Theorem 2.7 to see that

$$
\sum_{\substack{1<k<n \\ d_{k} \neq 1}} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{d_{k}}, \lambda\right)}^{(2 n-2)}=\frac{n}{2} \chi^{(n)}+\sum_{\substack{\mu \vdash n \\ \mu \neq(n)}} a_{\mu} \chi_{\lambda}^{\mu}
$$

with $a_{\mu} \in \mathbb{Z}$. Then

$$
\begin{align*}
\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{\left.d_{k}, \lambda\right)}\right.}^{(2 n-2,2)}\left|K_{\lambda}\right| & =\sum_{\lambda \vdash n} \frac{n}{2} \chi^{(n)}\left|K_{\lambda}\right|+\sum_{\lambda \vdash n} \sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} a_{\mu} \chi_{\lambda}^{\mu}\left|K_{\lambda}\right| \\
& =\frac{n}{2} n!\left\langle\chi^{(n)}, \chi^{(n)}\right\rangle S_{n}+\sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} a_{\mu}\left\langle\chi^{(n)}, \chi^{\mu}\right\rangle S_{n} \\
& =\frac{n}{2} n! \tag{3-10}
\end{align*}
$$

So in the case when n is even, substituting (3-8)-(3-10) into (3-7), we have

$$
\begin{aligned}
\left\langle\phi, \chi^{(2 n-2,2)}\right\rangle_{S_{2 n}} & =\frac{1}{n n!}\left(\binom{n}{2} n!+\frac{n}{2} n!\right)=\frac{1}{n}\left(\binom{n}{2}+\frac{n}{2}\right)=\frac{1}{n}\left(\frac{n(n-1)}{2}+\frac{n}{2}\right) \\
& =\frac{n-1}{2}+\frac{1}{2}=\frac{n}{2},
\end{aligned}
$$

as desired. Now, when n is odd, 2 does not divide n. Then $\frac{n}{2}$ is not an integer and thus does not divide n. As a result, we cannot remove the hook of length 2 from the bottom row of $(2 n-2,2)$. So when we apply Theorem 2.7, the trivial character does not appear in the decomposition and we have

$$
\sum_{\substack{1<k<n \\ d_{k} \neq 1}} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{d_{k}}, \lambda\right)}^{(2 n-2)}=\sum_{\substack{\mu \vdash n \\ \mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu} \quad \text { with } c_{\mu} \in \mathbb{Z} \text {. }
$$

Then

$$
\begin{align*}
\sum_{\substack{1<k<n \\
d_{k} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{k}}\right)^{\left.d_{k}, \lambda\right)}\right.}^{(2 n-2,2)}\left|K_{\lambda}\right| & =\sum_{\lambda \vdash n} \sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu}\left|K_{\lambda}\right| \\
& =\sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} n!c_{\mu}\left\langle\chi^{(n)}, \chi^{\mu}\right\rangle_{S_{n}}=0 . \tag{3-11}
\end{align*}
$$

So then, substituting (3-8), (3-9), and (3-11) into (3-7), we have

$$
\left\langle\phi, \chi^{(2 n-2,2)}\right\rangle_{S_{2 n}}=\frac{1}{n n!}\binom{n}{2} n!=\frac{1}{n}\binom{n}{2}=\frac{1}{n} \frac{n(n-1)}{2}=\frac{n-1}{2},
$$

giving the result.
A theorem for the partitions ($\mathbf{2} \boldsymbol{n}-\boldsymbol{k}, \boldsymbol{k}$). We now present a theorem that generalizes the previous propositions and gives a formula for the multiplicities of a number of the irreducible characters of $S_{2 n}$ appearing in the decomposition of ϕ.
Theorem 3.5. Let $n \geq 2 k$. Let $\chi^{(2 n-k, k)}$ be the irreducible character of $S_{2 n}$ corresponding to $(2 n-k, k)$. For $1<h<n$, let $d_{h}=\operatorname{gcd}(n, h)$, and $l_{k}=k d_{h} / n$. Then

$$
\left\langle\phi, \chi^{(2 n-k, k)}\right\rangle_{S_{2 n}}=\frac{1}{n}\left(\binom{n}{k}+\sum_{\substack{\left.1<h<n \\ d_{h} \neq 1 \\ \frac{h}{n} \right\rvert\, k}}\binom{d_{h}}{l_{k} \mid k}\right) .
$$

Proof. With Frobenius reciprocity, we write

$$
\left\langle\phi, \chi^{(2 n-k, k)}\right\rangle_{S_{2 n}}=\left\langle 1_{C}, \chi^{(2 n-k, k)} \downarrow_{C}\right\rangle_{C}=\frac{1}{n n!} \sum_{j=0}^{n-1} \sum_{\pi \in S_{n}} \chi^{(2 n-k, k)}\left(\left(\sigma^{j}, \pi\right)\right)
$$

As usual, we split the sum into three pieces:

$$
\begin{align*}
& \left\langle\phi, \chi^{(2 n-k, k)} \downarrow_{S_{2 n}}\right\rangle_{S_{2 n}} \\
& =\frac{1}{n n!}\left(\sum_{\pi \in S_{n}} \chi^{(2 n-k, k)}((1, \pi))\right. \\
& \left.\quad+\varphi(n) \sum_{\pi \in S_{n}} \chi^{(2 n-k, k)}((\sigma, \pi))+\sum_{\substack{1<h<n \\
d_{h} \neq 1}} \sum_{\pi \in S_{n}} \chi^{(2 n-k, k)}\left(\left(\sigma^{h}, \pi\right)\right)\right) \\
& =\frac{1}{n n!}\left(n!\left\langle\chi^{(n)}, \chi^{(2 n-k, k)} \downarrow_{S_{n}}\right\rangle_{S_{n}}\right. \\
& \left.\quad+\varphi(n) \sum_{\lambda \vdash n} \chi_{(n, \lambda)}^{(2 n-k, k)}\left|K_{\lambda}\right|+\sum_{\substack{1<h<n \\
d_{h} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\left(\frac{n}{d_{h}}\right)^{d}, d_{h}, \lambda\right)\right.}^{(2 n-k)}\left|K_{\lambda}\right|\right) \tag{3-12}
\end{align*}
$$

Since $n \geq 2 k$, we can remove the k blocks from the bottom row of $(2 n-k, k)$ and remove $n-k$ blocks from the top row of $(2 n-k, k)$, which leaves n blocks remaining. We can do this removal in $\binom{n}{k}$ ways, so, with 2.9 , we have

$$
\begin{equation*}
\left\langle\chi^{(n)}, \chi^{(2 n-k, k)} \downarrow_{S_{n}}\right\rangle_{S_{n}}=\binom{n}{k} \tag{3-13}
\end{equation*}
$$

Theorem 2.7 gives

$$
\chi_{(n, \lambda)}^{(2 n-k, k)}=\chi_{\lambda}^{(n-k, k)}
$$

since $n \geq 2 k$. Then

$$
\begin{equation*}
\sum_{\lambda \vdash n} \chi_{(n, \lambda)}^{(2 n-k, k)}\left|K_{\lambda}\right|=\sum_{\lambda \vdash n} \chi_{\lambda}^{(n-k, k)}\left|K_{\lambda}\right|=n!\left\langle\chi^{(n)}, \chi^{(n-k, k)}\right\rangle_{S_{n}}=0 \tag{3-14}
\end{equation*}
$$

Now suppose there is some h so that $d_{h} \neq 1$. Then σ^{h} is a product of $d_{h} \frac{n}{d_{h}}$-cycles. If π is of cycle type λ then

$$
\begin{equation*}
\chi^{(2 n-k, k)}\left(\left(\sigma^{h}, \pi\right)\right)=\chi_{\left(\left(\frac{n}{d_{h}}\right)^{\left.d_{h}, \lambda\right)}\right.}^{(2 n-k, k)} \tag{3-15}
\end{equation*}
$$

By Theorem 2.7, in order for $\chi^{(n)}$ to have nonzero multiplicity in the decomposition of the right-hand side of (3-15), we have to be able to remove the k-hook from the bottom row of $(2 n-k, k)$. So if $\frac{n}{d_{h}}$ does not divide k then this is not possible. Then in this case

$$
\begin{equation*}
\chi_{\left(\left(\frac{n}{d_{h}}\right)^{\left.d_{h}, \lambda\right)}\right.}^{(2 n-k)}=\sum_{\substack{\mu \vdash n \\ \mu \neq(n)}} a_{\mu} \chi_{\lambda}^{\mu} \tag{3-16}
\end{equation*}
$$

with $a_{\mu} \in \mathbb{Z}$. Now, suppose that, for some $h, d_{h} \neq 1$, and furthermore that $\frac{n}{d_{h}}$ divides k. Then we can successively remove the l_{k} hooks of length $\frac{n}{d_{h}}$ from
the bottom row of $(2 n-k, k)$ and remove the $d_{h}-l_{k}$ hooks of length $\frac{n}{d_{h}}$ from the top row of $(2 n-k, k)$, which will result in $\chi^{(n)}$ having positive multiplicity in the aforementioned decomposition. In fact, a simple counting argument via Theorem 2.9 shows the exact multiplicity will be $\binom{d_{h}}{l_{k}}$. Then in this case

$$
\begin{equation*}
\chi_{\left(\left(\frac{n}{d_{h}}\right)^{\left.d_{h}, \lambda\right)}\right.}^{(2 n-k, k)}=\binom{d_{h}}{l_{k}} \chi_{\lambda}^{(n)}+\sum_{\substack{\mu \vdash n \\ \mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu} \tag{3-17}
\end{equation*}
$$

with $c_{\mu} \in \mathbb{Z}$. Then (3-16) and (3-17) give

$$
\begin{align*}
& \sum_{\substack{1<h<n \\
d_{h} \neq 1}} \sum_{\lambda \vdash n} \chi_{\left(\left(\frac{n}{d_{h}}\right)^{\left.d_{h}, \lambda\right)}\right.}^{(2 n-k, k)}\left|K_{\lambda}\right| \\
& =\sum_{\substack{1<h<n \\
d_{h} \neq 1 \\
n \neq 1 \\
d_{h}} \ll} \sum_{\lambda \vdash n} \sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} a_{\mu} \chi_{\lambda}^{\mu}\left|K_{\lambda}\right|+\sum_{\substack{1<h<n \\
d_{h} \neq 1 \\
h \neq 1 \\
d_{h}} g k} \sum_{\lambda \vdash n}\binom{d_{h}}{l_{k}} \chi_{\lambda}^{(n)}\left|K_{\lambda}\right| \\
& +\sum_{\substack{1<h<n \\
d_{h} \neq 1 \\
d_{h} \\
d_{h}}} \sum_{\lambda \vdash n} \sum_{\substack{\mu \vdash n \\
\mu \neq(n)}} c_{\mu} \chi_{\lambda}^{\mu}\left|K_{\lambda}\right| \\
& =\sum_{\substack{1<h<n \\
d_{h} \neq 1 \\
\frac{h}{d_{h}} \lg k}} \sum_{\lambda \vdash n}\binom{d_{h}}{l_{k}} \chi_{\lambda}^{(n)}\left|K_{\lambda}\right|=\sum_{\substack{1<h<n \\
d_{h} \neq 1 \\
\frac{h}{d_{h}} \lg k}}\binom{d_{h}}{l_{k}} n!. \tag{3-18}
\end{align*}
$$

Substituting (3-13), (3-14), (3-18) into (3-12) we have

$$
\begin{align*}
\left\langle\phi, \chi^{(2 n-k, k)}\right\rangle_{S_{2 n}} & =\frac{1}{n n!}\left(\binom{n}{k} n!+\sum_{\substack{\left.1<h<n \\
d_{h} \neq 1 \\
\frac{n}{d_{h}} \right\rvert\, k}}\binom{d_{h}}{l_{k}} n!\right) \\
& =\frac{1}{n}\left(\binom{n}{k}+\sum_{\substack{\left.1<h<n \\
d_{h} \neq 1 \\
\frac{n}{d_{h}} \right\rvert\, k}}\binom{d_{h}}{l_{k}}\right) \tag{3-19}
\end{align*}
$$

as claimed.

4. Future problems

The preceding work is only the beginning of a large selection of problems to be worked out. It is possible that there are more stable multiplicities (independent of n) in this decomposition. Also, the multiplicities and formulas found here only
cover a small number of partitions and therefore characters. One may find that all characters have a stable or closed-form formula for their multiplicities. Note that in this paper we only discuss the trivial character of C, and much can be learned from studying the decomposition of the nontrivial characters of C when induced up to $S_{2 n}$, which arise in braid group cohomology. It may be possible to learn more by first decomposing the character $\operatorname{Ind}_{C}^{S_{n}} \psi$, studying this character, and then inducing the resulting constituents up to $S_{2 n}$.

Acknowledgements

This paper was submitted to the University at Buffalo as the author's undergraduate honors thesis. The work was inspired by Dr. David Hemmer and the question posed in the closing of [Hemmer 2011]. Hemmer also served as the author's advisor and oversaw the progress on the paper.

References

[Church and Farb 2010] T. Church and B. Farb, "Representation theory and homological stability", preprint, 2010. arXiv 1008.1368
[Dummit and Foote 2004] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., John Wiley \& Sons, Hoboken, NJ, 2004. MR 2007h:00003 Zbl 1037.00003
[Hemmer 2011] D. J. Hemmer, "Stable decompositions for some symmetric group characters arising in braid group cohomology", J. Combin. Theory Ser. A 118:3 (2011), 1136-1139. MR 2012a:20021 Zbl 1231.20011
[James and Liebeck 2001] G. James and M. Liebeck, Representations and characters of groups, 2nd ed., Cambridge University Press, 2001. MR 2002h:20010 Zbl 0981.20004
[Jöllenbeck and Schocker 2000] A. Jöllenbeck and M. Schocker, "Cyclic characters of symmetric groups", J. Algebraic Combin. 12:2 (2000), 155-161. MR 2001k:05207 Zbl 0979.20017
[Kraśkiewicz and Weyman 2001] W. Kraśkiewicz and J. Weyman, "Algebra of coinvariants and the action of a Coxeter element", Bayreuth. Math. Schr. 63 (2001), 265-284. MR 2002j:20026 Zbl 1037.20012
[Sagan 2001] B. E. Sagan, The symmetric group: Representations, combinatorial algorithms, and symmetric functions, 2nd ed., Graduate Texts in Mathematics 203, Springer, New York, 2001. MR 2001m:05261 Zbl 0964.05070

Received: 2012-01-03 Revised: 2012-02-03 Accepted: 2012-07-17
jjricci@buffalo.edu Mathematics Department, University at Buffalo, SUNY, Buffalo, NY 14260, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@ colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@ math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@ wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2013 Mathematical Sciences Publishers

involve

The influence of education in reducing the HIV epidemic 127Renee Margevicius and Hem Raj Joshi
On the zeros of $\zeta(s)-c$ 137
Adam Boseman and Sebastian Pauli
Dynamic impact of a particle 147
Jeongho Ahn and Jared R. Wolf
Magic polygrams 169
Amanda Bienz, Karen A. Yokley and Crista Arangala
Trading cookies in a gambler's ruin scenario 191
Kuejai Jungjaturapit, Timothy Pluta, Reza Rastegar, Alexander Roitershtein, Matthew Temba, Chad N. Vidden and Brian Wu
Decomposing induced characters of the centralizer of an n-cycle in the symmetric group 221
on $2 n$ elementsJoseph Ricci
On the geometric deformations of functions in $L^{2}[D]$ 233
Luis Contreras, Derek DeSantis and Kathryn Leonard
Spectral characterization for von Neumann's iterative algorithm in \mathbb{R}^{n} 243Rudy Joly, Marco López, Douglas Mupasiri and Michael Newsome
The 3-point Steiner problem on a cylinder 251
Denise M. Halverson and Andrew E. Logan

[^0]: MSC2010: primary 20C30; secondary 20C15.
 Keywords: representation theory, symmetric group, character theory.

