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We give explicit multiplicities and formulas for multiplicities of the characters
appearing in the decomposition of the induced character IndS2n

CS2n
.�/

1C , where �
is an n-cycle, CS2n

.�/ is the centralizer of � in S2n, and 1C is the trivial character
on CS2n

.�/.

1. Introduction

Throughout this paper we work only over the complex numbers, dealing with CSn

characters, where Sn is the symmetric group on n elements. Let � 2 Sn. In a
natural way, by fixing nC1; : : : ; 2n, we can regard � as an element of S2n as well.
Let C WD CS2n

.�/ be the centralizer of � in S2n. Let  be any linear character
of C . Hemmer [2011] showed that for m � n the induced character IndSm

C
 

becomes representation stable for m D 2n. Therefore, these induced characters
arise naturally when studying braid group cohomology. (For more on representation
stability and braid group cohomology, see [Church and Farb 2010].) It was proposed
that in general the decomposition of the induced character IndS2n

C
 into irreducible

characters of S2n was an open problem.
However, the case when � D .1 2 � � � n/ was studied in [Jöllenbeck and Schocker

2000; Kraśkiewicz and Weyman 2001]. In this case, CSn
.�/D h�i. Then the linear

characters of C are precisely the irreducible characters, which are indexed by the
numbers kD0; 1; : : : ; n�1 and take � to e

2�ik
n . It was shown that, for an irreducible

character �� of Sn, the multiplicity of �� in the decomposition of IndSn

h�i
 k is equal

to the number of standard Young tableaux of shape � with major index congruent to
k mod n. Once this is computed, one can use the Littlewood–Richardson rule or the
branching rule to induce the resulting characters up to S2n. So, in theory, the decom-
position of IndS2n

C
 k is known; however, no explicit formula is available in general.
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In this paper we will deal with the case when � is an n-cycle of Sn and  k D 1C

(i.e., k D 0), the trivial character. We present a partial result toward an explicit
formula as well as a formula for the multiplicities of certain irreducible CS2n

characters appearing in the decomposition.

2. Preliminaries

Partitions and Young diagrams.

Definition 2.1. We say that �D .�1; : : : ; �r / is a partition of n, written � ` n, if
�i � �iC1 � 0 for each �i 2Z and �1C� � �C�r D n. We say each �i is a part of �.

Definition 2.2. Let �D .�1; : : : ; �r / ` n. The Young diagram, Œ��, of � is the set

Œ��D f.i; j / 2 N�N j j � �ig:

We say each .i; j / 2 Œ�� is a node of Œ��.

If � ` n, we represent Œ�� by an array of boxes. As an example, consider the
partition �D .5; 3; 2; 2; 1/ ` 13. Then we visualize Œ�� as

where the upper left box is defined to be the ordered pair .1; 1/, the upper right is
.1; 5/, the lower left is .5; 1/, just like the entries of a matrix.

We will often drop the bracket notation and use � and Œ�� interchangeably,
though it will be clear by context to which we are referring. If �i is a part of
� ` n, then �=�i is the partition of n � �i formed by deleting �i from �. So
.5; 3; 2; 2; 1/=�2 D .5; 2; 2; 1/. If b D .i; j / is a node in the Young diagram of �,
we will write b 2 �. Suppose �D .3; 2; 1/. Returning to our previous example, it
is easy to see that each node b 2 � is also a node of �. We will denote this in the
obvious way, �� �. With this idea in mind, we make a definition.

Definition 2.3. Let � and � be partitions such that �� �. Then the skew diagram
�=� is the set of nodes

� D �=�D fb 2 � j b 62 �g:

In the case of our example, the skew diagram �=� would be this:
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One important aspect of Young diagrams that will be of great important in this
paper are rim hooks.

Definition 2.4. For a skew diagram �, we say the unique node .i0; j0/ such that
i0 � i and j0 � j for all .i; j / 2 � is the top node of �.

Definition 2.5. A rim hook is a skew diagram � such that if .i; j / is not the top
node of � then either .i � 1; j / 2 � or .i; j C 1/ 2 � , but not both.

We will say a rim k-hook or simply a k-hook is a rim hook consisting of k nodes.
We will say that a partition � has a k-hook if it is possible to remove a k-hook
from � and have the resulting diagram be the Young diagram of some partition �0.
To each rim hook � is assigned the leg length of �.

Definition 2.6. Let � be a rim hook. The leg length of � , denoted by ll.�/, is

ll.�/D (the number of rows in �)� 1:

Once again returning to our example where �D .5; 3; 2; 2; 1/, we see that � has
three rim 4-hooks:

�

� �

�

�

�

� � �

� � �

In the first and third cases, the 4-hooks have leg length 2, while in the second
case the 4-hook has leg length 1. One can also see that � does not have any rim
5-hooks, since it is not possible to remove a 5-hook from � and have the resulting
diagram be the Young diagram of a partition.

Character theory of the symmetric group. The basics of representation and char-
acter theory will be assumed, and can be found in [James and Liebeck 2001]. It is
well known [Sagan 2001, 2.3.4, 2.4.4] that there is a one-to-one correspondence
between the set of partitions of n and the set of irreducible characters of Sn. For
example, �.n/ corresponds to the trivial character, �.n�1;1/ corresponds to the
number of fixed points minus one, and �.1

n/ corresponds to the sign character.
Also, the conjugacy classes of Sn have a natural correspondence to the partitions
of n. If � 2 Sn is of cycle type �, � ` n, then we will denote the conjugacy class
of � by K�. Let �;� ` n. Suppose one wants to evaluate the character �� on the
conjugacy class K�, which we will denote by ���. The following theorem, known
as the Murnaghan–Nakayama rule, allows one to recursively compute ���:
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Theorem 2.7 [Sagan 2001, 4.10.2]. Let � D .�1; : : : ; �s/ and assume �; � ` n.
Then

��� D
X
�

.�1/ll.�/�
�=�

�=�1
;

where the sum is taken over all rim hooks � of � containing �1 nodes.

Now, in a natural way, one can think of Sn�1 as a subgroup of Sn. Suppose �� is
the character of Sn corresponding to � and �� is the character of Sn�1 corresponding
to �. Then one can easily compute the restricted character ��#Sn�1

and the induced
character IndSn

Sn�1
�� using the branching rule.

Definition 2.8. Let � ` n. We say an inner corner of Œ�� is a node .i; j / 2 Œ��
such that Œ���f.i; j /g is the Young diagram of some partition of n� 1. We denote
any such partition by ��. We say an outer corner is a node .i; j / 62 Œ�� such that
Œ��[f.i; j /g is the Young diagram of some partition of nC 1. We denote any such
partition by �C.

Theorem 2.9 (branching rule [Sagan 2001, 2.8.3]). Let � ` n� 1, � ` n. Then

��#Sn�1
D

X
��

��
�

and IndSn

Sn�1
�� D

X
�C

��
C

:

As an example, suppose � D .3; 3; 2/ and � D .5; 2/. Using Theorem 2.9 we
calculate

�.3;3;2/#S7
D �.3;2;2/C�.3;3;1/;

IndS8

S7
�.5;2/ D �.6;2/C�.5;3/C�.5;2;1/:

3. The decomposition of �

Some preliminary results. Recall that in the introduction we defined C WDCS2n
.�/,

with � D .1 2 � � � n/. One can compute that C Š h�i � Sn [Dummit and Foote
2004, 4.3]. Keeping this in mind we have the following notation:

Notation. For � 2 C , we will write � D .�k ; �/ for k 2 Z and � 2 Sn.

Also, if �D .�1; : : : ; �r / ` n then

.n; �/ WD .n; �1; : : : ; �r / ` 2n and .�; 1n/ WD .�1; : : : ; �r ; 1
n/ ` 2n:

Notation. When evaluating any character � on the conjugacy class of S2n corre-
sponding to .n; �/ or .�; 1n/, we will write �.n;�/ and �.�;1n/, respectively.

For the remainder of this paper, we will write � D IndS2n

C
1.

Proposition 3.1. Let n � 1. Let �.2n/ be the irreducible character of S2n corre-
sponding to the partition .2n/. Then

h�; �.2n/
iS2n
D 1:
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Proof. Using Frobenius reciprocity, we have

h�; �.2n/
iS2n
D h1C ; �

.2n/
#C iC :

But since �.2n/ is the trivial character, �.2n/#CD 1C , so we have

h�; �.2n/
iS2n
D 1: �

Proposition 3.2. Let n � 2. Let �.2n�1;1/ be the irreducible character of S2n

corresponding to .2n� 1; 1/. Then

h�; �.2n�1;1/
iS2n
D 1:

Proof. First note that this character records the number points fixed by a permutation
and subtracts 1. Using Frobenius reciprocity, we expand the inner product as follows:

h�; �.2n�1;1/
iS2n
D h1C ; �

.2n�1;1/
#C iC D

1

nn!

X
�2C

�.2n�1;1/.�/: (3-1)

By remarks made at the beginning of this section, the last term in (3-1) becomes

1

nn!

n�1X
kD0

X
�2Sn

�.2n�1;1/..�k ; �//:

When k D 0, .�k ; �/D .1; �/ and .1; �/ fixes nC�.n�1;1/.�/C 1 points. When
k 6D 0, .�k ; �/ fixes �.n�1;1/.�/C 1 points, giving

1

nn!

n�1X
kD0

X
�2Sn

�.2n�1;1/..�k ; �//

D
1

nn!

� X
�2Sn

�
nC�.n�1;1/.�/

�
C .n� 1/

X
�2Sn

�.n�1;1/.�/

�

D
1

nn!

� X
�2Sn

nC
X
�2Sn

�.n�1;1/.�/C .n� 1/
X
�2Sn

�.n�1;1/.�/

�

D
1

nn!

�
nn!C nn!h�.n/; �.n�1;1/

iSn

�
: (3-2)

But since both �.n/ and �.n�1;1/ are irreducible, their inner product is 0. So (3-2)
becomes

1

nn!
nn!D 1: �

Proposition 3.3. Let n � 2. Let �.n;n/ be the irreducible character of S2n corre-
sponding to .n; n/. Then

h�; �.n;n/iS2n
D 1:
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Proof. Throughout, let dk D gcd.n; k/. Using Frobenius reciprocity, we write

h�; �.n;n/iS2n
D h1C ; �

.n;n/
#C iC D

1

nn!

n�1X
kD0

X
�2Sn

�.n;n/..�k ; �//:

We break the sum up into three pieces: one for k D 0, one for dk D 1 (of which
there are '.n/ such k, where ' denotes Euler’s totient function) and one for dk 6D 1:

h�; �.n;n/iS2n

D
1

nn!

� X
�2Sn

�.n;n/..1; �//C'.n/
X
�2Sn

�.n;n/..�; �//C
X

1<k<n
dk 6D1

X
�2Sn

�.n;n/..�k; �//

�
:

In order to use Theorem 2.7, we sum over all partitions of n and rewrite the sum as

h�; �.n;n/iS2n
D

1

nn!

�
n! h�.n/; �.n;n/#Sn

iSn
C'.n/

X
�`n

�
.n;n/

.n;�/
jK�j

C

X
1<k<n
dk 6D1

X
�`n

�
.n;n/

.. n
dk
/dk ;�/

jK�j

�
: (3-3)

By Theorem 2.9, we write

�.n;n/#Sn
D �.n/C

X
�`n
� 6D.n/

a��
�

where a� 2 f0; 1; 2; : : : g. Then, by linearity, we have

h�.n/; �.n;n/#Sn
iSn
D h�.n/; �.n/iSn

C

X
�`n
� 6D.n/

a�h�
.n/; ��iSn

D h�.n/; �.n/iSn
D 1; (3-4)

since all the �� are irreducible. Using Theorem 2.7,

�
.n;n/

.n;�/
D �

.n/

�
��

.n�1;1/

�

so thatX
�`n

�
.n;n/

.n;�/
jK�j D

X
�`n

�
�
.n/

�
��

.n�1;1/

�

�
jK�j

D

X
�`n

�
.n/

�
jK�j �

X
�`n

�
.n�1;1/

�
jK�j

D n! h�.n/; �.n/iSn
� n! h�.n/; �.n�1;1/

iSn
D n!: (3-5)
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Now let dk 6D 1, for some k. Again with Theorem 2.7, we write

�
.n;n/

.. n
dk
/dk ;�/

D �
.n/

�
C

X
�`n
� 6D.n/

c��
�

�

where c� 2 Z. ThenX
�`n

�
.n;n/

.. n
dk
/dk ;�/

jK�j D

X
�`n

�
.n/

�
jK�jC

X
�`n

X
�`n
� 6D.n/

c��
�

�
jK�j

D n! h�.n/; �.n/iSn
C

X
�`n
�6D.n/

n! c�h�
.n/; ��iSn

D n!: (3-6)

We note that there are n� '.n/� 1 numbers k strictly between 1 and n so that
dk 6D 1, so substituting (3-4), (3-5), and(3-6) into (3-3) we have

h�; �.n;n/iS2n
D

1

nn!

�
n!C'.n/n!C .n�'.n/� 1/n!

�
D

1

nn!
nn!D 1: �

In the case of nD 2 it turns out that Propositions 3.1, 3.2, and 3.3 give a full
decomposition. That is,

IndS4

CS4
..12//

1C D �
.4/
C�.3;1/C�.2;2/:

We notice that our first three results all showed that there are certain irreducible
characters appearing in the decomposition of � that have constant or stable multi-
plicities, independent of n. Our next result shows that this is not the case for all
constituents, but a closed-form formula for the multiplicity is known in some cases.

Proposition 3.4. Let n � 2. Let �.2n�2;2/ be the irreducible character of S2n

corresponding to .2n� 2; 2/. Then

h�; �.2n�2;2/
iS2n
D

8̂<̂
:

n

2
if n is even;

n�1

2
if n is odd:

Proof. Throughout, dk D gcd.n; k/. Using Frobenius reciprocity we write

h�; �.2n�2;2/
iS2n
D h1C ; �

.2n�2;2/
#C iC D

1

nn!

n�1X
kD0

X
�2Sn

�.2n�2;2/..�k ; �//:

If n D 2, we are done, by Proposition 3.3. Throughout the rest of the proof we
assume n � 3. As in the proof of Proposition 3.3, we break the sum into three
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pieces:

h�; �.2n�2;2/
iS2n

D
1

nn!

� X
�2Sn

�.2n�2;2/..1; �//C'.n/
X
�2Sn

�.2n�2;2/..�; �//

C

X
1<k<n
dk 6D1

X
�2Sn

�.2n�2;2/..�k ; �//

�

D
1

nn!

�
n! h�.n/; �.2n�2;2/

#Sn
iSn
C'.n/

X
�`n

�
.2n�2;2/

.n;�/
jK�j

C

X
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j

�
. (3-7)

From Theorem 2.9, we have

h�.n/; �.2n�2;2/
#Sn
iSn
D

�
n

2

�
: (3-8)

Using Theorem 2.7 we write �.2n�2;2/

.n;�/
D �

.n�2;2/

�
; so thatX

�`n

�
.2n�2;2/

.n;�/
jK�j D

X
�`n

�
.n�2;2/

�
jK�j D n! h�.n/; �.n�2;2/

iSn
D 0: (3-9)

When n is even, n
2

divides n. Then d n
2
D

n
2

. We can then remove the 2-hook from
bottom row of .2n� 2; 2/, and then successively remove n

2
� 1 hooks of length 2

from the top row of .2n� 2; 2/. There are
�
n=2

1

�
D

n
2

ways to do this. We combine
this with Theorem 2.7 to see thatX

1<k<n
dk 6D1

�
.2n�2;2/

.. n
dk
/dk ;�/

D
n

2
�.n/C

X
�`n
�6D.n/

a��
�

�

with a� 2 Z. ThenX
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j D

X
�`n

n

2
�.n/jK�jC

X
�`n

X
�`n
�6D.n/

a��
�

�
jK�j

D
n

2
n! h�.n/; �.n/iSn

C

X
�`n
�6D.n/

a�h�
.n/; ��iSn

D
n

2
n!: (3-10)
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So in the case when n is even, substituting (3-8)–(3-10) into (3-7), we have

h�; �.2n�2;2/
iS2n
D

1

nn!

��
n

2

�
n!C

n

2
n!

�
D

1

n

��
n

2

�
C

n

2

�
D

1

n

�
n.n� 1/

2
C

n

2

�
D

n� 1

2
C

1

2
D

n

2
;

as desired. Now, when n is odd, 2 does not divide n. Then n
2

is not an integer and
thus does not divide n. As a result, we cannot remove the hook of length 2 from
the bottom row of .2n�2; 2/. So when we apply Theorem 2.7, the trivial character
does not appear in the decomposition and we haveX

1<k<n
dk 6D1

�
.2n�2;2/

.. n
dk
/dk ;�/

D

X
�`n
�6D.n/

c��
�

�
with c� 2 Z:

Then X
1<k<n
dk 6D1

X
�`n

�
.2n�2;2/

.. n
dk
/dk ;�/

jK�j D

X
�`n

X
�`n
� 6D.n/

c��
�

�
jK�j

D

X
�`n
�6D.n/

n! c�h�
.n/; ��iSn

D 0: (3-11)

So then, substituting (3-8), (3-9), and (3-11) into (3-7), we have

h�; �.2n�2;2/
iS2n
D

1

nn!

�
n

2

�
n!D

1

n

�
n

2

�
D

1

n

n.n� 1/

2
D

n� 1

2
;

giving the result. �

A theorem for the partitions .2n � k;k/. We now present a theorem that general-
izes the previous propositions and gives a formula for the multiplicities of a number
of the irreducible characters of S2n appearing in the decomposition of �.

Theorem 3.5. Let n � 2k. Let �.2n�k;k/ be the irreducible character of S2n

corresponding to .2n� k; k/. For 1< h< n, let dh D gcd.n; h/, and lk D kdh=n.
Then

h�; �.2n�k;k/
iS2n
D

1

n

��
n

k

�
C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

��
:

Proof. With Frobenius reciprocity, we write

h�; �.2n�k;k/
iS2n
D h1C ; �

.2n�k;k/
#C iC D

1

nn!

n�1X
jD0

X
�2Sn

�.2n�k;k/..�j ; �//:
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As usual, we split the sum into three pieces:

h�; �.2n�k;k/
#S2n
iS2n

D
1

nn!

� X
�2Sn

�.2n�k;k/..1; �//

C'.n/
X
�2Sn

�.2n�k;k/..�; �//C
X

1<h<n
dh 6D1

X
�2Sn

�.2n�k;k/..�h; �//

�

D
1

nn!

�
n!h�.n/; �.2n�k;k/

#Sn
iSn

C'.n/
X
�`n

�
.2n�k;k/

.n;�/
jK�jC

X
1<h<n
dh 6D1

X
�`n

�
.2n�k;k/

.. n
dh
/dh ;�/

jK�j

�
: (3-12)

Since n � 2k, we can remove the k blocks from the bottom row of .2n� k; k/

and remove n� k blocks from the top row of .2n� k; k/, which leaves n blocks
remaining. We can do this removal in

�
n
k

�
ways, so, with 2:9, we have

h�.n/; �.2n�k;k/
#Sn
iSn
D

�
n

k

�
: (3-13)

Theorem 2.7 gives
�
.2n�k;k/

.n;�/
D �

.n�k;k/

�
;

since n� 2k. ThenX
�`n

�
.2n�k;k/

.n;�/
jK�j D

X
�`n

�
.n�k;k/

�
jK�j D n! h�.n/; �.n�k;k/

iSn
D 0: (3-14)

Now suppose there is some h so that dh 6D 1. Then �h is a product of dh
n

dh
-cycles.

If � is of cycle type � then

�.2n�k;k/..�h; �//D �
.2n�k;k/

.. n
dh
/dh ;�/

: (3-15)

By Theorem 2.7, in order for �.n/ to have nonzero multiplicity in the decomposition
of the right-hand side of (3-15), we have to be able to remove the k-hook from
the bottom row of .2n� k; k/. So if n

dh
does not divide k then this is not possible.

Then in this case
�
.2n�k;k/

.. n
dh
/dh ;�/

D

X
�`n
�6D.n/

a��
�

�
(3-16)

with a� 2 Z. Now, suppose that, for some h, dh 6D 1, and furthermore that n
dh

divides k. Then we can successively remove the lk hooks of length n
dh

from
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the bottom row of .2n� k; k/ and remove the dh � lk hooks of length n
dh

from

the top row of .2n� k; k/, which will result in �.n/ having positive multiplicity
in the aforementioned decomposition. In fact, a simple counting argument via
Theorem 2.9 shows the exact multiplicity will be

�dh

lk

�
: Then in this case

�
.2n�k;k/

.. n
dh
/dh ;�/

D

�
dh

lk

�
�
.n/

�
C

X
�`n
�6D.n/

c��
�

�
(3-17)

with c� 2 Z. Then (3-16) and (3-17) giveX
1<h<n
dh 6D1

X
�`n

�
.2n�k;k/

.. n
dh
/dh ;�/

jK�j

D

X
1<h<n
dh 6D1

n
dh

−k

X
�`n

X
�`n
� 6D.n/

a��
�

�
jK�jC

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

�
dh

lk

�
�
.n/

�
jK�j

C

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

X
�`n
�6D.n/

c��
�

�
jK�j

D

X
1<h<n
dh 6D1
n

dh
jgk

X
�`n

�
dh

lk

�
�
.n/

�
jK�j D

X
1<h<n
dh 6D1
n

dh
jgk

�
dh

lk

�
n!: (3-18)

Substituting (3-13), (3-14), (3-18) into (3-12) we have

h�; �.2n�k;k/
iS2n
D

1

nn!

��
n

k

�
n!C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

�
n!

�

D
1

n

��
n

k

�
C

X
1<h<n
dh 6D1

n
dh
jk

�
dh

lk

��
; (3-19)

as claimed. �

4. Future problems

The preceding work is only the beginning of a large selection of problems to be
worked out. It is possible that there are more stable multiplicities (independent
of n) in this decomposition. Also, the multiplicities and formulas found here only
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cover a small number of partitions and therefore characters. One may find that all
characters have a stable or closed-form formula for their multiplicities. Note that
in this paper we only discuss the trivial character of C , and much can be learned
from studying the decomposition of the nontrivial characters of C when induced up
to S2n, which arise in braid group cohomology. It may be possible to learn more by
first decomposing the character IndSn

C
 , studying this character, and then inducing

the resulting constituents up to S2n.
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[Kraśkiewicz and Weyman 2001] W. Kraśkiewicz and J. Weyman, “Algebra of coinvariants and
the action of a Coxeter element”, Bayreuth. Math. Schr. 63 (2001), 265–284. MR 2002j:20026
Zbl 1037.20012

[Sagan 2001] B. E. Sagan, The symmetric group: Representations, combinatorial algorithms, and
symmetric functions, 2nd ed., Graduate Texts in Mathematics 203, Springer, New York, 2001.
MR 2001m:05261 Zbl 0964.05070

Received: 2012-01-03 Revised: 2012-02-03 Accepted: 2012-07-17

jjricci@buffalo.edu Mathematics Department, University at Buffalo, SUNY,
Buffalo, NY 14260, United States

mathematical sciences publishers msp

http://msp.org/idx/arx/1008.1368
http://msp.org/idx/mr/2007h:00003
http://msp.org/idx/zbl/1037.00003
http://dx.doi.org/10.1016/j.jcta.2010.08.010
http://dx.doi.org/10.1016/j.jcta.2010.08.010
http://msp.org/idx/mr/2012a:20021
http://msp.org/idx/zbl/1231.20011
http://msp.org/idx/mr/2002h:20010
http://msp.org/idx/zbl/0981.20004
http://dx.doi.org/10.1023/A:1026592027019
http://dx.doi.org/10.1023/A:1026592027019
http://msp.org/idx/mr/2001k:05207
http://msp.org/idx/zbl/0979.20017
http://msp.org/idx/mr/2002j:20026
http://msp.org/idx/zbl/1037.20012
http://msp.org/idx/mr/2001m:05261
http://msp.org/idx/zbl/0964.05070
mailto:jjricci@buffalo.edu
http://msp.org


involve
msp.org/involve

EDITORS
MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone Victoria University, Australia

pietro.cerone@vu.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $105/year for the electronic version, and
$145/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.berkeley.edu/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:pietro.cerone@vu.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.berkeley.edu/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2013 vol. 6 no. 2

127The influence of education in reducing the HIV epidemic
RENEE MARGEVICIUS AND HEM RAJ JOSHI

137On the zeros of ζ(s)− c
ADAM BOSEMAN AND SEBASTIAN PAULI

147Dynamic impact of a particle
JEONGHO AHN AND JARED R. WOLF

169Magic polygrams
AMANDA BIENZ, KAREN A. YOKLEY AND CRISTA ARANGALA

191Trading cookies in a gambler’s ruin scenario
KUEJAI JUNGJATURAPIT, TIMOTHY PLUTA, REZA RASTEGAR, ALEXANDER
ROITERSHTEIN, MATTHEW TEMBA, CHAD N. VIDDEN AND BRIAN WU

221Decomposing induced characters of the centralizer of an n-cycle in the symmetric group
on 2n elements

JOSEPH RICCI

233On the geometric deformations of functions in L2
[D]

LUIS CONTRERAS, DEREK DESANTIS AND KATHRYN LEONARD

243Spectral characterization for von Neumann’s iterative algorithm in Rn

RUDY JOLY, MARCO LÓPEZ, DOUGLAS MUPASIRI AND MICHAEL NEWSOME

251The 3-point Steiner problem on a cylinder
DENISE M. HALVERSON AND ANDREW E. LOGAN

involve
2013

vol.6,
no.2

http://dx.doi.org/10.2140/involve.2013.6.127
http://dx.doi.org/10.2140/involve.2013.6.137
http://dx.doi.org/10.2140/involve.2013.6.147
http://dx.doi.org/10.2140/involve.2013.6.169
http://dx.doi.org/10.2140/involve.2013.6.191
http://dx.doi.org/10.2140/involve.2013.6.233
http://dx.doi.org/10.2140/involve.2013.6.243
http://dx.doi.org/10.2140/involve.2013.6.251

	1. Introduction
	2. Preliminaries
	3. The decomposition of 
	4. Future problems
	Acknowledgements
	References
	
	

