The 3-point Steiner problem on a cylinder
Denise M. Halverson and Andrew E. Logan

The 3-point Steiner problem on a cylinder

Denise M. Halverson and Andrew E. Logan
(Communicated by Frank Morgan)

Abstract

The 3-point Steiner problem in the Euclidean plane is to find the least length path network connecting three points. In this paper we will demonstrate an algorithm for solving the 3-point Steiner problem on the cylinder.

1. Introduction

Say we have three points on a cylinder. What would be the shortest possible path network connecting our three points? Our goal is to develop an algorithm to find the minimal path network connecting three points on a cylinder. Finding the least length path network connecting a given set of fixed points in a surface is called the Steiner problem. We will first show that the Steiner problem on the cylinder is related to the Steiner problem on the plane. We then will work with a covering map from the plane to the cylinder so that the correspondence between the Steiner problem on the plane and on the cylinder is clarified. We will follow this with a few results culminating in the cutting theorem. The cutting theorem, Theorem 5.3, guarantees that for any configuration of three points on a cylinder there exists a straight line in the cylinder through which we can make a "cut," then flatten the cut surface out in the plane, and finally construct the minimal path network connecting the three points within the flattened surface. The cutting theorem is an important result that leads us to the cutting algorithm. The cutting algorithm determines the minimal path network connecting the three points on the cylinder. The algorithm requires two cuts in order to compare the principal minimal path network candidates obtained when flattening the cut surface of the cylinder out in the plane.

Only within the last 40 years has the Steiner problem really begun to be studied on nonplanar surfaces. Local properties of minimal path networks on smooth surfaces were investigated in [Weng 2001]. Cockayne [1972] and Brazil et al. [1998] provided analytic methods to solve the 3-point Steiner problem in the sphere. Analytic methods for finding the solution to Steiner problems on the hyperbolic plane and surfaces of revolution were given in [Halverson and March 2005] and

[^0][Caffarelli et al. 2012], respectively. Geometric methods for solving the two- and 3-point Steiner problems on the regular tetrahedron were provided in [Brune and Sipe 2009; Moon et al. 2011]. A cutting algorithm to find the solution to 3-point Steiner problems on the cone, similar to the one in this paper, is given in [Lee et al. 2011]. Results providing for reductions in solving the 3-point Steiner problem on the torus are found in [Halverson and Penrod 2007; Ivanov and Tuzhilin 1994; May and Mitchell 2007]. Furthermore, Ivanov and Tuzhilin [1994] classify all the closed local minimal networks on closed surfaces of constant nonnegative curvature (spheres, projective planes, flat tori, and Klein bottles) and present similar results for the regular tetrahedron. Helmandollar and Penrod [2007] used a generalization of the method of paired calibrations to solve Steiner problems in the hyperbolic plane for four fixed points that are the vertices of a square. Hwang et al. [1992] offer a detailed discussion on various strategies, extensions, and modifications of the Steiner problem.

The importance of this paper is that it provides an algorithm that does not just give a reduction to the list of possible solutions or refer to a set of analytic equations which must be solved, but finds an actual geometric solution to any 3-point Steiner problem on the cylinder.

2. The Steiner problem on the plane

In this section we will give a brief background of the Steiner problem in the plane. For a more extensive study on the Steiner problem in the Euclidean plane see [Hwang et al. 1992; Ivanov and Tuzhilin 1994]. First we will begin with a few definitions and a basic result concerning the Steiner problem. Then we will give a brief history of the development of solutions to this problem. Finally, we will finish with an algorithm for finding a minimal path network connecting three points in the plane.
Definition 2.1. Let A, B, and C be points in \mathbb{R}^{2}. A Steiner minimal tree, denoted $\operatorname{SMT}(A, B, C)$, is the set of minimal length path networks contained in \mathbb{R}^{2} that connect A, B, and C.

It is a classical result that, for three points A, B, and C in the plane, $\operatorname{SMT}(A, B, C)$ contains precisely one element (see [Hwang et al. 1992]). It is a common practice to denote this unique path network itself as $\operatorname{SMT}(A, B, C)$. We will also apply this practice in our paper when considering the 3-point Steiner problem on the plane. It is also a classical result that, if $\triangle A B C$ has no interior angle with measure $\geq 120^{\circ}$, then $\operatorname{SMT}(A, B, C)=\overline{A S} \cup \overline{B S} \cup \overline{C S}$ for some point S, called the Steiner point (see [Courant and Robbins 1979]). In this case we say that $\operatorname{SMT}(A, B, C)$ is full. If $\triangle A B C$ has an interior angle with measure $\geq 120^{\circ}$, say $m \angle A B C \geq 120^{\circ}$, then $\operatorname{SMT}(A, B, C)=\overline{A B} \cup \overline{B C}$. In this case we say $\operatorname{SMT}(A, B, C)$ is degenerate.

Figure 1. Demonstrating that τ_{0} is shorter than τ in the proof of Propositon 2.3.
Note that in this case $\operatorname{SMT}(A, B, C)=\overline{A B} \cup \overline{B B} \cup \overline{B C}$, so in some sense B takes on a similar role as the Steiner point in the full case.
Definition 2.2. Let A, B, and C be points in \mathbb{R}^{2}. We call the point S a generalized Steiner point if $\overline{A S} \cup \overline{B S} \cup \overline{C S} \in \operatorname{SMT}(A, B, C)$.

Another result of the Steiner problem in the plane is that the minimal path network connecting three points in a plane is contained in the convex hull of the triangle whose vertices lie on those three points. Since we use this result in proving future theorems in this paper, we will demonstrate a proof here in this section.
Propositon 2.3. If A, B, and C are points in the plane, then $\operatorname{SMT}(A, B, C)$ is contained in the convex hull of $\triangle A B C$.
Proof. Let $\tau \in \operatorname{SMT}(A, B, C)$ and let $S \in \mathbb{R}^{2}$ be the generalized Steiner point of τ.
Suppose τ is not contained in the convex hull of $\triangle A B C$. Then S lies outside of the convex hull of $\triangle A B C$. Hence S is opposite one of the points A, B, or C of the lines $\overleftrightarrow{B C}, \overleftrightarrow{A C}$, or $\overleftrightarrow{A B}$, respectively. Suppose without loss of generality S is on the side of the line $\overleftrightarrow{B C}$ opposite point A (see Figure 1). Then there is a line perpendicular to $\overleftrightarrow{B C}$ that passes through S. Let S_{0} be the point of intersection of the two lines. Let $\tau_{0}=\overline{A S}_{0} \cup \overline{B S}_{0} \cup \overline{C S}_{0}$. Note that $S S_{0}>0$ because S is not on $\overleftrightarrow{B C}$. Since $B S=\sqrt{\left(B S_{0}\right)^{2}+\left(S S_{0}\right)^{2}}$ and $C S=\sqrt{\left(C S_{0}\right)^{2}+\left(S S_{0}\right)^{2}}$, then $B S_{0}<B S$ and $C S_{0}<C S$. Let l be the line parallel to $B C$ passing through A and let A_{0} be the point of intersection of l and $\overleftrightarrow{S S_{0}}$. Since $A_{0} S_{0}<A_{0} S$,

$$
A S=\sqrt{\left(A A_{0}\right)^{2}+\left(A_{0} S\right)^{2}}>\sqrt{\left(A A_{0}\right)^{2}+\left(A_{0} S_{0}\right)^{2}}=A S_{0}
$$

Thus τ_{0} is shorter than τ, which yields a contradiction.
Therefore τ is contained in the convex hull of $\triangle A B C$.
Other interesting results of the Steiner problem on the plane are found in [Cieslik 1998; Hwang et al. 1992; Ivanov and Tuzhilin 1994; Jarník and Kössler 1934; Lee et al. 2011; Roussos 2012].

Figure 2. Torricelli's solution.
Brief history. The history of the Steiner problem is briefly described in [Cieslik 1998; Courant and Robbins 1979; Kuhn 1974; Roussos 2012]. We give a summary here.

Fermat posed the following problem in the early 17th century: "Given three points in the plane, find a fourth point such that the sum of its distances to the three given points is minimal." Around 1640 Torricelli presented a geometric solution to Fermat's problem. He showed in the full case that the three circles circumscribing the equilateral triangles constructed on the sides of and outside the triangle intersect at the desired point which is often referred to as the Fermat-Torricelli point [Cieslik 1998] (see Figure 2). SMT (A, B, C) is the configuration of the bold lines in Figure 2. In 1836 Gauss considered the Fermat problem for $n>3$ points, sometimes referred to as Gauss's problem.

Steiner gave a geometric construction of the Fermat-Torricelli point in the early 19th century and used it in the construction of distance-minimizing trees and graphs [Roussos 2012]. Courant and Robbins [1979] popularized the minimizing of path networks for n points and (mis)labeled it the Steiner problem; see [Cieslik 1998] for discussion.

Note that Torricelli's solution only holds when all angles in $\triangle A B C$ are less than or equal to 120°. If we were to perform Torricelli's algorithm of the solution on a triangle with an interior angle greater than 120 degrees we would get a point outside of the convex hull of that triangle which contradicts Propositon 2.3; hence the distinction between full and degenerate minimal path networks.

Solution to the 3-point Steiner problem in the plane. We will now present a useful algorithm [Melzak 1961] for finding $\operatorname{SMT}(A, B, C)$ and its length.

First draw the triangle connecting the three points. If one of the angles of $\triangle A B C$ has measure $\geq 120^{\circ}$, remove the opposite side. The union of the remaining two sides is $\operatorname{SMT}(A, B, C)$ and its length is the sum of the lengths of the two sides. In this case $\operatorname{SMT}(A, B, C)$ is degenerate.

Otherwise choose one of the sides of the triangle (for example in Figure 3 we chose side $\overline{B C}$) and draw an equilateral triangle, $\triangle B C E$, where E is on the side of

Figure 3. Constructing a full minimal length path network in the plane.
the line $\overline{B C}$ opposite point A. Draw a circle circumscribing $\triangle B C E$ and draw a line from point E to point A. The intersection of the line and the circle will give us the point S, the Steiner point. Then $E A$ will be the length of $\operatorname{SMT}(A, B, C)$, and $\operatorname{SMT}(A, B, C)=\overline{A S} \cup \overline{B S} \cup \overline{C S}$. In this case $\operatorname{SMT}(A, B, C)$ is full.

3. The cylinder

We will now introduce the cylinder and the covering map we will be using in this paper. (Refer to Figure 4.)

Let $\mathscr{C} \subseteq \mathbb{R}^{3}$ be the cylinder defined by $\mathscr{C}: x^{2}+y^{2}=1$. Then \mathbb{R}^{2} is a covering for \mathscr{C}, where $p: \mathbb{R}^{2} \rightarrow \mathscr{C}$ is the covering map such that $p(u, v)=(\cos u, \sin u, v)$. Let x denote an arbitrary point of \mathscr{C}. Let X_{i} be the point of $p^{-1}(x)$ contained in $[-\pi+2 i \pi, \pi+2 i \pi)$. We denote by $\left(u_{X}, v_{X}\right)$ the coordinates of an arbitrary point X in \mathbb{R}^{2}.
Definition 3.1. For points $A, B \in \mathbb{R}^{2}$ where $A=\left(u_{A}, v_{A}\right)$ and $B=\left(u_{B}, v_{B}\right)$, the strip $\Sigma_{A B}$ is the set $\Sigma_{A B}=\left\{(u, v) \in \mathbb{R}^{2} \mid u_{A} \leq u \leq u_{B}\right\}$.

In this paper we will order without loss of generality the three fixed points a, b, and c in such a way that $u_{A_{0}} \leq u_{B_{0}} \leq u_{C_{0}}$.

For a 3-point Steiner problem on a cylinder with fixed points a, b, and c, it will be convenient to distinguish the three regions partitioned by the vertical lines for

Figure 4. The covering map p.
each of the fixed points. In particular, let $\sigma_{a b}=p\left(\Sigma_{A_{0} B_{0}}\right), \sigma_{b c}=p\left(\Sigma_{B_{0} C_{0}}\right)$, and $\sigma_{c a}=p\left(\Sigma_{C_{0} A_{0}}\right)$.
Definition 3.2. Let \mathscr{L} be a subset of \mathscr{C}. A map $f: \mathscr{L} \rightarrow \mathbb{R}^{2}$ is said to be a lift of the inclusion map $\mathscr{L} \hookrightarrow \mathscr{C}$ provided, for all $z \in \mathscr{L}, z=p \circ f(z)$. We also say the set $f(\mathscr{E})$ is a lift of \mathscr{E}.

4. Regarding the 3-point Steiner problem on a smooth surface

The Steiner problem on any smooth surface is similar to, but more complicated than, the Steiner problem in the plane [Weng 2001]. In this section we provide definitions and notations for a minimal length path network and a generalized Steiner point on a smooth surface. On a cylinder, and in other smooth surfaces, the minimal length path network need not be unique. Hence we have the following definitions.
Definition 4.1. Let a, b, and c be points in a smooth surface \mathscr{X}. Then $\operatorname{SMT}(a, b, c)$ is the set of minimal path networks contained in \mathscr{X} that connect a, b, and c.
Definition 4.2. Let a, b, and c be points in a smooth surface \mathscr{X}. If $\tau=\overline{a s} \cup \overline{b s} \cup \overline{c s} \in$ $\operatorname{SMT}(a, b, c)$, then we say that s is a generalized Steiner point for τ.

There have been many studies of the Steiner problem on general curved surfaces. We cannot address all results and studies in this paper, but refer the interested reader to [Brazil et al. 1998; Cockayne 1972; Dolan et al. 1991; Ivanov and Tuzhilin 1994; Weng 2001] for more details.

5. The cutting theorem

Our purpose in this paper is to present an algorithm for finding a minimal path network on a cylinder. We first need to prove the cutting theorem that we will use in the cutting algorithm; this result, in short, informs us that any minimal path network on a cylinder will be contained in the union of two of the strips $\sigma_{a b}, \sigma_{b c}$, and $\sigma_{c a}$. In preparation for the proof of the cutting theorem we need the following proposition.
Propositon 5.1. Let T be a minimal path network for three fixed points in the plane such that $p(T) \in \operatorname{SMT}(a, b, c), S$ be the generalized Steiner point of T, and $X \in T$ be a fixed point of T such that $p(X) \in\{a, b, c\}$. Then $\left|u_{X}-u_{S}\right| \leq \pi$.
Proof. Suppose $\left|u_{X}-u_{S}\right|>\pi$. By properties of the covering map p there is a point $X_{i} \in p^{-1}(p(X))$ so that $\left|u_{X_{i}}-u_{S}\right| \leq \pi$. Then T^{\prime} obtained by replacing $\overline{X S}$ in T with $\overline{X_{i} S}$ is a shorter path network where $p\left(T^{\prime}\right)$ connects a, b, c. Hence $p(T) \notin \operatorname{SMT}(a, b, c)$. This is a contradiction, so $\left|u_{X}-u_{S}\right| \leq \pi$.
Corollary 5.2. Let T be a minimal path network for three fixed points in the plane such that $p(T) \in \operatorname{SMT}(a, b, c)$ and S be the generalized Steiner point of T. Then $T \subseteq \Gamma=\left\{(u, v) \in \mathbb{R}^{2}:\left|u-u_{S}\right| \leq \pi\right\}$.

Proof. Let $T=\overline{A_{l} S} \cup \overline{B_{m} S} \cup \overline{C_{n} S}$. Since $\left|u_{A_{l}}-u_{S}\right| \leq \pi$, then $\overline{A_{l} S} \subset \Gamma$. Likewise $\overline{B_{m} S}, \overline{C_{n} S} \subset \Gamma$. Thus $T \subseteq \Gamma$.

The following theorem demonstrates that the lift of a minimal path network connecting three points a, b, and c on a cylinder is contained in one of the following:

$$
\begin{aligned}
\Sigma_{B_{k-1} A_{k}} & =\Sigma_{B_{k-1} C_{k-1}} \cup \Sigma_{C_{k-1} A_{k}}, \\
\Sigma_{C_{k-1} B_{k}} & =\Sigma_{C_{k-1} A_{k}} \cup \Sigma_{A_{k} B_{k}}, \\
\Sigma_{A_{k} C_{k}} & =\Sigma_{A_{k} B_{k}} \cup \Sigma_{B_{k} C_{k}} .
\end{aligned}
$$

A proof of a similar result regarding the flat torus can be found in [Halverson and Penrod 2007].

Theorem 5.3 (cutting theorem). Let T be a minimal path network for three fixed points in the plane such that $p(T) \in \operatorname{SMT}(a, b, c)$. Then T is contained in one of $\Sigma_{B_{k-1} A_{k}}, \Sigma_{C_{k-1} B_{k}}$, and $\Sigma_{A_{k} C_{k}}$ for some $k \in \mathbb{Z}^{+}$.

Proof. Let $T=\overline{A_{l} S} \cup \overline{B_{m} S} \cup \overline{C_{n} S}$. Let $t=\min \left\{u_{A_{l}}, u_{B_{m}}, u_{C_{n}}\right\}$. Without loss of generality let $t=u_{A_{l}}$. By Corollary 5.2, $\left|u_{A_{l}}-u_{S}\right| \leq \pi$ and $\left|u_{B_{m}}-u_{S}\right| \leq \pi$. Using $u_{A_{l}} \leq u_{B_{m}}$ and the triangle inequality, we have

$$
u_{B_{m}}-u_{A_{l}}=\left|u_{B_{m}}-u_{A_{l}}\right| \leq\left|u_{B_{m}}-u_{S}\right|+\left|u_{A_{l}}-u_{S}\right| \leq 2 \pi
$$

Note that $m \geq l$. Let $m=l+j$ for some $j \in \mathbb{Z}^{+}$. Then $u_{B_{m}}=u_{B_{l}}+2 \pi j \leq 2 \pi+u_{A_{l}}$. Thus

$$
0 \leq u_{B_{l}}-u_{A_{l}} \leq 2 \pi-2 \pi j .
$$

This is only possible if j is either 0 or 1 . Furthermore, when $j=1$ equality must occur. In particular, if $j=1$, then $u_{B_{l}}=u_{A_{l}}$ and hence $u_{B_{m}}=u_{A_{l+1}}$. So either $m=l$ or $m=l+1$, and in the case $m=l+1$ necessarily $u_{B_{m}}=u_{A_{l+1}}$. Similar considerations of C_{n} yield either $n=l$ or $n=l+1$, and in the case $n=l+1$ necessarily $u_{C_{n}}=u_{A_{l+1}}$.
Case 1. Suppose $m=l$ and $n=l$. Then $T=\operatorname{SMT}\left(A_{l}, B_{l}, C_{l}\right)$. By Propositon 2.3, T is in the convex hull of $\triangle A_{l} B_{l} C_{l}$. Thus $T \subset \Sigma_{A_{l} C_{l}}$. Letting $k=l$ gives the desired result.
Case 2. Suppose $m=l+1$ and $n=l$. Then $u_{B_{m}}=u_{A_{l+1}}$ and hence $u_{B_{m-1}}=u_{A_{l}}$. Thus T is in the convex hull of $\triangle A_{l} B_{l+1} C_{l}$. It follows that $T \subset \Sigma_{A_{l} B_{l+1}}=\Sigma_{B_{l} A_{l+1}}$. Letting $k=l+1$ gives the desired result.

Case 3. Suppose $n=l+1$. Then $u_{C_{n}}=u_{A_{l+1}}$. Thus $u_{A_{l}}=u_{C_{l}}$. Since $u_{A_{l}} \leq u_{B_{l}} \leq u_{C_{l}}$, then $u_{A_{l}}=u_{B_{l}}=u_{C_{l}}$. Since $v_{X_{i}}=v_{X_{j}}$ for any $i, j \in \mathbb{Z}$, the length of T is

$$
\begin{aligned}
\left.\sqrt{\left(u_{S}-u_{A_{l+1}}\right)^{2}+\left(v_{S}-v_{A_{l+1}}\right)^{2}}+\sqrt{\left(u_{S}-u_{B_{m}}\right.}\right)^{2}+\left(v_{S}-v_{B_{m}}\right)^{2} & +\sqrt{\left(u_{S}-u_{C_{n}}\right)^{2}+\left(v_{S}-v_{C_{n}}\right)^{2}} \\
& \geq\left|v_{S}-v_{A_{l+1}}\right|+\left|v_{S}-v_{B_{m}}\right|+\left|v_{S}-v_{C_{l+1}}\right| \\
& \geq\left|v_{S}-v_{A_{l}}\right|+\left|v_{S}-v_{B_{l}}\right|+\left|v_{S}-v_{C_{l}}\right| \\
& \geq \max \left\{\left|v_{A_{l}}-v_{C_{l}}\right|,\left|v_{A_{l}}-v_{B_{l}}\right|,\left|v_{B_{l}}-v_{C_{l}}\right|\right\} \\
& =\max \left\{A_{l} C_{l}, A_{l} B_{l}, B_{l} C_{l}\right\} .
\end{aligned}
$$

Let T^{\prime} be the minimal path connecting A_{l}, B_{l}, and C_{l}. Note that, since A_{l}, B_{l} and C_{l} are collinear, T^{\prime} is one of $\overline{A_{l} C_{l}}, \overline{A_{l} B_{l}}$, and $\overline{B_{l} C_{l}}$. Then the length of T^{\prime} is $\max \left\{A_{l} C_{l}, A_{l} B_{l}, B_{l} C_{l}\right\}$ which is less than or equal to the length of T. Also note that equality can only hold when $u_{S}=u_{A_{l}}=u_{B_{l}}=u_{C_{l}}$, implying $T=T^{\prime}$ which is a contradiction. Therefore this case is not possible.

Similar arguments apply when $t=u_{B_{m}}$ and $t=u_{C_{n}}$.

6. The cutting algorithm

Justification. Let a, b, and c be points on the cylinder \mathscr{C} and let T be a lift of $\tau \in \operatorname{SMT}(a, b, c)$ contained in $\Sigma_{B_{-1} C_{0}}$. This is possible from the cutting theorem since we know that there is a lift of τ contained in one of $\Sigma_{B_{-1} A_{0}}, \Sigma_{C_{-1} B_{0}}$, and $\Sigma_{A_{0} C_{0}}$. Notice that if we cut along the vertical line containing a and lay it out in a plane we get copies of $\Sigma_{B_{-1} A_{0}}$ and $\Sigma_{A_{0} C_{0}}$, contained in the cut surface. If we cut along the vertical line containing b and lay it out in a plane we get copies of $\Sigma_{B_{-1} A_{0}}$ and $\Sigma_{C_{-1} B_{0}}$, contained in the cut surface. If we cut along the vertical line containing c and lay it out in a plane we get copies of $\Sigma_{A_{0} C_{0}}$ and $\Sigma_{C_{-1} B_{0}}$, contained in the cut surface. With all three cuts together we get copies of each of $\Sigma_{B_{-1} A_{0}}$, $\Sigma_{C_{-1} B_{0}}$, and $\Sigma_{A_{0} C_{0}}$ twice. One way to determine the $\operatorname{SMT}(a, b, c)$ is comparing the minimal path networks in each strip. However the following algorithm demonstrates how to do this more efficiently with just two cuts.

The cutting algorithm. Step 1. Cut along the vertical line containing a of our cylinder. Then there are two possible minimal path networks, one in $\Sigma_{A_{0} C_{0}}$ and one in $\Sigma_{B_{-1} A_{0}}$. Let T_{1} be $\operatorname{SMT}\left(A_{0}, B_{0}, C_{0}\right)$, and T_{2} be $\operatorname{SMT}\left(B_{-1}, C_{-1}, A_{0}\right)$. Since T_{1} and T_{2} are both in the plane, perform the algorithm presented in Section 2 to compare the two minimal path networks and find which one is shorter.

Step 2. If T_{1} is at least as short as T_{2}, then cut vertically up the cylinder at the point c and unwrap it as before, laying it out on the plane contained in $\Sigma_{C_{-1} C_{0}}$. Then there are two possible minimal path networks, one in $\Sigma_{C_{-1} B_{0}}$ and the other in $\Sigma_{A_{0} C_{0}}$. Let T_{3} be $\operatorname{SMT}\left(C_{-1}, A_{0}, B_{0}\right)$. Note that T_{1} is contained in $\Sigma_{A_{0} C_{0}}$. Since T_{3} is in the plane, use the algorithm for finding minimal path networks in the plane
presented in Section 2 and compare T_{3} to T_{1}. Let i be any index where T_{i} is at least as short as T_{j} for all $j \neq i$. Then $p\left(T_{i}\right) \in \operatorname{SMT}(a, b, c)$.

Otherwise, cut vertically up the cylinder at the point b and unwrap it, laying it out on the plane contained in $\Sigma_{B_{-1} B_{0}}$. Then there are two possible minimal path networks, one in $\Sigma_{B_{-1} A_{0}}$ and the other in $\Sigma_{C_{-1} B_{0}}$. Let T_{3} be $\operatorname{SMT}\left(C_{-1}, A_{0}, B_{0}\right)$ as in the first case. Note that T_{2} is contained in $\Sigma_{B_{-1} A_{0}}$. Since T_{3} is in the plane use the algorithm for finding minimal path networks in the plane presented in Section 2 and compare T_{3} to T_{2}. Let i be any index where T_{i} is at least as short as T_{j} where $j \neq i$. Then $p\left(T_{i}\right) \in \operatorname{SMT}(a, b, c)$.

That's all there is to it.

7. Conclusion

Further problems that can be investigated include:
(1) The n-point Steiner problem on the cylinder. Jarník and Kössler [1934] have developed an algorithm for solving any n-point Steiner problem in the plane. How could the results in this paper be generalized to solve any n-point problem on the cylinder?
(2) The 3-point Steiner problem on the flat torus in 4 -space. The cylinder is a covering space for the flat torus in 4 -space. How can the results produced in this paper be applied to solve the 3-point Steiner problem on the flat torus in 4-space?
(3) The n-point Steiner problem on the flat torus in 4 -space. Could results of (1) and (2) be combined to solve any n-point Steiner problem on the flat torus in 4-space?
We hope that the results found in this paper can serve as a basis in many future findings.

References

[Brazil et al. 1998] M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald, "Shortest networks on spheres", pp. 453-461 in Network design: Connectivity and facilities location (Princeton, NJ, 1997), edited by P. M. Pardalos and D. Du, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 40, Amer. Math. Soc., Providence, RI, 1998. MR 98k:05046 Zbl 0915.05043
[Brune and Sipe 2009] T. Brune and L. Sipe, "Shortest path between two points on the regular tetrahedron", preprint, 2009, http://tinyurl.com/BruneSipe2009.
[Caffarelli et al. 2012] E. A. Caffarelli, D. M. Halverson, and R. J. Jensen, "The Steiner problem on surfaces of revolution", Graphs and Combinatorics (2012). To appear.
[Cieslik 1998] D. Cieslik, Steiner minimal trees, Nonconvex Optimization and its Applications 23, Kluwer Academic Publishers, Dordrecht, 1998. MR 99i:05062 Zbl 0997.05500
[Cockayne 1972] E. J. Cockayne, "On Fermat's problem on the surface of a sphere", Math. Mag. 45 (1972), 216-219. MR 47 \#4145 Zbl 0257.52013
[Courant and Robbins 1979] R. Courant and H. Robbins, What is mathematics?: An elementary approach to ideas and methods, Oxford University Press, New York, 1979. MR 80i:00001 Zbl 0442.00001
[Dolan et al. 1991] J. Dolan, R. Weiss, and J. M. Smith, "Minimal length tree networks on the unit sphere", Ann. Oper. Res. 33:1-4 (1991), 503-535. MR 92k:68098 Zbl 0741.90081
[Halverson and March 2005] D. Halverson and D. March, "Steiner tree constructions in hyperbolic space", preprint, 2005, http://tinyurl.com/HalversonMarch2005.
[Halverson and Penrod 2007] D. Halverson and K. Penrod, "Three-point Steiner problem on the flat torus", preprint, 2007, http://tinyurl.com/HalversonPenrod2007.
[Helmandollar and Penrod 2007] H. Helmandollar and K. Penrod, "Length minimizing paths in the hyperbolic plane: Proof via paired subcalibrations", Illinois J. Math. 51:3 (2007), 723-729. MR 2009m:51029 Zbl 1146.51014
[Hwang et al. 1992] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner tree problem, Annals of Discrete Mathematics 53, North-Holland Publishing Co., Amsterdam, 1992. MR 94a:05051 Zbl 0774.05001
[Ivanov and Tuzhilin 1994] A. O. Ivanov and A. A. Tuzhilin, Minimal networks: The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994. MR 95h:05050 Zbl 0842.90116
[Jarník and Kössler 1934] V. Jarník and M. Kössler, "O minimálních grafech, obsahujících n daných bodů", Časopis pro pěstování matematiky a fysiky 63:8 (1934), 223-235. Zbl 0009.13106
[Kuhn 1974] H. W. Kuhn, ""'Steiner's" problem revisited", pp. 52-70 in Studies in optimization, edited by G. B. Dantzig and B. C. Eaves, Studies in Math. 10, Math. Assoc. Amer., Washington, D.C., 1974. MR 57 \#18835 Zbl 0347.90054
[Lee et al. 2011] A. Lee, J. Lytle, D. Halverson, and D. Sampson, "The Steiner problem on narrow and wide cones", preprint, 2011, http://tinyurl.com/aq4qdfd.
[May and Mitchell 2007] K. L. May and M. A. Mitchell, "The three point Steiner problem on the flat torus: The minimal lune case", preprint, 2007, http://tinyurl.com/MayMitchell2007.
[Melzak 1961] Z. A. Melzak, "On the problem of Steiner", Canad. Math. Bull. 4 (1961), 143-148. MR 23 \#A2767 Zbl 0101.13201
[Moon et al. 2011] K. Moon, G. Shero, and D. Halverson, "The Steiner problem on the regular tetrahedron", Involve 4:4 (2011), 365-404. MR 2905235 Zbl 1245.51005
[Roussos 2012] I. M. Roussos, "On the Steiner minimizing point and the corresponding algebraic system", College Math. J. 43:4 (2012), 305-308. MR 2974509
[Weng 2001] J. F. Weng, "Steiner trees on curved surfaces", Graphs Combin. 17:2 (2001), 353-363. MR 2003c:05058 Zbl 0982.05036

Received: 2012-08-03 Revised: 2012-09-12 Accepted: 2012-09-14
halverson@math.byu.edu
aelogan13@gmail.com Department of Mathematics, Brigham Young University, Provo, UT 84602, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@ vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@ colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@ math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@ wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2013 Mathematical Sciences Publishers

involve

The influence of education in reducing the HIV epidemic 127Renee Margevicius and Hem Raj Joshi
On the zeros of $\zeta(s)-c$ 137
Adam Boseman and Sebastian Pauli
Dynamic impact of a particle 147
Jeongho Ahn and Jared R. Wolf
Magic polygrams 169
Amanda Bienz, Karen A. Yokley and Crista Arangala
Trading cookies in a gambler's ruin scenario 191
Kuejai Jungjaturapit, Timothy Pluta, Reza Rastegar, Alexander Roitershtein, Matthew Temba, Chad N. Vidden and Brian Wu
Decomposing induced characters of the centralizer of an n-cycle in the symmetric group 221
on $2 n$ elementsJoseph Ricci
On the geometric deformations of functions in $L^{2}[D]$ 233
Luis Contreras, Derek DeSantis and Kathryn Leonard
Spectral characterization for von Neumann's iterative algorithm in \mathbb{R}^{n} 243Rudy Joly, Marco López, Douglas Mupasiri and Michael Newsome
The 3-point Steiner problem on a cylinder 251
Denise M. Halverson and Andrew E. Logan

[^0]: MSC2010: primary 05C05; secondary 51M15.
 Keywords: Steiner problem, length minimization, cylinder.

