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The 3-point Steiner problem in the Euclidean plane is to find the least length path
network connecting three points. In this paper we will demonstrate an algorithm
for solving the 3-point Steiner problem on the cylinder.

1. Introduction

Say we have three points on a cylinder. What would be the shortest possible path
network connecting our three points? Our goal is to develop an algorithm to find
the minimal path network connecting three points on a cylinder. Finding the least
length path network connecting a given set of fixed points in a surface is called
the Steiner problem. We will first show that the Steiner problem on the cylinder
is related to the Steiner problem on the plane. We then will work with a covering
map from the plane to the cylinder so that the correspondence between the Steiner
problem on the plane and on the cylinder is clarified. We will follow this with a
few results culminating in the cutting theorem. The cutting theorem, Theorem 5.3,
guarantees that for any configuration of three points on a cylinder there exists a
straight line in the cylinder through which we can make a “cut,” then flatten the cut
surface out in the plane, and finally construct the minimal path network connecting
the three points within the flattened surface. The cutting theorem is an important
result that leads us to the cutting algorithm. The cutting algorithm determines the
minimal path network connecting the three points on the cylinder. The algorithm
requires two cuts in order to compare the principal minimal path network candidates
obtained when flattening the cut surface of the cylinder out in the plane.

Only within the last 40 years has the Steiner problem really begun to be studied
on nonplanar surfaces. Local properties of minimal path networks on smooth
surfaces were investigated in [Weng 2001]. Cockayne [1972] and Brazil et al.
[1998] provided analytic methods to solve the 3-point Steiner problem in the sphere.
Analytic methods for finding the solution to Steiner problems on the hyperbolic
plane and surfaces of revolution were given in [Halverson and March 2005] and
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[Caffarelli et al. 2012], respectively. Geometric methods for solving the two- and
3-point Steiner problems on the regular tetrahedron were provided in [Brune and
Sipe 2009; Moon et al. 2011]. A cutting algorithm to find the solution to 3-point
Steiner problems on the cone, similar to the one in this paper, is given in [Lee et al.
2011]. Results providing for reductions in solving the 3-point Steiner problem on
the torus are found in [Halverson and Penrod 2007; Ivanov and Tuzhilin 1994;
May and Mitchell 2007]. Furthermore, Ivanov and Tuzhilin [1994] classify all the
closed local minimal networks on closed surfaces of constant nonnegative curvature
(spheres, projective planes, flat tori, and Klein bottles) and present similar results
for the regular tetrahedron. Helmandollar and Penrod [2007] used a generalization
of the method of paired calibrations to solve Steiner problems in the hyperbolic
plane for four fixed points that are the vertices of a square. Hwang et al. [1992]
offer a detailed discussion on various strategies, extensions, and modifications of
the Steiner problem.

The importance of this paper is that it provides an algorithm that does not just
give a reduction to the list of possible solutions or refer to a set of analytic equations
which must be solved, but finds an actual geometric solution to any 3-point Steiner
problem on the cylinder.

2. The Steiner problem on the plane

In this section we will give a brief background of the Steiner problem in the plane.
For a more extensive study on the Steiner problem in the Euclidean plane see
[Hwang et al. 1992; Ivanov and Tuzhilin 1994]. First we will begin with a few
definitions and a basic result concerning the Steiner problem. Then we will give a
brief history of the development of solutions to this problem. Finally, we will finish
with an algorithm for finding a minimal path network connecting three points in
the plane.

Definition 2.1. Let A, B, and C be points in R2. A Steiner minimal tree, denoted
SMT(A, B,C), is the set of minimal length path networks contained in R2 that
connect A, B, and C .

It is a classical result that, for three points A, B, and C in the plane, SMT(A, B,C)
contains precisely one element (see [Hwang et al. 1992]). It is a common practice
to denote this unique path network itself as SMT(A, B,C). We will also apply
this practice in our paper when considering the 3-point Steiner problem on the
plane. It is also a classical result that, if 4ABC has no interior angle with measure
≥ 120◦, then SMT(A, B,C)= AS ∪ BS ∪C S for some point S, called the Steiner
point (see [Courant and Robbins 1979]). In this case we say that SMT(A, B,C) is
full. If 4ABC has an interior angle with measure ≥ 120◦, say m 6 ABC ≥ 120◦,
then SMT(A, B,C)= AB∪ BC . In this case we say SMT(A, B,C) is degenerate.
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Figure 1. Demonstrating that τ0 is shorter than τ in the proof of Propositon 2.3.

Note that in this case SMT(A, B,C)= AB ∪ B B ∪ BC , so in some sense B takes
on a similar role as the Steiner point in the full case.

Definition 2.2. Let A, B, and C be points in R2. We call the point S a generalized
Steiner point if AS ∪ BS ∪C S ∈ SMT(A, B,C).

Another result of the Steiner problem in the plane is that the minimal path
network connecting three points in a plane is contained in the convex hull of the
triangle whose vertices lie on those three points. Since we use this result in proving
future theorems in this paper, we will demonstrate a proof here in this section.

Propositon 2.3. If A, B, and C are points in the plane, then SMT(A, B,C) is
contained in the convex hull of 4ABC.

Proof. Let τ ∈ SMT(A, B,C) and let S ∈ R2 be the generalized Steiner point of τ .
Suppose τ is not contained in the convex hull of 4ABC . Then S lies outside

of the convex hull of 4ABC . Hence S is opposite one of the points A, B, or C
of the lines

←−→

BC ,
←−→

AC , or
←−→

AB, respectively. Suppose without loss of generality S is
on the side of the line

←−→

BC opposite point A (see Figure 1). Then there is a line
perpendicular to

←−→

BC that passes through S. Let S0 be the point of intersection of
the two lines. Let τ0 = AS0 ∪ BS0 ∪C S0. Note that SS0 > 0 because S is not on
←−→

BC . Since BS=
√
(BS0)2+ (SS0)2 and C S=

√
(C S0)2+ (SS0)2, then BS0< BS

and C S0 < C S. Let l be the line parallel to BC passing through A and let A0 be
the point of intersection of l and

←−→

SS0. Since A0S0 < A0S,

AS =
√
(AA0)2+ (A0S)2 >

√
(AA0)2+ (A0S0)2 = AS0.

Thus τ0 is shorter than τ , which yields a contradiction.
Therefore τ is contained in the convex hull of 4ABC . �

Other interesting results of the Steiner problem on the plane are found in [Cieslik
1998; Hwang et al. 1992; Ivanov and Tuzhilin 1994; Jarník and Kössler 1934; Lee
et al. 2011; Roussos 2012].
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Figure 2. Torricelli’s solution.

Brief history. The history of the Steiner problem is briefly described in [Cieslik
1998; Courant and Robbins 1979; Kuhn 1974; Roussos 2012]. We give a summary
here.

Fermat posed the following problem in the early 17th century: “Given three
points in the plane, find a fourth point such that the sum of its distances to the three
given points is minimal.” Around 1640 Torricelli presented a geometric solution to
Fermat’s problem. He showed in the full case that the three circles circumscribing
the equilateral triangles constructed on the sides of and outside the triangle intersect
at the desired point which is often referred to as the Fermat–Torricelli point [Cieslik
1998] (see Figure 2). SMT(A, B,C) is the configuration of the bold lines in Figure 2.
In 1836 Gauss considered the Fermat problem for n > 3 points, sometimes referred
to as Gauss’s problem.

Steiner gave a geometric construction of the Fermat–Torricelli point in the early
19th century and used it in the construction of distance-minimizing trees and graphs
[Roussos 2012]. Courant and Robbins [1979] popularized the minimizing of path
networks for n points and (mis)labeled it the Steiner problem; see [Cieslik 1998]
for discussion.

Note that Torricelli’s solution only holds when all angles in 4ABC are less than
or equal to 120◦. If we were to perform Torricelli’s algorithm of the solution on
a triangle with an interior angle greater than 120 degrees we would get a point
outside of the convex hull of that triangle which contradicts Propositon 2.3; hence
the distinction between full and degenerate minimal path networks.

Solution to the 3-point Steiner problem in the plane. We will now present a useful
algorithm [Melzak 1961] for finding SMT(A, B,C) and its length.

First draw the triangle connecting the three points. If one of the angles of4ABC
has measure ≥ 120◦, remove the opposite side. The union of the remaining two
sides is SMT(A, B,C) and its length is the sum of the lengths of the two sides. In
this case SMT(A, B,C) is degenerate.

Otherwise choose one of the sides of the triangle (for example in Figure 3 we
chose side BC) and draw an equilateral triangle, 4BC E , where E is on the side of
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Figure 3. Constructing a full minimal length path network in the plane.

the line BC opposite point A. Draw a circle circumscribing 4BC E and draw a
line from point E to point A. The intersection of the line and the circle will give us
the point S, the Steiner point. Then E A will be the length of SMT(A, B,C), and
SMT(A, B,C)= AS ∪ BS ∪C S. In this case SMT(A, B,C) is full.

3. The cylinder

We will now introduce the cylinder and the covering map we will be using in this
paper. (Refer to Figure 4.)

Let C⊆ R3 be the cylinder defined by C : x2
+ y2
= 1. Then R2 is a covering

for C, where p : R2
→ C is the covering map such that p(u, v)= (cos u, sin u, v).

Let x denote an arbitrary point of C. Let X i be the point of p−1(x) contained in
[−π + 2iπ, π + 2iπ). We denote by (u X , vX ) the coordinates of an arbitrary point
X in R2.

Definition 3.1. For points A, B ∈ R2 where A = (u A, vA) and B = (u B, vB), the
strip 6AB is the set 6AB = {(u, v) ∈ R2

| u A ≤ u ≤ u B}.

In this paper we will order without loss of generality the three fixed points a, b,
and c in such a way that uA0

≤ uB0
≤ uC0

.
For a 3-point Steiner problem on a cylinder with fixed points a, b, and c, it will

be convenient to distinguish the three regions partitioned by the vertical lines for

2π

A−1

B−1

A0

B0

A1

p−1
a

b

←−−−−→σab

←−−−→
6a−1b−1

←−−−→
6a0b0

Figure 4. The covering map p.
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each of the fixed points. In particular, let σab = p(6A0 B0), σbc = p(6B0C0), and
σca = p(6C0 A0).

Definition 3.2. Let Z be a subset of C. A map f :Z→R2 is said to be a lift of the
inclusion map Z ↪→ C provided, for all z ∈ Z, z = p ◦ f (z). We also say the set
f (Z) is a lift of Z.

4. Regarding the 3-point Steiner problem on a smooth surface

The Steiner problem on any smooth surface is similar to, but more complicated than,
the Steiner problem in the plane [Weng 2001]. In this section we provide definitions
and notations for a minimal length path network and a generalized Steiner point on
a smooth surface. On a cylinder, and in other smooth surfaces, the minimal length
path network need not be unique. Hence we have the following definitions.

Definition 4.1. Let a, b, and c be points in a smooth surface X. Then SMT(a, b, c)
is the set of minimal path networks contained in X that connect a, b, and c.

Definition 4.2. Let a, b, and c be points in a smooth surface X. If τ = as∪bs∪cs ∈
SMT(a, b, c), then we say that s is a generalized Steiner point for τ .

There have been many studies of the Steiner problem on general curved surfaces.
We cannot address all results and studies in this paper, but refer the interested reader
to [Brazil et al. 1998; Cockayne 1972; Dolan et al. 1991; Ivanov and Tuzhilin 1994;
Weng 2001] for more details.

5. The cutting theorem

Our purpose in this paper is to present an algorithm for finding a minimal path
network on a cylinder. We first need to prove the cutting theorem that we will use in
the cutting algorithm; this result, in short, informs us that any minimal path network
on a cylinder will be contained in the union of two of the strips σab, σbc, and σca . In
preparation for the proof of the cutting theorem we need the following proposition.

Propositon 5.1. Let T be a minimal path network for three fixed points in the plane
such that p(T ) ∈ SMT(a, b, c), S be the generalized Steiner point of T , and X ∈ T
be a fixed point of T such that p(X) ∈ {a, b, c}. Then |u X − uS| ≤ π .

Proof. Suppose |u X − uS| > π . By properties of the covering map p there is a
point X i ∈ p−1(p(X)) so that |u X i − uS| ≤ π . Then T ′ obtained by replacing X S
in T with X i S is a shorter path network where p(T ′) connects a, b, c. Hence
p(T ) /∈ SMT(a, b, c). This is a contradiction, so |u X − uS| ≤ π . �

Corollary 5.2. Let T be a minimal path network for three fixed points in the plane
such that p(T ) ∈ SMT(a, b, c) and S be the generalized Steiner point of T . Then
T ⊆ 0 = {(u, v) ∈ R2

: |u− uS| ≤ π}.
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Proof. Let T = Al S ∪ Bm S ∪Cn S. Since |uAl
− uS| ≤ π , then Al S ⊂ 0. Likewise

Bm S, Cn S ⊂ 0. Thus T ⊆ 0. �

The following theorem demonstrates that the lift of a minimal path network
connecting three points a, b, and c on a cylinder is contained in one of the following:

6Bk−1 Ak =6Bk−1Ck−1 ∪6Ck−1 Ak ,

6Ck−1 Bk =6Ck−1 Ak ∪6Ak Bk ,

6AkCk =6Ak Bk ∪6BkCk .

A proof of a similar result regarding the flat torus can be found in [Halverson and
Penrod 2007].

Theorem 5.3 (cutting theorem). Let T be a minimal path network for three fixed
points in the plane such that p(T ) ∈ SMT(a, b, c). Then T is contained in one of
6Bk−1 Ak , 6Ck−1 Bk , and 6AkCk for some k ∈ Z+.

Proof. Let T = Al S ∪ Bm S ∪ Cn S. Let t = min{uAl
, uBm

, uCn
}. Without loss of

generality let t = uAl
. By Corollary 5.2, |uAl

− uS| ≤ π and |uBm
− uS| ≤ π . Using

uAl
≤ uBm

and the triangle inequality, we have

uBm
− uAl

= |uBm
− uAl
| ≤ |uBm

− uS| + |uAl
− uS| ≤ 2π.

Note that m ≥ l. Let m = l+ j for some j ∈ Z+. Then uBm
= uBl

+2π j ≤ 2π+uAl
.

Thus

0≤ uBl
− uAl

≤ 2π − 2π j.

This is only possible if j is either 0 or 1. Furthermore, when j = 1 equality must
occur. In particular, if j = 1, then uBl

= uAl
and hence uBm

= uAl+1
. So either

m = l or m = l + 1, and in the case m = l + 1 necessarily uBm
= uAl+1

. Similar
considerations of Cn yield either n = l or n = l + 1, and in the case n = l + 1
necessarily uCn

= uAl+1
.

Case 1. Suppose m = l and n = l. Then T = SMT(Al, Bl,Cl). By Propositon 2.3,
T is in the convex hull of 4Al BlCl . Thus T ⊂ 6Al Cl . Letting k = l gives the
desired result.

Case 2. Suppose m = l + 1 and n = l. Then uBm
= uAl+1

and hence uBm−1
= uAl

.
Thus T is in the convex hull of 4Al Bl+1Cl . It follows that T ⊂6Al Bl+1 =6Bl Al+1 .
Letting k = l + 1 gives the desired result.

Case 3. Suppose n= l+1. Then uCn
= uAl+1

. Thus uAl
= uCl

. Since uAl
≤ uBl

≤ uCl
,

then uAl
= uBl

= uCl
. Since vX i = vX j for any i , j ∈ Z, the length of T is
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(uS−uAl+1

)2+(vS−vAl+1
)2+

√
(uS−uBm

)2+(vS−vBm
)2+

√
(uS−uCn

)2+(vS−vCn
)2

≥ |vS − vAl+1
| + |vS − vBm

| + |vS − vCl+1
|

≥ |vS − vAl
| + |vS − vBl

| + |vS − vCl
|

≥max{|vAl
− vCl
|, |vAl

− vBl
|, |vBl

− vCl
|}

=max{AlCl, Al Bl, BlCl}.

Let T ′ be the minimal path connecting Al , Bl , and Cl . Note that, since Al , Bl

and Cl are collinear, T ′ is one of AlCl , Al Bl , and BlCl . Then the length of T ′ is
max{AlCl, Al Bl, BlCl} which is less than or equal to the length of T . Also note
that equality can only hold when uS = uAl

= uBl
= uCl

, implying T = T ′ which is a
contradiction. Therefore this case is not possible.

Similar arguments apply when t = uBm
and t = uCn

. �

6. The cutting algorithm

Justification. Let a, b, and c be points on the cylinder C and let T be a lift of
τ ∈ SMT(a, b, c) contained in 6B−1C0 . This is possible from the cutting theorem
since we know that there is a lift of τ contained in one of 6B−1 A0 , 6C−1 B0 , and
6A0C0 . Notice that if we cut along the vertical line containing a and lay it out in
a plane we get copies of 6B−1 A0 and 6A0C0 , contained in the cut surface. If we
cut along the vertical line containing b and lay it out in a plane we get copies of
6B−1 A0 and 6C−1 B0 , contained in the cut surface. If we cut along the vertical line
containing c and lay it out in a plane we get copies of 6A0C0 and 6C−1 B0 , contained
in the cut surface. With all three cuts together we get copies of each of 6B−1 A0 ,
6C−1 B0 , and 6A0C0 twice. One way to determine the SMT(a, b, c) is comparing the
minimal path networks in each strip. However the following algorithm demonstrates
how to do this more efficiently with just two cuts.

The cutting algorithm. Step 1. Cut along the vertical line containing a of our
cylinder. Then there are two possible minimal path networks, one in 6A0C0 and one
in 6B−1 A0 . Let T1 be SMT(A0, B0,C0), and T2 be SMT(B−1,C−1, A0). Since T1

and T2 are both in the plane, perform the algorithm presented in Section 2 to
compare the two minimal path networks and find which one is shorter.

Step 2. If T1 is at least as short as T2, then cut vertically up the cylinder at the
point c and unwrap it as before, laying it out on the plane contained in 6C−1C0 .
Then there are two possible minimal path networks, one in 6C−1 B0 and the other in
6A0C0 . Let T3 be SMT(C−1, A0, B0). Note that T1 is contained in 6A0C0 . Since T3

is in the plane, use the algorithm for finding minimal path networks in the plane
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presented in Section 2 and compare T3 to T1. Let i be any index where Ti is at least
as short as T j for all j 6= i . Then p(Ti ) ∈ SMT(a, b, c).

Otherwise, cut vertically up the cylinder at the point b and unwrap it, laying it
out on the plane contained in 6B−1 B0 . Then there are two possible minimal path
networks, one in 6B−1 A0 and the other in 6C−1 B0 . Let T3 be SMT(C−1, A0, B0) as
in the first case. Note that T2 is contained in 6B−1 A0 . Since T3 is in the plane use
the algorithm for finding minimal path networks in the plane presented in Section 2
and compare T3 to T2. Let i be any index where Ti is at least as short as T j where
j 6= i . Then p(Ti ) ∈ SMT(a, b, c).

That’s all there is to it.

7. Conclusion

Further problems that can be investigated include:

(1) The n-point Steiner problem on the cylinder. Jarník and Kössler [1934] have
developed an algorithm for solving any n-point Steiner problem in the plane.
How could the results in this paper be generalized to solve any n-point problem
on the cylinder?

(2) The 3-point Steiner problem on the flat torus in 4-space. The cylinder is a
covering space for the flat torus in 4-space. How can the results produced in
this paper be applied to solve the 3-point Steiner problem on the flat torus in
4-space?

(3) The n-point Steiner problem on the flat torus in 4-space. Could results of (1)
and (2) be combined to solve any n-point Steiner problem on the flat torus in
4-space?

We hope that the results found in this paper can serve as a basis in many future
findings.
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