On the geometric deformations of functions in $L^{2}[D]$ Luis Contreras, Derek DeSantis and Kathryn Leonard

On the geometric deformations of functions in $L^{2}[D]$

Luis Contreras, Derek DeSantis and Kathryn Leonard
(Communicated by David Royal Larson)

Abstract

We derive a formal relationship between the coefficients of a function expanded in either the Legendre basis or Haar wavelet basis, before and after a polynomial deformation of the function's domain. We compute the relationship of coefficients explicitly in three cases: linear deformation with Haar basis, linear deformation with Legendre basis, and polynomial deformation with Legendre basis.

1. Introduction

This paper explores the relationship between Schauder coefficients of a function before and after the domain of that function has been deformed in some reasonably well-behaved manner. As an analogy, one may think of a function as a melody recorded on an LP, and its domain as the position in the groove on the LP. The groove will become deformed if the LP is left in the sun, but the melody played on the LP after deformation will be related to the original melody. We are interested in understanding that relationship. Our results are a preliminary step toward addressing the inverse question of how to recover information about the undeformed function given the deformed function and an unknown deformation.

More formally, let $\mathscr{W}=\{w: D \rightarrow D \mid w$ is a diffeomorphism $\}$ be a class of diffeomorphisms defined on a closed subinterval $D \subset \mathbb{R}$. Then each $w \in \mathscr{W}$ defines a function F_{w} on $L^{2}[D]$, where $F_{w}(f)=f \circ w$. Below, we provide necessary background information to pose our question in terms of coefficients of elements in $L^{2}[D]$. In Section 2, we derive a general relationship between the coefficients of f, w, and $g=F_{w}(f)$. In Section 3, we compute precise relationships between coefficients of f and g in the Legendre and Haar wavelet bases for linear deformations, and in Section 4, in the Legendre basis for polynomial deformations.

[^0]1.1. Background. For the Hilbert space $L^{2}[D]=\left\{f: D \rightarrow \mathbb{R} \mid \int_{D} f^{2}<\infty\right\}$, recall that the inner product is given by $\langle f, g\rangle=\int_{D} f g$. Therefore, given an orthonormal basis $\left\{\phi_{i}(x)\right\}_{i=0}^{\infty}$ for $L^{2}[D]$, the Schauder coefficients $\left\{a_{i}\right\}$ corresponding to a function expanded in that basis, $f(x)=\sum_{i=0}^{\infty} a_{i} \phi_{i}(x)$, can be computed by $a_{i}=\int_{D} f(x) \phi_{i}(x) d x$ [Kreyszig 1989].

We will be exploring two orthonormal bases in our work: the Legendre basis, which is a basis of polynomials, and the Haar wavelet basis, a basis that localizes in scale and location. As noted above, domain deformation corresponds to composition of functions. The Legendre basis has the advantage that computations involving composition with polynomial deformations are straightforward. On the other hand, because the support of each basis function is the entire domain D, localized deformations will produce changes in every Legendre coefficient. The Haar wavelet basis has the opposite problem: local deformations will change only the subset of coefficients corresponding to that locale, but composing basis functions with polynomial deformations is computationally intimidating. Examined together, however, these two bases provide a wide view of possible behaviors. We now define each basis formally.
1.1.1. Legendre basis for $L^{2}[-1,1]$. The Legendre basis arises by applying the Gram-Schmidt orthonormalization process to the simplest basis for $L^{2}[-1,1]$, the monomials $\left\{x^{i}\right\}_{i=0}^{\infty}$. For $D=[-1,1]$, the resulting basis is as below (though choosing a different D will produce a different normalizing constant K):

$$
\psi_{i}(x)= \begin{cases}\sqrt{\frac{2 i+1}{2}} \sum_{n=0}^{N}(-1)^{n} \frac{(2 i-2 n)!}{2^{i} n!(i-n)!(i-2 n)!} x^{i-2 n} & \text { for }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where $N=i / 2$ when i is even, and $N=(i-1) / 2$ when i is odd [Jackson 2004]. Rewriting the normalizing constant

$$
K_{i n}=\sqrt{\frac{2 i+1}{2}}(-1)^{n} \frac{(2 i-2 n)!}{2^{i} n!(i-n)!(i-2 n)!},
$$

our basis becomes

$$
\begin{equation*}
\psi_{i}(x)=\sum_{n=0}^{N} K_{i n} x^{i-2 n} \tag{1}
\end{equation*}
$$

A function $f(x) \in L^{2}[-1,1]$ can therefore be written as

$$
f(x)=\sum_{i=0}^{\infty} a_{i} \sum_{n=0}^{N} K_{i n} x^{i-2 n}=\sum_{i} \sum_{n} a_{i} K_{i n} x^{i-2 n}
$$

1.1.2. Haar basis for $L^{2}[0,1]$. The Haar wavelet basis is generated by shifting and scaling the simplest mother wavelet,

$$
\psi(x)= \begin{cases}1 & \text { for } 0 \leq x<\frac{1}{2} \\ -1 & \text { for } \frac{1}{2} \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

which can be thought of as a coarse piecewise constant approximation to a sine curve. After scaling and shifting, the resulting orthonormal basis is given by

$$
\psi_{i j}(x)= \begin{cases}2^{i / 2} & \text { for } \frac{j}{2^{i}} \leq x<\frac{j+1 / 2}{2^{i}} \\ -2^{i / 2} & \text { for } \frac{j+1 / 2}{2^{i}} \leq x<\frac{j+1}{2^{i}} \\ 0 & \text { otherwise }\end{cases}
$$

where $i \in \mathbb{N}$ and $0 \leq j \leq 2^{i}-1$ [Radunović 2009].

2. General relationships of coefficients

Our first result presents a general relationship between Schauder coefficients of f and those of g.
Theorem 1. Consider $f(x) \in L^{2}[D]$, where $D \subset \mathbb{R}$ is a a closed interval, and let $w(x)=h^{-1}(x): D \rightarrow D$ be a diffeomorphism. Set $g(x)=f \circ w(x)$. Then for $f(x)=\sum_{i} a_{i} \psi_{i}(x)$, where $\left\{\psi_{i}\right\}$ is an orthonormal basis for $L^{2}[D]$,

$$
g(x)=\sum_{i} c_{i} \psi_{i}(x)=\sum_{i} \sum_{j} \alpha_{i j} a_{j} \psi_{i}(x)
$$

where $\alpha_{i j}=\left\langle\psi_{j} \circ w(x), \psi_{i}(x)\right\rangle_{L^{2}}$.
Proof. We claim that $g \in L^{2}(D)$. Because w is a diffeomorphism, w^{\prime} is continuous and nonvanishing on D. Therefore, $1 / w^{\prime}$ is also continuous on D and thus bounded above by some $M<\infty$. We then have $\int_{D} g^{2}=\int_{D}(f \circ w)^{2}=\int f^{2} / w^{\prime} \leq M\|f\|_{2}^{2}<\infty$, and so $g \in L^{2}[D]$.

Thus, we can write $g(x)$ as the convergent series $\sum_{i} c_{i} \psi_{i}(x)$, where $c_{i}=\left\langle g, \psi_{i}\right\rangle$. Remembering that $g=f \circ w=\sum_{j} a_{j}\left(\psi_{j} \circ w\right)$, we have

$$
\begin{aligned}
c_{i} & =\left\langle g, \psi_{i}\right\rangle=\left\langle f \circ w, \psi_{i}\right\rangle \\
& =\left\langle\sum_{j} a_{j}\left(\psi_{j} \circ w\right), \psi_{i}\right\rangle=\sum_{j} a_{j}\left\langle\psi_{j} \circ w, \psi_{i}\right\rangle=\sum_{j} a_{j} \alpha_{i j} .
\end{aligned}
$$

Note that the coefficients $\left\{\alpha_{i j}\right\}$ can be computed independently of f. Given a deformation w, these may be computed and reused for multiple choices of f. Alas, such a clean theorem requires dues to be paid elsewhere. We will see below the challenges of computing the $\left\{\alpha_{i j}\right\}$ coefficients in specific cases.

3. Explicit relationships: linear deformations

3.1. Linear deformations and the Legendre basis for $\boldsymbol{L}^{\mathbf{2}}[-1,1]$. We first examine deformations of the form $w(x)=\beta x$, with $0<\beta<1$, for $D=[-1,1]$. We are cheating slightly here, as $h=w^{-1}$ maps D to a larger interval $D \subset h(D)$, and so the setting of this first example does not match with Theorem 1. Nonetheless, the results for linear w will be helpful in understanding the results for polynomial w in Section 4, and so we persevere. We start with a simple fact from calculus:

Fact. For $A=[-a, a]$ and t odd, $\int_{A} x^{t} d x=0$.
Theorem 2. Following Theorem 1, we take $D=[-1,1],\left\{\psi_{i}(x)\right\}$ as the Legendre basis, and $w(x)=\beta x, \beta>0$. Then

$$
\alpha_{i j}= \begin{cases}2 \sum_{n, m=0}^{N, M} \frac{K_{i n} K_{j m} \beta^{i-2 n}}{(i-2 n)+(j-2 m)+1} & \text { if } i+j \text { is even } \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Expanding a function f in the Legendre basis, we can write $f(x)$ as $\sum_{i} a_{i} \sum_{n=0}^{N} K_{i n} x^{i-2 n}$, where $N=i / 2$ when i is even and $N=(i-1) / 2$ when i is odd. We are concerned with $g(x)=f(w(x))=\sum_{i} a_{i} \psi_{i}(w(x))$, where

$$
\psi_{i}(w(x))=\psi_{i}(\beta x)=\sum_{n=0}^{N} K_{i n}(\beta x)^{i-2 n}=\sum_{n=0}^{N} K_{i n} x^{i-2 n} \beta^{i-2 n}
$$

Therefore,

$$
g(x)=\sum_{i} a_{i} \sum_{n=0}^{N} K_{i n} x^{i-2 n} \beta^{i-2 n}
$$

Substituting in βx, we obtain the following formula for $\left\{\alpha_{i j}\right\}$:

$$
\begin{aligned}
\alpha_{i j} & =\left\langle\psi_{i}(\beta x), \psi_{j}(x)\right\rangle \\
& =\int_{-1}^{1}\left(\sum_{n=0}^{N} K_{i n} x^{i-2 n} \beta^{i-2 n}\right)\left(\sum_{m=0}^{M} K_{j m} x^{j-2 m}\right) d x \\
& =\int_{-1}^{1} \sum_{n, m=0}^{N, M}\left(K_{i n} x^{i-2 n} \beta^{i-2 n}\right)\left(K_{j m} x^{j-2 m}\right) d x \\
& =\sum_{n, m=0}^{N, M} \int_{-1}^{1}\left(K_{i n} x^{i-2 n} \beta^{i-2 n}\right)\left(K_{j m} x^{j-2 m}\right) d x \\
& =\sum_{n, m=0}^{N, M} \int_{-1}^{1} K_{i n} K_{j m} x^{i-2 n+j-2 m} \beta^{i-2 n} d x
\end{aligned}
$$

In view of the Fact quoted above, if $i+j$ is odd, the integral is zero. Otherwise,

$$
\alpha_{i j}=\sum_{n, m=0}^{N, M} \int_{-1}^{1} K_{i n} K_{j m} x^{i-2 n+j-2 m} \beta^{i-2 n} d x=2 \sum_{n, m=0}^{N, M} \frac{K_{i n} K_{j m} \beta^{i-2 n}}{(i-2 n)+(j-2 m)+1} .
$$

3.2. Linear deformations and the Haar basis for $\boldsymbol{L}^{\mathbf{2}}[\mathbf{0}, \mathbf{1}]$. We again examine linear deformations of the form $w(x)=\beta x$, now with $\beta>0$ and $D=[0,1]$. Note that for the Haar wavelet basis, each basis element has two indices: one for scale and one for location. Hence, the $\left\{\alpha_{i j}\right\}$ coefficients defined in Theorem 1 become $\left\{\alpha_{i j k l}\right\}=\left\langle\psi_{i j} \circ w, \psi_{k l}\right\rangle$.

As before, we must compute

$$
\begin{aligned}
\psi_{i j}(w(x))=\psi_{i j}(\beta x) & = \begin{cases}2^{i / 2} & \text { for } \frac{j}{2^{i}} \leq \beta x<\frac{j+1 / 2}{2^{i}} \\
-2^{i / 2} & \text { for } \frac{j+1 / 2}{2^{i}} \leq \beta x<\frac{j+1}{2^{i}} \\
0 & \text { otherwise. }\end{cases} \\
& = \begin{cases}2^{i / 2} & \text { for } \frac{j}{\beta 2^{i}} \leq x<\frac{j+1 / 2}{\beta 2^{i}} \\
-2^{i / 2} & \text { for } \frac{j+1 / 2}{\beta 2^{i}} \leq x<\frac{j+1}{\beta 2^{i}} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let

$$
I_{i j}^{+}=\left[\frac{j}{\beta 2^{i}}, \frac{j+1 / 2}{\beta 2^{i}}\right) \quad \text { and } \quad I_{i j}^{-}=\left[\frac{j+1 / 2}{\beta 2^{i}}, \frac{j+1}{\beta 2^{i}}\right)
$$

the regions where $\psi_{i j}(w(x))>0$ and $\psi_{i j}(w(x))<0$, respectively. Similarly, let

$$
I_{k l}^{+}=\left[\frac{l}{2^{k}}, \frac{l+1 / 2}{2^{k}}\right) \quad \text { and } \quad I_{k l}^{-}=\left[\frac{l+1 / 2}{2^{k}}, \frac{l+1}{2^{k}}\right)
$$

Note that a particular $\alpha_{i j k l}$ will be nonzero only if (a) $\left(I_{i j}^{+} \cup I_{i j}^{-}\right) \cap I_{k l}^{+} \neq \varnothing$ and $\left(I_{i j}^{+} \cup I_{i j}^{-}\right) \cap I_{k l}^{-} \neq \varnothing$ and (vice versa) (b) $\left(I_{k l}^{+} \cup I_{k l}^{-}\right) \cap I_{i j}^{+} \neq \varnothing$ and $\left(I_{k l}^{+} \cup I_{k l}^{-}\right) \cap I_{i j}^{-} \neq \varnothing$. Otherwise, $\alpha_{i j k l}$ will vanish; either the supports will be disjoint, or the support of one will be contained entirely in the positive or negative domain of the other. Analyzing the possibilities for nonzero values of $\alpha_{i j k l}$ produces the following theorem.

Theorem 3. Following Theorem 1, we take $D=[0,1],\left\{\psi_{i j}(x)\right\}$ as the Haar wavelet basis, and $w(x)=\beta x, \beta>0$. Then nonzero values for $\alpha_{i j k l}$ are of the form

$$
\alpha_{i j k l}=\sum_{m=1}^{3} \xi_{m} 2^{m-k-2}+\tilde{\xi}_{m} 2^{m-i-2}
$$

where $\xi_{1}=1 \pm \beta, \xi_{2} \in\{-\beta, \pm l \beta,(1+l) \beta, \pm(3 l+1) \beta\}, \xi_{3} \in\{ \pm l \beta,(1+l) \beta\}, \tilde{\xi}_{1}=0$, $\tilde{\xi}_{2} \in\{ \pm 1, \pm j, \pm(1+j), 3 j,-(3 j+1)\}$, and $\tilde{\xi}_{3} \in\{1, \pm j,(1+j)\}$.

Proof. Expanding some f in the Haar basis, we can write $f(x)=\sum_{i=0}^{\infty} \sum_{j=0}^{2^{i}-1} a_{i j} \psi_{i j}(x)$. Therefore,

$$
g(x)=f(w(x))=\sum_{i=0}^{\infty} \sum_{j=0}^{2^{i}-1} a_{i j} \psi_{i j}(w(x))=\sum_{i=0}^{\infty} \sum_{j=0}^{2^{i}-1} a_{i j} \psi_{i j}(\beta x)
$$

The formula for $\alpha_{i j k l}$ is then

$$
\begin{aligned}
\alpha_{i j k l} & =\left\langle\psi_{i j}(\beta x), \psi_{k l}(x)\right\rangle \\
& =\int_{\left(I_{i j}^{+} \cap \cap_{k l}^{+}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{-}\right)} 2^{i / 2} 2^{k / 2} d x-\int_{\left(I_{i j}^{+} \cap I_{k l}^{-}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{+}\right)} 2^{i / 2} 2^{k / 2} d x \\
& =2^{(i+k) / 2}\left(\int_{\left(I_{i j}^{+} \cap I_{k l}^{+}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{-}\right)} d x-\int_{\left(I_{i j}^{+} \cap I_{k l}^{-}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{+}\right)} d x\right) \\
& =2^{(i+k) / 2}\left[\mu\left(\left(I_{i j}^{+} \cap I_{k l}^{+}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{-}\right)\right)-\mu\left(\left(I_{i j}^{+} \cap I_{k l}^{-}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{+}\right)\right)\right]
\end{aligned}
$$

where μ is the standard Lebesgue measure. Hence, to compute $\alpha_{i j k l}$, we must compute $M=\mu\left(\left(I_{i j}^{+} \cap I_{k l}^{+}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{-}\right)\right)-\mu\left(\left(I_{i j}^{+} \cap I_{k l}^{-}\right) \cup\left(I_{i j}^{-} \cap I_{k l}^{+}\right)\right)$. From the 14 possible arrangements of the values $\left\{\frac{l}{2^{k}}, \frac{l+1 / 2}{2^{k}}, \frac{l+1}{2^{k}}, \frac{j}{\beta 2^{i}}, \frac{j+1 / 2}{\beta 2^{i}}, \frac{j+1}{\beta 2^{i}}\right\}$ satisfying (a) and (b) as in the discussion preceding Theorem 3, we find possible values for M as follows. Given positive integers $\{i j k l\}$ corresponding to $\alpha_{i j k l}$, the value of $\beta 2^{i+k+2} M \neq 0$ is one of

- $(1+j) 2^{k+3}-l \beta 2^{i+3}-\beta 2^{i+2}$
- $(1+j) 2^{k+2}-l \beta 2^{i+2}$
- $-j 2^{k+3}+l \beta 2^{i+3}+\left(1+\beta 2^{i+1}\right\}$
- $-(3 j+1) 2^{k+2}+(3 l+1) \beta 2^{i+2}+(1+\beta) 2^{i+1}$
- $-j 2^{k+2}+l \beta 2^{i+2}+(1-\beta) 2^{i+1}$
- $\pm j 2^{k+2} \mp(1+l) \beta 2^{i+2}$
- $-(1+j) 2^{k+2}+(1+l) \beta 2^{i+2}$
- $-j 2^{k+3}-2^{k+2}+(1+l) \beta 2^{i+3}$
- $j 2^{k+3}+2^{k+2}-l \beta 2^{i+3}$
- $2^{k+3}+3 j 2^{k+2}-(3 l+1) \beta 2^{i+2}$
- $j 2^{k+2}-l \beta 2^{i+2}$
- $-(1+j) 2^{k+2}+l \beta 2^{i+2}$
- $(1+j) 2^{k+2}-(1+l) \beta 2^{i+2}$.

Substituting these values for M into the formula for $\alpha_{i j k l}$ gives the desired result.

4. Explicit relationships: polynomial deformations and the Legendre basis

Because the Legendre basis is a basis of polynomials, it is less challenging to compute values for $\left\{\alpha_{i j}\right\}$ when w is a polynomial than it would be for a nonpolynomial basis such as the Haar basis. We now consider deformations $w(x)=\sum_{s=0}^{v} \beta_{s} x^{s}$, where the $\left\{\beta_{s}\right\}$ are chosen so that $w(x)$ maps $[-1,1]$ onto itself diffeomorphically and $d w / d x>0$. This increase in complexity of the deformations requires careful accounting, as we shall see below.

As before, we compute

$$
\left.\begin{array}{rl}
\psi_{i}(w(x)) & =\psi_{i}\left(\sum_{s=0}^{v} \beta_{s} x^{s}\right)=\sum_{n=0}^{N} K_{i n}\left(\sum_{s=0}^{v} \beta_{s} x^{s}\right)^{i-2 n} \\
& =\sum_{n=0}^{N} K_{i n}\left(\sum_{p_{0}+p_{1}+\cdots+p_{v}=i-2 n}\binom{i-2 n}{p_{0}, p_{1}, \ldots, p_{v}}\left(\beta_{0} x^{0}\right)^{p_{0}}\left(\beta_{1} x^{1}\right)^{p_{1}} \cdots\left(\beta_{v} x^{v}\right)^{p_{v}}\right) \\
& =\sum_{n=0}^{N} K_{i n}\left(\begin{array}{c}
i-2 n \\
\sum_{p_{0}+p_{1}+\cdots+p_{v}=i-2 n} \\
\\
\\
\end{array} \sum_{n=0}^{N} \sum_{P} K_{i n}\left(\begin{array}{c}
i-2 n, p_{v}
\end{array}\right)\left(\prod_{s=0}^{v} \beta_{s}{ }^{p_{s}}\right) x^{\sum_{s=0}^{v} s p_{s}}\right) \\
p_{0}, p_{1}, \ldots, p_{v}
\end{array}\right)\left(\prod_{s=0}^{v} \beta_{s} p_{s}\right) x^{\sum_{s=0}^{v} s p_{s}} .
$$

using the multinomial theorem, where $P=p_{0}+p_{1}+\cdots+p_{v}$ is the collective sum of partitions of $i-2 n$. Therefore,

$$
g(x)=f(w(x))=\sum_{i} a_{i} \sum_{n=0}^{N} \sum_{P} K_{i n}\binom{i-2 n}{p_{0}, p_{1}, \ldots, p_{v}}\left(\prod_{s=0}^{v} \beta_{s}{ }^{p_{s}}\right) x^{\sum_{s=0}^{v} s p_{s}} .
$$

In order to apply the Fact to compute $\left\langle\psi_{j}(w(x)), \psi_{i}(x)\right\rangle$, we must identify which of the powers of x, given by $\sum_{s=0}^{v} s p_{s}$, are even and which are odd. Certainly, when s is even, $s p_{s}$ will be even. We rewrite

$$
\sum_{s=0}^{v} s p_{s}=\sum_{t=0}^{\lfloor v / 2\rfloor}\left(2 t p_{2 t}+(2 t+1) p_{2 t+1}\right)=\sum_{t=0}^{\lfloor v / 2\rfloor} 2 t p_{2 t}+\sum_{t=0}^{\lfloor v / 2\rfloor}(2 t+1) p_{2 t+1}
$$

Analyzing the sum over odd $s=2 t+1$, we see that if $p_{2 t+1}$ is even for a given t, the product $(2 t+1) p_{2 t+1}$ will be even. In other words, the parity of the total exponent $\sum_{s=0}^{v} s p_{s}$ is determined entirely by the parity of the number of odd-indexed elements of the partition that are themselves odd. More precisely, let N_{P} be the number of odd-valued elements in the set $\left\{p_{2 t+1}\right\}$. If N_{P} is odd, then $\sum_{t=0}^{\lfloor v / 2\rfloor}(2 t+1) p_{2 t+1}$ will sum an odd number of odd elements, and will therefore be odd. If N_{P} is even, $\sum_{t=0}^{\lfloor v / 2\rfloor}(2 t+1) p_{2 t+1}$ will sum an even number of odd elements, and will therefore be even. We have proved the following lemma.

Lemma. Let $P: p_{1}+\cdots+p_{v}=i-2 n$ be a particular choice of partition. Then the value of $\sum_{s=0}^{v} s p_{s}$ will be even if N_{P}, the number of odd-indexed, odd-valued elements of P, is even, or odd if N_{P} is odd.

We now state the result for polynomial deformations.
Theorem 4. Following Theorem 1, we take $D=[-1,1],\left\{\psi_{i}(x)\right\}$ as the Legendre basis, and $w(x)=\sum_{s=0}^{v} \beta_{s} x^{s}$ to be monotone increasing on D. Then

$$
\alpha_{i j}=2 \sum_{n, m=0}^{N, M} \sum_{P, 2 \mid j+N_{P}}\binom{i-2 n}{p_{0}, p_{1}, \ldots, p_{v}} \frac{K_{i n} K_{j m}\left(\prod_{s=0}^{v} \beta_{s} p_{s}\right)}{j-2 m+1+\sum_{s=0}^{v} s p_{s}} .
$$

Proof. Calculating $\alpha_{i j}$, we find

$$
\begin{aligned}
\alpha_{i j} & =\left\langle\psi_{i}(w(x)), \psi_{j}(x)\right\rangle \\
& =\int_{-1}^{1}\left[\sum_{n=0}^{N} \sum_{P}^{i-2 n} K_{i n}\binom{i-2 n}{p_{0}, p_{1}, \ldots, p_{v}}\left(\prod_{s=0}^{v} \beta_{s} p_{s}\right) x^{\sum_{s=0}^{v} s p_{s}}\right]\left[\sum_{m=0}^{M} K_{j m} x^{j-2 m}\right] d x \\
& =\sum_{n, m=0}^{N, M} \sum_{P}^{i-2 n} K_{i n} K_{j m}\binom{i-2 n}{p_{0}, p_{1}, \ldots, p_{v}}\left(\prod_{s=0}^{v} \beta_{s}{ }^{p_{s}}\right) \int_{-1}^{1} x^{j-2 m+\sum_{s=0}^{v} s p_{s}} d x .
\end{aligned}
$$

Each integral term of the sum will vanish or not depending on the parity of $j-2 m+\sum_{s=0}^{v} s p_{s}$. Because $2 m$ is always even, we focus on the parity of $j+\sum_{s=0}^{v} s p_{s}$. For each $\alpha_{i j}, j$ is fixed along with its parity. From the discussion leading up to Theorem 4, we know that N_{P} determines the parity of $\sum_{s=0}^{v} s p_{s}$. Putting this together, we see that the exponent $j-2 m+\sum_{s=0}^{v} s p_{s}$ will be odd (and so will have vanishing integral) when $j+N_{P}$ is odd. When $j+N_{P}$ is even, however, the exponent will be even and the integral nonzero.

5. Conclusion and future work

Based on the computational challenges apparent in the few simple examples given in this paper, we believe there are very few cases where the coefficients $\left\{\alpha_{i j}\right\}$ that capture the relationship between the deformed and undeformed function can be computed explicitly. Nonetheless, we would like to be able to say something in other situations. Currently, we are exploring distributions of coefficients of periodic functions after deformation by randomly generated b-splines with between 5 and 25 knots. We hope to make conjectures based on those empirical results about what we can realistically say mathematically. Because of the highly structured nature of periodic functions, we expect meaningful results. For example, since the oscillations of a periodic function cannot change in number or amplitude after composition with a deformation, there should be a formulation for a wavelet basis that relates scale and location of periodic behavior with the local energy of a deformation.

The motivation for this project comes from a similar problem in two dimensions related to modeling textures in images [Liu et al. 2004a; 2004b; Park et al. 2009]. When a periodic texture such as a wallpaper pattern appears in an image, it is often not periodic within the image. That is, geometric distortions arising from lighting, occlusion, or projection of a three-dimensional object onto the two-dimensional image plane, create a near-periodic texture in the image. To recognize the periodic structures in these distorted textures requires solving this problem: given a deformed near-periodic function, what is the underlying periodic function and the associated deformation? This inverse problem is ill-posed, but our work gives insight into a similar problem in one dimension. Future work will focus on examining that inverse problem in the one-dimensional setting and deriving similar results to the ones in this paper for functions on \mathbb{R}^{2}.

References

[Jackson 2004] D. Jackson, Fourier series and orthogonal polynomials, Dover, Mineola, NY, 2004. MR 2005g:42001 Zbl 1084.42001
[Kreyszig 1989] E. Kreyszig, Introductory functional analysis with applications, Wiley, New York, 1989. MR 90m:46003 Zbl 0706.46001
[Liu et al. 2004a] Y. Liu, R. T. Collins, and Y. Tsin, "A computational model for periodic pattern perception based on frieze and wallpaper groups", IEEE Trans. Pattern Anal. Mach. Intell. 26:3 (2004), 354-371.
[Liu et al. 2004b] Y. Liu, W.-C. Lin, and J. Hays, "Near-regular texture analysis and manipulation", ACM Trans. Graph. 23:3 (2004), 368-376.
[Park et al. 2009] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu, "Deformed lattice detection in real-world images using mean-shift belief propagation", IEEE Trans. Pattern Anal. Mach. Intell. 31:10 (2009), 1804-1816.
[Radunović 2009] D. P. Radunović, Wavelets: from math to practice, Springer, Berlin, 2009. MR 2011h:42001 Zbl 1168.94300

Received: 2012-02-23 Accepted: 2013-05-20
luisdavidcz@aol.com Mathematics and Applied Physics, California State University, Channel Islands, Camarillo, CA 93012, United States
derek.desantis23@gmail.com Mathematics and Applied Physics, University of Nebraska, Lincoln, Lincoln, NE 68521, United States
kleonard.ci@gmail.com Department of Mathematics, California State University, Channel Islands, 1 University Dr, Camarillo, CA 93012, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@ colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@ math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@ wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2013 Mathematical Sciences Publishers

involve

The influence of education in reducing the HIV epidemic 127Renee Margevicius and Hem Raj Joshi
On the zeros of $\zeta(s)-c$ 137
Adam Boseman and Sebastian Pauli
Dynamic impact of a particle 147
Jeongho Ahn and Jared R. Wolf
Magic polygrams 169
Amanda Bienz, Karen A. Yokley and Crista Arangala
Trading cookies in a gambler's ruin scenario 191
Kuejai Jungjaturapit, Timothy Pluta, Reza Rastegar, Alexander Roitershtein, Matthew Temba, Chad N. Vidden and Brian Wu
Decomposing induced characters of the centralizer of an n-cycle in the symmetric group 221
on $2 n$ elementsJoseph Ricci
On the geometric deformations of functions in $L^{2}[D]$ 233
Luis Contreras, Derek DeSantis and Kathryn Leonard
Spectral characterization for von Neumann's iterative algorithm in \mathbb{R}^{n} 243Rudy Joly, Marco López, Douglas Mupasiri and Michael Newsome
The 3-point Steiner problem on a cylinder 251
Denise M. Halverson and Andrew E. Logan

[^0]: MSC2010: 26.
 Keywords: wavelets, Legendre basis, geometric deformation.
 Contreras and DeSantis were supported by NSF DMS-0636648, Leonard was supported by NSF IIS-0954256.

