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Potentially eventually exponentially
positive sign patterns

Marie Archer, Minerva Catral, Craig Erickson, Rana Haber,
Leslie Hogben, Xavier Martinez-Rivera and Antonio Ochoa

(Communicated by Chi-Kwong Li)

We introduce the study of potentially eventually exponentially positive (PEEP)
sign patterns and establish several results using the connections between these
sign patterns and the potentially eventually positive (PEP) sign patterns. It is
shown that the problem of characterizing PEEP sign patterns is not equivalent to
that of characterizing PEP sign patterns. A characterization of all 2× 2 and 3× 3
PEEP sign patterns is given.

1. Introduction

A matrix A ∈ Rn×n is eventually positive if there exists a k0 ∈ Z+ such that for
all k ≥ k0, Ak > 0 (where the inequality is interpreted entrywise). A matrix A is
eventually exponentially positive if there exists some t0 ≥ 0 such that for all t ≥ t0,

et A
=

∞∑
k=0

tk Ak

k!
> 0.

Eventually exponentially positive matrices have applications to dynamical systems
in situations where it is of interest to determine whether an initial trajectory reaches
positivity at a certain time and remains positive thereafter [Noutsos and Tsatsomeros
2008]. There is a characterization of eventual exponential positivity in terms of
eventual positivity:

Theorem 1.1 [Noutsos and Tsatsomeros 2008, Theorem 3.3]. The matrix A∈Rn×n

is eventually exponentially positive if and only if there exists a ≥ 0 such that A+aI
is eventually positive (where I is the n× n identity matrix).

MSC2010: 15A18, 15B35, 15B48.
Keywords: potentially eventually exponentially positive, potentially eventually positive, PEEP, PEP,

sign pattern, matrix.
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A sign pattern is a matrix having entries in {+,−, 0}. For a real matrix A,
sgn(A) is the sign pattern having entries that correspond to the signs of the entries
in A. If A is an n×n sign pattern, the qualitative class of A, denoted Q(A), is the
set of all A ∈ Rn×n such that sgn(A)=A; such a matrix A is called a realization
of A. A sign pattern A is potentially eventually positive (PEP) if there exists some
realization A ∈ Q(A) that is eventually positive. PEP sign patterns were studied
in [Berman et al. 2010], and we adapt several techniques from that paper to study
potentially eventually exponentially positive sign patterns.

Definition 1.2. A sign pattern A is potentially eventually exponentially positive
(PEEP) if there exists some realization A ∈ Q(A) that is eventually exponentially
positive.

Since an eventually positive matrix is eventually exponentially positive, a PEP
sign pattern is PEEP. Theorem 1.1 leads naturally to consideration of a sign pattern
with positive diagonal entries.

Definition 1.3. Given an n×n sign pattern A = [αi j ], we denote by AD(+) =

[α̂i j ] the n×n sign pattern such that α̂i j = αi j for i 6= j and α̂i i = + for i, j ∈
{1, . . . , n}. AD(0) and AD(−) are defined analogously, with zero and negative
diagonal, respectively.

In [Berman et al. 2010] it is noted that if A is PEP then AD(+) is also PEP. This
observation together with Theorem 1.1 leads to the following observation.

Observation 1.4. If A is a PEEP sign pattern, then AD(+) is a PEP sign pattern
(and hence AD(+) is also PEEP).

Given a PEEP sign pattern, we can generate a PEP sign pattern by changing
every diagonal element to + . However, taking a PEP sign pattern and changing +
diagonal entries to 0 or − does not always yield a PEEP sign pattern. For example,

BD(+) =

+ − 0
+ + −

− + +

 (1)

is PEP [Berman et al. 2010], but in Example 2.3 below it is shown that the sign
pattern

BD(0) =

0 − 0
+ 0 −
− + 0

 (2)

is not PEEP. Thus the problem of determining which sign patterns are PEEP is not
equivalent to the problem of determining which sign patterns are PEP.

Section 2 presents general results on PEEP sign patterns, including those obtained
by perturbation analysis and connections with known results on PEP sign patterns.
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At the end of Section 2 the open question of the minimum number of positive
entries in an n×n PEEP sign pattern is discussed. In Section 3 small order PEEP
sign patterns are characterized. The remainder of this section contains information
on eventually exponentially positive matrices and terminology on digraphs and sign
patterns.

The spectrum of A, denoted σ(A), is the multiset of the eigenvalues of A. The
spectral radius of A is defined as ρ(A)=max{|λ| : λ ∈ σ(A)} and an eigenvalue
λ ∈ σ(A) is a dominant eigenvalue if |λ| = ρ(A). A nonzero vector w is called
a left eigenvector of A if wTA = λwT for some λ ∈ σ(A) (or equivalently, w is a
(right) eigenvector of AT ). The matrix A is eventually positive if and only if A
has a unique dominant eigenvalue that is positive and simple, and A has positive
right and left eigenvectors for ρ(A) [Handelman 1981] (this is called the strong
Perron–Frobenius test for eventual positivity).

Definition 1.5. A real eigenvalue γ ∈ σ(A) is called the rightmost eigenvalue if it
is simple and for all λ ∈ σ(A), λ 6= γ implies Re(λ) < γ , where Re(α) denotes the
real part of a complex number α.

Not every matrix has a rightmost eigenvalue. Definition 1.5 was motivated by
the following test for eventual exponential positivity, which is implicit in the proof
of Theorem 3.3 in [Noutsos and Tsatsomeros 2008] (and also follows immediately
from that theorem, which is Theorem 1.1 above).

Proposition 1.6. Let A ∈ Rn×n . Then A is eventually exponentially positive if and
only if A has a rightmost eigenvalue having positive left and right eigenvectors.

An eventually positive matrix must have a positive entry in each row and column.
This need not be the case for an eventually exponentially positive matrix (for
example, an eventually exponentially positive matrix that realizes BD(−) in (3) will
not have a positive entry in each row and column). However, certain conditions
on the eigenvalues require an eventually exponentially positive matrix to have a
positive entry in each row and column.

Proposition 1.7. Let A be an eventually exponentially positive matrix.

1. If A has an eigenvalue with nonnegative real part, then each row and column of
A has a positive entry.

2. If A does not have an eigenvalue with positive real part, then each row and
column of A has a negative entry.

Proof. If A has an eigenvalue with nonnegative real part, then the rightmost
eigenvalue γ of A is nonnegative. By Proposition 1.6, A has positive right and left
eigenvectors corresponding to γ . Suppose that row k of A has no positive entry.
Since A is an eventually exponentially positive matrix, A is irreducible, so row k
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has a negative entry. But then if x > 0, (Ax)k < 0 and (γ x)k ≥ 0, so x is not a
(right) eigenvector. Thus every row of A has a positive entry. The result for column
k of A is established with the left eigenvector. Similarly, if A has no eigenvalue
with positive real part, then γ ≤ 0 and every row and every column of A has a
negative entry. �

A square sign pattern A (or matrix) is reducible if there exists a permutation
matrix P such that

PAPT
=

[
A11 0
A21 A22

]
,

where A11 and A22 are nonempty square sign patterns (or matrices) and 0 is a
(possibly rectangular) block consisting entirely of zero entries. If A is not reducible,
then A is called irreducible (note any 1×1 matrix is irreducible). Since an eventually
exponentially positive matrix must be irreducible, a PEEP sign pattern must be
irreducible.

For an n×n sign pattern A= [αi j ], the digraph of A, denoted 0(A), has vertex
set {1, . . . , n} and arc set {(i, j) :αi j 6= 0}. A nonnegative sign pattern A is primitive
if A is irreducible and the greatest common divisor of the lengths of the cycles of
0(A) is one; for a nonnegative matrix the definition of primitive is analogous. It is
well known that a primitive (necessarily nonnegative) matrix is eventually positive.

Let A= [αi j ], Â= [α̂i j ] be sign patterns. If αi j 6= 0 implies αi j = α̂i j , then A

is a subpattern of Â and Â is a superpattern of A. Define the positive part of A to
be A+ = [α+i j ], where

α+i j =

{
+ if αi j =+,

0 if αi j = 0 or αi j =−.

Note A+ is a subpattern of A.

2. PEEP sign patterns

In this section we establish general properties of PEEP sign patterns. Some of these
results will be used in Section 3 to determine which sign patterns of order at most 3
are PEEP.

Remark 2.1. If AD(+) is a PEP sign pattern, then AD(−) is a PEEP sign pattern,
because if A ∈Q(AD(+)) is eventually positive, there exists t > 0 such that A− t I ∈
Q(AD(−)).
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A PEP sign pattern must have a positive entry in each row and column. This need
not be the case for an eventually exponentially positive matrix. The sign pattern

BD(−) =

− − 0
+ − −

− + −

 (3)

is PEEP because the sign pattern BD(+) in (1) is PEP. But BD(−) does not have
a + entry in row 1 nor in column 3. If A ∈ Rn×n is an eventually exponentially
positive matrix with nonnegative trace, then A has an eigenvalue with nonnegative
real part. As a consequence of Proposition 1.7, we have the following observation.

Observation 2.2. If A is a PEEP sign pattern with no − on the diagonal, then A

has a + in each row and column.

The next example shows that the problem of determining which sign patterns
are PEEP is not equivalent to the problem of determining which sign patterns are
PEP, because the fact that AD(+) is PEP does not guarantee that A is PEEP.

Example 2.3. The sign pattern

BD(0) =

0 − 0
+ 0 −
− + 0


is not PEEP by Observation 2.2, because BD(0) has no − on the diagonal and no +
in row 1. Note that (BD(0))D(+) =BD(+) from (1) is PEP.

Related sign patterns are discussed in Corollary 3.4 and Theorem 3.5 below.
Matrix perturbations are used extensively in the study of potential eventual

positivity. It is well known that for any matrix A ∈ Rn×n , the eigenvalues of A
are continuous functions of the entries of A. For a simple eigenvalue, the same
is true of the eigenvector [Golub and Van Loan 1996, p. 323]. Because a matrix
is eventually positive if and only if it passes the strong Perron–Frobenius test,
eventual positivity is inherited by matrices that are small perturbations of eventually
positive matrices. That is, if A ∈ Rn×n is eventually positive and C ∈ Rn×n is any
matrix, then for ε sufficiently small, A(ε)= A+ εC is eventually positive (see, for
example, [Ellison et al. 2010] for applications of this technique). The analogous
result for eventually exponentially positive matrices follows from Proposition 1.6
and perturbation theory.

Theorem 2.4. If A ∈ Rn×n is eventually exponentially positive and C ∈ Rn×n is
any matrix, then for ε sufficiently small, A(ε)= A+ εC is eventually exponentially
positive.
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If Â is a superpattern of a PEEP sign pattern A, and A ∈ Q(A) is eventually
exponentially positive, then a matrix Â realizing Â can be obtained by a small
perturbation of A.

Corollary 2.5. If A is a PEEP sign pattern, then every superpattern of A is PEEP.
If Â is a sign pattern that is not PEEP, then no subpattern of Â is a PEEP sign
pattern.

If a sign pattern A has a primitive positive part, it is PEP. There is an analogous
result for PEEP sign patterns.

Theorem 2.6. Let A be a sign pattern such that A+ is irreducible. Then A is PEEP.

Proof. Let B be the matrix obtained from A+ by replacing + by 1. Since B+ I ≥ 0,
has positive entries on its diagonal, and is irreducible, B+ I is primitive and thus
eventually positive. So B is eventually exponentially positive and A+ is PEEP.
Since A is a superpattern of A+ , A is PEEP. �

The converse of Theorem 2.6 is false because the sign pattern BD(+) (1) is a
PEP sign pattern with reducible positive part.

Several necessary or sufficient conditions for PEP sign patterns were established
in [Berman et al. 2010]. The sign patterns

B1 =

− − ++ − −

− + −

 , B2 =

− − −+ − −

− + −


are PEEP and demonstrate that the following statements about PEP sign patterns
do not necessarily hold for PEEP sign patterns:

1. For n ≥ 2, an n×n sign pattern that has exactly one positive entry in each row
and each column is not PEP.

2. If n ≥ 2, the minimum number of + entries in an n×n PEP sign pattern is n+1.

3. If A is PEP, then 0(A) has a cycle (of length one or more) consisting entirely
of + entries.

Certain conditions that prevent a sign pattern from being PEP also prevent a sign
pattern from being PEEP:

Theorem 2.7 [Berman et al. 2010]. Let A = [αi j ] be an n×n sign pattern with
n ≥ 2 such that for every k = 1, . . . , n,

1. αkk =+ , and

2. (a) no off-diagonal entry in row k is + , or
(b) no off-diagonal entry in column k is + .

Then A is not PEP.
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Corollary 2.8. Let A= [αi j ] be an n×n sign pattern with n≥ 2 such that for every
k = 1, . . . , n,

(a) no off-diagonal entry in row k is + , or

(b) no off-diagonal entry in column k is + .

Then A is not PEEP.

Proof. By Theorem 2.7, AD(+) is not PEP, so A is not PEEP. �

Corollary 2.9. If A is a PEEP sign pattern, then there exists k such that both row
and column k have an off-diagonal + . Hence, a PEEP sign pattern must have at
least 2 positive off-diagonal entries.

A square sign pattern A is a Z sign pattern if αi j 6= + for all i 6= j .

Corollary 2.10. If A is an n×n Z sign pattern with n ≥ 2, then A is not PEEP.

Proposition 2.11 [Berman et al. 2010]. Let

K=


[+] [−] [+] . . .

[−] [+] [−] . . .

[+] [−] [+] . . .
...

...
...

. . .


be a square checkerboard block sign pattern where the block [+] (respectively,
[−]) consists of entirely positive (respectively, entirely negative) entries, and the
diagonal blocks are square. Then −K is not PEP, and if K has a negative entry,
then K is not PEP.

Corollary 2.12. No subpattern of a checkerboard pattern K that contains a negative
entry is PEEP.

Remark 2.13. Provided the sign pattern K contains a negative entry,

−K=


[−] [+] [−] . . .

[+] [−] [+] . . .

[−] [+] [−] . . .
...

...
...

. . .


is PEEP because the positive part of (−K)D(+) is primitive.

For a PEP sign pattern A, Lemma 4.3 in [Berman et al. 2010] establishes the
existence of a standard form of a matrix C ∈ Q(A) with ρ(C)= 1 and C1= 1. We
have a related result for PEEP sign patterns.

Proposition 2.14. Let A be a PEEP sign pattern. There is an eventually exponen-
tially positive matrix C ∈ Q(A) such that the rightmost eigenvalue γ (C) lies in
{−1, 0, 1} and C1= γ (C)1.
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Proof. There exists A ∈ Q(A) that is eventually exponentially positive. Let γ (A) be
the rightmost eigenvalue of A and v = [v1, . . . , vn]

T be the corresponding positive
eigenvector. If γ (A) 6= 0, let B = (1/|γ (A)|)A; otherwise, B = A. Then B ∈Q(A),
B is eventually exponentially positive, γ (B) ∈ {−1, 0, 1}, and Bv = γ (B)v. Let
C = D−1 B D for D= diag(v1, . . . , vn). Then C ∈Q(A) is eventually exponentially
positive and γ (C) ∈ {−1, 0, 1} with C1= γ (C)1. �

We have only started the study of PEEP sign patterns and there are many open
questions. Here we highlight one particular question.

Question 2.15. What is the minimum number of positive entries in an n×n PEEP
sign pattern, or equivalently, what is the minimum number of positive entries in an
eventually exponentially positive n×n matrix?

This question is motivated by Corollary 4.5 in [Berman et al. 2010], which states
that the minimum number of positive entries in an n×n PEP sign pattern is n+ 1
(for n ≥ 2). An upper bound for the minimum number of + entries in a PEEP sign
pattern is given by the following example.

Example 2.16. Let Cn be the n×n sign pattern

Cn =


0 + 0 · · · 0
0 0 + · · · 0
...
...
...
. . .

...

0 0 0 · · · +
+ 0 0 · · · 0

 .

Since Cn is nonnegative and irreducible, it is PEEP; note that Cn has n positive
entries.

Corollary 2.17. The minimum number of positive entries in an n×n PEEP sign
pattern is at most n.

The sign pattern BD(−) in (3) is a 3×3 pattern that has only 2 positive entries,
and from Theorem 3.5 in the next section it follows that the minimum number
of positive entries in a 3×3 PEEP sign pattern is exactly 2. But we do not have
examples of PEEP sign patterns having fewer than n positive entries for n > 3.

3. Classification of small order PEEP sign patterns

In this section we classify all 2×2 and 3×3 sign patterns as to whether the pattern
is PEEP.

Two n×n sign patterns A and A′ are equivalent if A′= PT AP or A′= PT AT P
(where P is a permutation matrix). Throughout this section: ? is one of 0,+,−;
⊕ is one of 0,+; 	 is one of 0,−.
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It is clear that every 1×1 sign pattern is PEEP. The classification of 2×2 sign
patterns as to whether they are PEEP is immediate from the classification as to
whether they are PEP.

Proposition 3.1. A 2×2 sign pattern is PEEP if and only if it is of the form[
? +
+ ?

]
. (4)

Proof. Sign patterns of the form (4) have A+ irreducible and so by Theorem 2.6,
they are PEEP. For the converse, let A be a 2×2 PEEP sign pattern. Then AD(+)

is PEP. In [Berman et al. 2010] it was shown that any 2×2 PEP sign pattern has
both off-diagonal entries equal to + , so A must also have both off-diagonal entries
equal to + . �

The classification of 3×3 sign patterns as to whether they are PEEP makes use
of the following classification as to whether they are PEP.

Theorem 3.2 [Berman et al. 2010]. A 3×3 sign pattern A is PEP if and only if
A+ is primitive or A is equivalent to a sign pattern of the form

B=

+ − 	+ ? −
− + +

 . (5)

Theorem 3.3. Let

B =

 x1 −b12 −b13

b21 x2 −b23

−b31 b32 x3

 , with bi j > 0 for all i, j = 1, 2, 3,

be an eventually exponentially positive matrix (note there is no restriction on the
signs of xi , i = 1, 2, 3). Then x2 <min{x1, x3}.

Proof. Let γ be the rightmost eigenvalue of B. Observe that B− γ I is eventually
exponentially positive with rightmost eigenvalue 0. By Proposition 1.7, B−γ I must
have a positive entry in each row and column, so x1, x3 > γ . Since the rightmost
eigenvalue of B− γ I is simple, 0> tr(B− γ I )= (x1− γ )+ (x2− γ )+ (x3− γ ).
The first and third term in this sum are positive, so tr(B − γ I ) < 0 implies that
x2 < γ . �

Corollary 3.4. A sign pattern equivalent to one of the forms

M1 =

− − −+ + −

− + −

 or M2 =

− − −+ + −

− + +


is not PEEP.
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Theorem 3.5. A 3×3 sign pattern is PEEP if and only if it is equivalent to one of
the following four forms:

A1 =

 ? + ?
? ? +
+ ? ?

 , A2 =

 ? + +
+ ? 	
+ 	 ?

 ,
A3 =

 ? − 	
+ − −

− + ?

 , A4 =

+ − 	+ ⊕ −

− + +

 .
Proof. The sign patterns A1 and A2 are PEEP by Theorem 2.6. Note that A4 is of
the form B from Theorem 3.2; therefore A4 is PEP and hence is PEEP. Let

A =

 0 −10 0
22 −33 −8
−16 22 0

 .
Since the spectrum of A is {−5,−14 + 2i

√
15,−14 − 2i

√
15}, γ = −5 is the

rightmost eigenvalue of A, and γ has the right and left eigenvectors [2, 1, 2]T

and [18, 25, 40]T respectively. Thus A is eventually exponentially positive by
Proposition 1.6. Note that A ∈ Q(A3(0)) where A3(0) is the form of A3 with all
flexible entries set to zero. Therefore A3(0) is PEEP, and by Corollary 2.5 every
superpattern of A3(0) is PEEP. Hence every sign pattern of the form A3 is PEEP.

Let A be a 3×3 PEEP sign pattern. Then by Observation 1.4, AD(+) is PEP.
By Theorem 3.2 either (AD(+))

+ is primitive or AD(+) is of the form B in (5). If
(AD(+))

+ is primitive, then A is of the form A1 or A2. Now suppose that (AD(+))
+

is not primitive. Then we must consider all possible sign patterns A such that

AD(+) =

+ − 	+ + −

− + +

 .
The sign patterns M1 and M2 in Corollary 3.4 and their subpatterns rule out all of
the sign patterns that could possibly have this AD(+) except for those of the form
A3 and A4. Therefore if A is a 3×3 PEEP sign pattern, it must be of one of the
forms A1,A2,A3 or A4. �

The symbols 	 and ⊕ are used in Theorem 3.5 so that the listed patterns are
disjoint classes. For example, if the (2, 2)-entry of A4 were changed to ?, then one
sign pattern of that form would be equivalent to one sign pattern of the form of A3.
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The surgery unknotting number of Legendrian links
Bianca Boranda, Lisa Traynor and Shuning Yan

(Communicated by Kenneth S. Berenhaut)

The surgery unknotting number of a Legendrian link is defined as the minimal
number of particular oriented surgeries that are required to convert the link into a
Legendrian unknot. Lower bounds for the surgery unknotting number are given
in terms of classical invariants of the Legendrian link. The surgery unknotting
number is calculated for every Legendrian link that is topologically a twist knot
or a torus link and for every positive, Legendrian rational link. In addition,
the surgery unknotting number is calculated for every Legendrian knot in the
Legendrian knot atlas of Chongchitmate and Ng whose underlying smooth knot
has crossing number 7 or less. In all these calculations, as long as the Legendrian
link of j components is not topologically a slice knot, its surgery unknotting
number is equal to the sum of j�1 and twice the smooth 4-ball genus of the
underlying smooth link.

1. Introduction

A classical invariant for smooth knots is the unknotting number: the unknotting
number of a diagram of a knot K is the minimum number of crossing changes
required to change the diagram into a diagram of the unknot; the unknotting number
of K is the minimum of the unknotting numbers of all diagrams of K. In the
following, we will define a surgery unknotting number for Legendrian knots and
links.

Legendrian links are smooth links that satisfy an additional geometric condition
imposed by a contact structure. We will focus on Legendrian links in R3 with its
standard contact structure. The notion of Legendrian equivalence is more refined
than smooth equivalence: there is only one smooth unknot, but there are an infinite
number of Legendrian unknots. Figure 1 shows the front projections of three

MSC2010: primary 53D35, 57R17; secondary 57M25.
Keywords: Legendrian links, unknotting number, genus, Lagrangian cobordism.
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tbD�2, rD�1

tbD�1, rD0

tbD�2, rD1

Figure 1. Three different Legendrian knots that are topologically
the unknot.

different Legendrian unknots; the infinite structure representing all Legendrian
unknots is depicted in Figure 7 on page 281.

The act of changing a crossing (smoothly passing a knot through itself) is not a
natural operation in a contact manifold. Instead, given a Legendrian link, we will
attempt to arrive at a Legendrian unknot through a Legendrian “surgery” operation
in which two oppositely oriented strands in a Legendrian 0-tangle are replaced
by an oriented, Legendrian 1-tangle as illustrated in Figure 2. It is shown in
Proposition 3.5 that every Legendrian link can become a Legendrian unknot after a
finite number of surgeries. The surgery unknotting number of a Legendrian link ƒ,
�0.ƒ/, measures the minimal number of these surgeries that are required to convert
ƒ to a Legendrian unknot; see Definitions 3.1 and 3.6. In the following, our goal is
to study and calculate this Legendrian invariant �0.ƒ/.

Main results. Lower bounds on �0.ƒ/ exist in terms of the classical invariants
of ƒ. These invariants include invariants of the underlying smooth link type Lƒ

and the classical Legendrian invariants of ƒ: the Thurston–Bennequin, tb.ƒ/, and
rotation number, r.ƒ/, as defined in Section 2.

Figure 2. Oriented Legendrian surgeries: a basic, compatibly ori-
ented 0-tangle is replaced by a basic, compatibly oriented1-tangle.
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Theorem 1.1. Let ƒ be a Legendrian link. Then:

(1) tb.ƒ/Cjr.ƒ/jC 1� �0.ƒ/.

(2) If ƒ has j components, Lƒ denotes the underlying smooth link type of ƒ, and
g4.Lƒ/ denotes the smooth 4-ball genus of Lƒ,1 then

2g4.Lƒ/C .j � 1/� �0.ƒ/:

Remark 1.2. In parallel to Theorem 1.1 (1), when ƒ is a Legendrian knot with
underlying smooth knot type Kƒ, the well known slice-Bennequin inequality says
that

tb.ƒ/Cjr.ƒ/jC 1� 2g4.Kƒ/: (1-1)

There are now a number of proofs of this result, but all use deep theory. Lisca
and Matić [1998] prove this using their adjunction inequality obtained by Seiberg–
Witten theory. See also [Akbulut and Matveyev 1997; Rudolph 1995]. In contrast,
the proof of Theorem 1.1 is elementary and is given in Lemmas 3.8 and 3.9.

When ƒ is a knot, combining Theorem 1.1(2) and the slice-Bennequin inequal-
ity (1-1), we find:

Corollary 1.3. For any Legendrian knot ƒ, if Kƒ denotes the smooth knot type of
ƒ then

tb.ƒ/Cjr.ƒ/jC 1� 2g4.Kƒ/� �0.ƒ/:

Thus �0.ƒ/D 2g4.Kƒ/ when �0.ƒ/D tb.ƒ/Cjr.ƒ/jC 1.

As we will see below, this corollary sometimes allows us to calculate the smooth
4-ball genus of a knot.

Using the established lower bounds, we can calculate �0.ƒ/ when the underlying
smooth link type of ƒ falls within some important families.

Theorem 1.4. (1) If ƒ is a Legendrian knot that is topologically a nontrivial twist
knot, then �0.ƒ/D 2.

(2) If ƒ is a j -component Legendrian link that is topologically a .jp; j q/-torus
link, jpj> q > 1 and gcd.p; q/D 1, then

�0.ƒ/D .jjpj � 1/.j q� 1/:

Theorem 1.4 is proved in Section 4 as Theorems 4.1 and 4.2. The proof of
this theorem relies heavily on the classification of Legendrian twist knots given by
Etnyre, Ng and Vértesi [Etnyre et al. 2013], and the classification of Legendrian
torus knots by Etnyre and Honda [2001], which was extended to a classification of
Legendrian torus links by Dalton [2008]. When ƒ is topologically a positive torus

1That is, g4.Lƒ/ denotes the minimal genus of a smooth, compact, connected, oriented surface
†� B4 with @†DLƒ � R3 � S3 D @B4.
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link, p > 0, of maximal Thurston–Bennequin invariant, the calculation of �0.ƒ/

is obtained realizing the lower bound given in Theorem 1.1 by the Legendrian
invariants of ƒ. Thus by Corollary 1.3, which employs the deep slice-Bennequin
inequality in (1-1), we are able to deduce the Milnor conjecture about torus knots,
originally proved by Kronheimer and Mrowka:

Corollary 1.5 [Kronheimer and Mrowka 1993]. If T .p; q/ is a .p; q/-torus knot,
jpj> q > 1, then

2g4.T .p; q//D .jpj � 1/.q� 1/:

By comparing �0 of the Legendrian and g4 of the underlying smooth link type,
we can rephrase the conclusions of Theorem 1.4 as:

Corollary 1.6. If ƒ is a Legendrian link that is topologically a nonslice twist knot2

or a j -component torus link, Lƒ, then

�0.ƒ/D 2g4.Lƒ/C .j � 1/:

As an additional family of Legendrian links, we consider positive, Legendrian
rational links. These links are defined as Legendrian numerator closures of the
Legendrian rational tangles studied, for example, in [Traynor 1998] and [Schneider
2011]. These links are positive in the sense that an orientation is chosen on the
components so that all the crossings have a positive sign. Such Legendrian links
are specified by a vector .cn; : : : ; c1/ of positive integers; see Definition 4.4 and
Figure 18. Lemma 4.5 gives conditions on the ci that guarantee that the link is
positive.

Theorem 1.7. If ƒ.cn; : : : ; c2; c1/ is a positive, Legendrian rational link, then

�0.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/;

where p.n/ equals 1 when n is odd and equals 0 when n is even.

This is proved in Section 4; see Theorem 4.6.

Remark 1.8. When ƒ is a positive, Legendrian rational link, the calculation of
�0.ƒ/ is obtained realizing the lower bound given in Theorem 1.1 given by the
classical Legendrian invariants of ƒ. Thus by Corollary 1.3, when ƒ.cn; : : : ; c1/

is a positive, Legendrian rational knot, Theorem 1.7 gives a formula for twice
the smooth 4-ball genus of the underlying smooth knot. This can be used to get

2Casson and Gordon [1986] proved that the only twist knots that are slice are the unknot, 61, and
m.61/.
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formulas for the smooth 4-ball genus of a knot in terms of its rational notation. In
particular,

g4.52/D g4.N.3; 2//D
1
2
�0.ƒ.3; 2//D

1
2
.2/D 1;

g4.75/D g4.N.3; 2; 2//D
1
2
�0.ƒ.3; 2; 2//D

1
2
.2C 3� 1/D 2;

g4.N.5; 244; 4; 16; 3; 104; 2; 12; 1//D 1
2
.1C 2C 3C 4C 5� 1/:

This is an alternate to formulas for calculating the smooth 4-ball genus in terms
of crossings and Seifert circles as given by Nakamura in [2000]. In turn, using
Nakamura’s formula, we see that when the underlying link type ofƒ.cn; : : : ; c2; c1/

is a 2-component link Lƒ,

�0.ƒ.cn; : : : ; c2; c1//D 2g4.Lƒ/C 1I

see Remark 4.7.

Given the above calculations, it is natural to ask:

Question 1.9. Ifƒ is a Legendrian knot that is topologically a nonslice knot Kƒ, is
�0.ƒ/D 2g4.Kƒ/? More generally, ifƒ is a Legendrian link of j � 2 components
that is topologically the link Lƒ, is �0.ƒ/D 2g4.Lƒ/C .j � 1/?

To investigate the knot portion of this question, we examined Legendrian repre-
sentatives of knots with crossing number 7 or less. There is not yet a Legendrian
classification of all these knot types, but a conjectured classification is given by
Chongchitmate and Ng [2013].

Proposition 1.10. Assuming the conjectured classification of Legendrian knots in
[Chongchitmate and Ng 2013],3 if ƒ is a Legendrian knot that is topologically a
nonslice knot Kƒ with crossing number 7 or less, �0.ƒ/D 2g4.Kƒ/.

The only non-torus and non-twist knots with crossing number at most 7 are
62;m.62/, 63 D m.63/, 73, m.73/, 74, m.74/, 75, m.75/, 76, m.76/, 77, and
m.77/. While doing the calculations for Legendrians with these knot types, in
general we found that for a Legendrian ƒ whose underlying smooth knot type Kƒ

satisfies g3.Kƒ/D g4.Kƒ/, where g3.Kƒ/ denotes the (3-dimensional) genus of
the knot, it is fairly straight forward to show that �0.ƒ/D 2g4.Kƒ/. Legendrians
that are topologically 73;m.73/; 74;m.74/; 75, and m.75/ fall into this category.
For the remaining knot types under consideration, the calculation of the smooth
4-ball genus follows from the fact that the topological unknotting number of these
knots is equal to 1. We show that in a front projection of a Legendrian knot, it is
possible to locally change any negative crossing to a positive one by 2 surgeries;
see Lemma 5.2. This allowed us to prove Proposition 1.10 in the cases where ƒ is

3Potential duplications in their atlas will not affect the statement.
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topologically 62; 63 Dm.63/; 76, or 77. For the remaining cases of m.62/, m.76/,
and m.77/, results of [Soteros et al. 2011] show that it is not possible to find a
front projection that can be unknotted at a negative crossing. However, we found
front projections that could be unknotted at a positive crossing in a special “S” or
“hooked-X” form: a positive crossing in one of these special forms can be locally
changed to a negative crossing by 2 surgeries; see Lemma 5.5.

The Lagrangian motivation and discussion. All of our calculations indicate that
�0.ƒ/ is measuring an invariant of the underlying smooth link type and that this
invariant will be the same for ƒ and ƒ0 when they represent smooth knots that
differ by the topological mirror operation. Below is an explanation for why this
may be true.

Although the definition of the surgery unknotting number has been formulated
above combinatorially, the motivation comes from trying to understand the flexibility
and rigidity of Lagrangian submanifolds of a symplectic manifold. From [Bourgeois
et al. � 2013] (see also [Ekholm et al. 2012]) the existence of an unknotting
surgery string .ƒn; : : : ; ƒ0/, as defined in Definition 3.1, implies the existence of
an oriented Lagrangian cobordism† in .R�R3Df.s;x;y; z/g/\f0� s�ng so that
.†\fs D ig/Dƒi , for i D n; : : : ; 0. Furthermore, if ƒ0 is the Legendrian unknot
with maximal Thurston–Bennequin invariant, this cobordism can be “filled in” with
a Lagrangian N† � fs � ng so that @ N† D ƒn. In fact, it is shown in [Chantraine
2010] that if ƒ0 is not the Legendrian unknot with maximal Thurston–Bennequin
invariant, then the cobordism † cannot be filled in to N†; moreover, when there does
exist the filling to N† and the smooth underlying knot type of ƒn is Kn, then the
genus of N† agrees with the smooth 4-ball genus of Kn.

From this Lagrangian perspective, it is a bit more natural to consider surgery
strings .ƒn; : : : ; ƒ0/ where ƒ0 is a Legendrian unlink (a trivial link of Legendrian
unknots), and define a corresponding “surgery unlinking number”; this is a project
that the second author has begun to pursue with other undergraduates. A Lagrangian
analogue of Question 1.9 is:

Question 1.11. If ƒ is a Legendrian knot with underlying smooth knot type Kƒ,
does there exist a Lagrangian cobordism constructed from Legendrian isotopy and
oriented Legendrian surgeries between ƒ and ƒ0, a Legendrian that is a smooth
unlink, that realizes g4.Kƒ/?

Any Lagrangian constructed from Legendrian isotopy and oriented Legendrian
surgeries would be in ribbon form; this means that the restriction of the height
function, given by the s coordinate, to the cobordism would not have any local
maxima in the interior of the cobordism. So a positive answer to Question 1.11
would imply that the slice genus agrees with the ribbon genus; for some background
on this and related problems, see, for example, [Livingston 2005].
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2. Background information on Legendrian links

Below is some basic background on Legendrian links. More information can be
found, for example, in [Etnyre 2005].

The standard contact structure on R3 is the field of hyperplanes � where �p D
ker.dz�ydx/p . A Legendrian link is a submanifold, L, of R3 diffeomorphic to a
disjoint union of circles so that for all p 2L, TpL� �p . It is common to examine
Legendrian links from their xz-projections, known as their front projections. A
Legendrian link will generically have an immersed front projection with semicubical
cusps and no vertical tangents; conversely, any such projection can be uniquely
lifted to a Legendrian link using y D dz=dx. Figure 3 shows Legendrian versions
of the trefoils 31 and m.31/.
ƒ0 and ƒ1 are equivalent Legendrian links if there exists a 1-parameter family

of Legendrian links ƒt joining ƒ0 and ƒ1. In fact, Legendrian links ƒ0; ƒ1 are
equivalent if and only if their front projections are equivalent by planar isotopies
that do not introduce vertical tangents and the Legendrian Reidemeister moves as
shown in Figure 4.

   

 

 

z

x

Figure 3. Left: front projection of a Legendrian knot that is topo-
logically the (negative/left) trefoil 31. Right: front projection of
a Legendrian knot that is topologically the mirror trefoil m.31/.
At crossings, it is not necessary to specify which strand is the
overstrand: the strand with lesser slope will always be on top.

1 2

3

Figure 4. The three Legendrian Reidemeister moves. There is
another type 1 move obtained by flipping the planar figure about a
horizontal line, and there are three additional type 2 moves obtained
by flipping the planar figure about a vertical, a horizontal, and both
a vertical and horizontal line.
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Figure 5. Negative (left) and positive (right) crossings.

Every Legendrian knot and link has a Legendrian representative. In fact, every
Legendrian knot and link has an infinite number of different Legendrian repre-
sentatives. For example, Figure 1 shows three different Legendrians that are all
topologically the unknot. These unknots can be distinguished by classical Legen-
drian invariants, the Thurston–Bennequin and rotation number. These invariants
can easily be computed from a front projection of the Legendrian link once we
understand how to assign a ˙ sign to each crossing and an up/down direction to
each cusp.

A positive (negative) crossing of a front projection of an oriented Legendrian
link is a crossing where the strands point to the same side (opposite sides) of a
vertical line passing through the crossing point; see Figure 5. Each cusp can also be
assigned an up or down direction; see Figure 6. Then for an oriented Legendrian
link ƒ, we have the following formulas for the Thurston–Bennequin, tb.ƒ/, and
rotation number, r.ƒ/, invariants:

tb.ƒ/D P �N �R; r.ƒ/D 1
2
.D�U /; (2-1)

where P is the number of positive crossings, N is the number of negative crossings,
R is the number of right cusps, D is the number of down cusps, and U is the
number of up cusps in a front projection of ƒ. Given that two front projections of
equivalent Legendrian links differ by the Legendrian Reidemeister moves described
in Figure 4, it is easy to verify that tb.ƒ/ and r.ƒ/ are Legendrian link invariants.

The two unknots in the second line of Figure 1 are obtained from the one at the
top by adding an up or down zig-zag (also known as a � stabilization). In general,
this stabilization procedure will not change the underlying smooth knot type but
will decrease the Thurston–Bennequin number by 1; adding an up (down) zig-zag
will decrease (increase) the rotation number by 1. If ƒ is a Legendrian knot, we
will use the notation S˙.ƒ/ to denote the double stabilization of ƒ, the Legendrian
knot obtained by adding both a positive and negative zig-zag.

Figure 6. Right and left down cusps (left) and right and left up
cusps (right).
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�1r D 01
tbD�1

�2

�3

Figure 7. The single-peaked mountain of all Legendrian unknots.

In fact, as discovered by Eliashberg and Fraser, all Legendrian unknots are
classified by their Thurston–Bennequin and rotation numbers:

Theorem 2.1 [Eliashberg and Fraser 2009; Etnyre and Honda 2001]. Suppose ƒ0

and ƒ0
0

are oriented Legendrian knots that are both topologically the unknot. Then
ƒ0 is equivalent to ƒ0

0
if and only if tb.ƒ0/D tb.ƒ0

0
/ and r.ƒ0/D r.ƒ0

0
/.

Figure 7 describes all the Legendrian unknots. Notice that any Legendrian
unknot is equivalent to one that is obtained by adding up and/or down zig-zags
to the unknot with Thurston–Bennequin number equal to �1 and rotation number
equal to 0 shown in Figure 1.

In general, it is an important question to understand the “geography” of other knot
types. By [Etnyre and Honda 2001; Etnyre et al. 2013], we understand the mountain
ranges for all torus and twist knots. The Legendrian knot atlas [Chongchitmate
and Ng 2013] gives the known and conjectured mountain ranges for all Legendrian
knots with arc index at most 9; this includes all knot types with crossing number at
most 7 and all non-alternating knots with crossing number at most 9.

3. The surgery unknotting number

In this section, we define the surgery operation, show that every Legendrian link
can be unknotted by surgeries, define the surgery unknotting number, and give some
basic properties of the surgery unknotting number.

The surgery operation can be viewed as a tangle surgery: the replacement of
one Legendrian tangle by another. A basic, compatibly oriented Legendrian 0-
tangle is a Legendrian tangle that is topologically the 0-tangle where the strands
are oppositely oriented and each strand has neither crossings nor cusps; the two
basic, compatibly oriented Legendrian 0-tangles can be seen on the left side of
Figure 2. A basic, compatibly oriented Legendrian1-tangle is Legendrian tangle
that is topologically the1-tangle where the strands are oppositely oriented and
each strand has precisely one cusp and no crossings; the two basic, compatibly
oriented Legendrian1-tangles can be seen on the right side of Figure 2.

Definition 3.1. An oriented, Legendrian surgery of an oriented, Legendrian link is
the Legendrian link obtained by replacing a basic, compatibly oriented Legendrian
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0-tangle with a basic, compatibly oriented Legendrian1-tangle; see Figure 2. An
oriented surgery string consists of a vector of oriented, Legendrian links

.ƒn; ƒn�1; : : : ; ƒ0/;

where, for all j 2 fn�1; : : : ; 0g, ƒj is obtained from ƒjC1 by Legendrian isotopy
and an oriented, Legendrian surgery. An oriented, unknotting surgery string of
length n for ƒ consists of an oriented surgery string .ƒn; ƒn�1; : : : ; ƒ0/ where
ƒn Dƒ and ƒ0 is topologically an unknot.

To start, we have the following relationships between the classic invariants of
two Legendrian links related by surgery:

Lemma 3.2. If ƒ is an oriented, Legendrian link and ƒ0 is obtained from ƒ by an
oriented, Legendrian surgery, then:

(1) the parity of the number of components of ƒ and ƒ0 differ;

(2) tb.ƒ0 /D tb.ƒ/� 1, and r.ƒ0 /D r.ƒ/.

Proof. The statements about the Thurston–Bennequin and rotation numbers are
easily verified using Equation (2-1). Regarding the parity, one surgery to a knot
will always produce a link of two components, while doing a surgery to a link will
increase or decrease the number of components by 1 depending on whether or not
the strands in the 0-tangle belong to the same component of the link. �

Recall that for any Legendrian knotƒ, the Legendrian knotƒ0DS˙.ƒ/ obtained
as the double ˙ stabilization of ƒ will have r.ƒ0 /D r.ƒ/ and tb.ƒ0 /D tb.ƒ/� 2.
Thus it is potentially possible that ƒ0 can be obtained from ƒ by two oriented
Legendrian surgeries. In fact, it is possible.

Lemma 3.3. For any oriented, Legendrian knot ƒ there exists an oriented surgery
string .ƒ2; ƒ1; ƒ0/ with ƒ2 Dƒ and ƒ0 D S˙.ƒ/.

Proof. These surgeries are illustrated in Figure 8. Every Legendrian link ƒ must
have a right cusp. By a Legendrian isotopy, we can pull a right cusp far to the right
and perform one surgery near this right cusp. This produces a link consisting of
the original link and a Legendrian unknot. After a Legendrian isotopy, a second
surgery can be done using one strand near the same cusp of the original link and a
strand from the unknot. The result is S˙.ƒ/. �

In the chart of Legendrian unknots given in Figure 7, we see that any two unknots
with the same rotation number are related by a sequence of double ˙ stabilizations.
Thus we get:

Corollary 3.4. If ƒ and ƒ0 are oriented, Legendrian unknots with r.ƒ/D r.ƒ0 /

and tb.ƒ/D tb.ƒ0 /C 2m, for m� 0, then there exists an oriented surgery string
.ƒ2m; ƒ2m�1; : : : ; ƒ0/, where ƒ2m Dƒ, and ƒ0 Dƒ

0.
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Figure 8. Two oriented, Legendrian surgeries produce S˙.ƒ/

from ƒ.

Thus if we can reach a Legendrian unknot by surgeries, then we can reach an
infinite number of Legendrian unknots by surgery. The basis for our new invariant
is the fact that every Legendrian link can be “unknotted” by a string of surgeries:

Proposition 3.5. For any oriented, Legendrian link ƒ, there exists an oriented, un-
knotting surgery string .ƒDƒu; ƒu�1; : : : ; ƒ0/. Moreover, ifƒ has j components
and there exists a front projection of ƒ with m crossings, then u� 2mC j � 1.

Proof. Assume that there is a front projection of ƒ with m crossings. We will first
show that there is an oriented surgery string . Qƒm; Qƒm�1; : : : ; Qƒ0/, where Qƒm Dƒ

and Qƒ0 is a trivial link of Legendrian unknots. If Qƒ0 has c components, we will
then show that it is possible to do an additional c � 1 surgeries to get this into a
single component unknot.

Given the initial Legendrian linkƒ having a projection with m crossings, assume
that n of these crossings are negative. It is then possible to construct a surgery string
. Qƒm; Qƒm�1; : : : ; Qƒm�n/ where Qƒm D ƒ and Qƒm�n has a front projection with
m� n crossings, all of which are positive. This surgery string is obtained by doing
a surgery to the right of each negative crossing and then doing a Legendrian isotopy
to remove the positive crossing introduced by the surgery, as shown in Figure 9.
Next, by applying a planar Legendrian isotopy, it is possible to assume that all the
crossings of Qƒm�n have distinct x-coordinates. The left cusps associated to the
leftmost positive crossing are either nested or stacked and fall into one of the 6 cases
listed in Figure 10; by an additional Legendrian planar isotopy, we can assume that
all other left cusps occur to the right of this crossing. For each case, it is possible

Figure 9. A negative crossing can be removed by an oriented
Legendrian surgery and then Legendrian isotopy.
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Figure 10. Three cases for the leftmost positive crossing and their
associated left cusps; three additional cases are obtained by revers-
ing the orientations on both strands.

to do a surgery immediately to the right of this leftmost crossing. After Legendrian
Reidemeister moves, the crossing is eliminated and the number of crossings of
the projection of the resulting link has decreased by 1; see Figure 10. What was
the second leftmost positive crossing is now the leftmost positive crossing and the
procedure can be repeated. In this way, we obtain a surgery string of Legendrian
links . Qƒm; : : : ; Qƒm�n; Qƒm�n�1; : : : ; Qƒ0/ where Qƒ0 has a front projection with no
crossings. It follows that Qƒ0 is topologically a trivial link of unknots. By applying
a Legendrian isotopy, we can assume that Qƒ0 consists of c Legendrian unknots
which are vertically stacked and where each unknot is oriented “clockwise”; an
example of this is shown in Figure 11. It is then easy to see that after applying c�1

additional surgeries, we can obtain a Legendrian unknot. Thus there is a length
u D mC c � 1 unknotting surgery sequence for ƒ. By Lemma 3.2, if ƒ D Qƒm

has j components, Qƒ0 has at most c D j Cm components. Thus we see that
u� 2mC j � 1, as claimed. �

Definition 3.6. Given a Legendrian link ƒ, the (oriented) Legendrian surgery
unknotting number of ƒ, �0.ƒ/, is defined as the minimal length of an oriented,
unknotting surgery string for ƒ.

Remark 3.7. Here are some basic properties of �0.ƒ/:

(1) By Lemma 3.2, for any Legendrian link ƒ, the parity of �0.ƒ/ is opposite the
parity of the number of components of ƒ;

(2) For any oriented, Legendrian link ƒ with j components, j � 1� �0.ƒ/ <1,
with 0D �0.ƒ/ if and only if ƒ is topologically an unknot.
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Figure 11. After all crossings are eliminated, a Legendrian isotopy
can be applied so that ƒ0 is a stack of c Legendrian unknots
oriented clockwise. After c � 1 additional surgeries, a Legendrian
unknot is obtained.

(3) If ƒ is a topologically nontrivial Legendrian knot and there exists an oriented
unknotting surgery string for ƒ of length 2, then �0.ƒ/D 2.

(4) If ƒ0 is obtained from ƒ by stabilization(s), then �0.ƒ
0 /� �0.ƒ/.

Proposition 3.5 and, more importantly, explicit calculations will give upper
bounds for �0.ƒ/. Now we turn to examining some lower bounds for �0.ƒ/.

First, by Theorem 2.1, if ƒ0 is a Legendrian unknot, then

tb.ƒ0 /Cjr.ƒ0 /j � �1:

Thus if ƒ is a Legendrian link with a “large” Thurston–Bennequin and/or rotation
number, one is forced to do a certain number of Legendrian surgeries. More
precisely, Lemma 3.2 implies:

Lemma 3.8. For any Legendrian link ƒ,

tb.ƒ/Cjr.ƒ/jC 1� �0.ƒ/:

Lemma 3.8 gives us improved lower bounds over those given in Remark 3.7 when
2 � tb.ƒ/C jr.ƒ/j.4 For example, there exists a Legendrian whose underlying
smooth knot type is m.51/ and whose classical invariants satisfy

tb.ƒ/Cjr.ƒ/j D 3I

see, for example, [Chongchitmate and Ng 2013]. Thus Lemma 3.8 implies that
4 � �0.ƒ/. However for many links, tb.ƒ/C jr.ƒ/j � 2. For example, for any
Legendrian ƒ that is topologically the 51 knot, tb.ƒ/C jr.ƒ/j � �5. Although
Lemma 3.8 will not help us, in this case we can make use of another result:

4The parity of tb.ƒ/C jr.ƒ/j agrees with the parity of the number of components of ƒ, so for
knots, we get interesting new bounds when 3� tb.ƒ/Cjr.ƒ/j.
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Lemma 3.9. For a Legendrian link ƒ with j components, let Lƒ denote the
underlying smooth link type of ƒ, and let g4.Lƒ/ denote the smooth 4-ball genus
of Lƒ. Then

2g4.Lƒ/C .j � 1/� �0.ƒ/:

Proof. From a Legendrian surgery string of length n that ends at an unknot, one can
construct a smooth, orientable, compact, and connected 2-dimensional surface in
B4 with boundary equal to Lƒ and Euler characteristic equal to 1� n; the genus,
g, of this surface satisfies 1� nD 2� 2g� j . Thus, by definition of the smooth
4-ball genus,

.j � 1/C 2g4.Lƒ/� .j � 1/C 2g D n:

Since �0.ƒ/ is the minimum length of a surgery unknotting string, the claim
follows. �

A convenient table of smooth 4-ball genera of knots can be found at KnotInfo
[Cha and Livingston 2012].

4. The surgery unknotting number for families of knots

In this section we will calculate the surgery unknotting numbers for Legendrian
twist knots, Legendrian torus links, and positive, Legendrian rational links. The
fact that we can precisely calculate these numbers for the first two families rests
upon classification results of [Etnyre et al. 2013; Etnyre and Honda 2001; Dalton
2008].

Legendrian twist knots. A twist knot is a knot that is smoothly equivalent to a knot
Km in the form of Figure 12. In other words, a twist knot is a twisted Whitehead
double of the unknot.

Theorem 4.1. If ƒ is a Legendrian knot that is topologically a nontrivial twist knot
then �0.ƒ/D 2.

Proof. Etnyre, Ng and Vértesi [Etnyre et al. 2013] have classified all Legendrian twist
knots. In particular, every Legendrian knot ƒ with maximal Thurston–Bennequin
invariant that is topologically Km, for some m� �2, is Legendrian isotopic to one

m

Figure 12. The twist knot Km; the box contains m right-handed
half twists if m � 0, and jmj left-handed twists if m < 0. Notice
that K0 and K�1 are unknots.
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Figure 13. Any Legendrian knot that is topologically a nega-
tive twist knot, Km with m � �2, and has maximal Thurston–
Bennequin invariant is Legendrian isotopic to one of the form in
(a) where the box contains jmC 2j half twists, each of form S as
shown in (b) or of form Z as shown in (c).

   m

Figure 14. Any Legendrian knot that is topologically a positive
twist knot, Km with m� 0, and has maximal Thurston–Bennequin
invariant is Legendrian isotopic to one of the form on the left. The
box contains m half twists, each of form X as shown on the right.

of the form in Figure 13, and every Legendrian knot ƒ with maximal Thurston–
Bennequin invariant that is topologically Km, for m� 1 with maximal Thurston–
Bennequin invariant is Legendrian isotopic to one of the form in Figure 14.5 Every
Legendrian knot ƒ that is topologically a nontrivial twist knot is obtained by
stabilization of one of these with maximal Thurston–Bennequin invariant. By
Remark 3.7, it suffices to show for any Legendrian knot ƒC that is topologically a
nontrivial twist knot and has maximal Thurston–Bennequin invariant, �0.ƒ

C/D 2.
For ƒC, we can do the two unknotting surgeries near the “clasp”. The sign of the
crossings in the clasp will depend on whether m is even or odd: Figure 15 shows
the positions of two surgeries that result in an unknot. �

Legendrian torus links. A torus link is a link that can be smoothly isotoped so
that it lies on the surface of an unknotted torus in R3. Every torus knot can be
specified by a pair .p; q/ of coprime integers: we will use the convention that the
.p; q/-torus knot, T .p; q/, winds p times around a meridional curve of the torus
and q times in the longitudinal direction. See, for example, [Adams 2004]. In fact,
T .p; q/ is equivalent to T .q;p/ and to T .�p;�q/. So we will always assume that
jpj> q > 0; in addition we will assume q > 1 since we are interested in nontrivial

5We omit mD 0;�1 since those correspond to the unknot.
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(a) (b)

Figure 15. For a Legendrian knot with maximal Thurston–Bennequin
invariant that is topologically Km, (a) gives the surgery points when
m is even, and (b) gives the surgery points when m is odd.

torus knots. For j � 2, T .jp; j q/, with jpj > q > 1 and gcd.p; q/ D 1, will be
a j -component link where each component is a T .p; q/ torus link. We will only
consider torus links of nontrivial components.

Theorem 4.2. If ƒ is a j -component Legendrian link that is topologically the
.jp; j q/-torus link, jpj> q > 1, then �0.ƒ/D .jjpj � 1/.j q� 1/.

Proof. First consider the case whereƒ is topologically a positive torus knot, T .p; q/

with p > 0. As shown by Etnyre and Honda [2001], the list of different Legendrian
representations of a positive torus knot can be represented as a “single-peaked
mountain” in parallel to the mountain of unknots shown in Figure 7. Namely,
for fixed p > q > 1, there is a unique Legendrian knot ƒC that is topologically
T .p; q/ with maximal Thurston–Bennequin invariant tb.ƒC/ D pq � p � q and
r.ƒC/ D 0; any Legendrian knot ƒ that is topologically T .p; q/ is obtained by
stabilizations of ƒC. By Remark 3.7, it suffices to show that if ƒC is a Legendrian
knot that is topologically T .p; q/ and has maximal Thurston–Bennequin invariant,
then �0.ƒ

C/D .p� 1/.q� 1/. By Lemma 3.8,

tb.ƒC/Cjr.ƒC/jC 1D .p� 1/.q� 1/� �0.ƒ/:

In fact, it is possible to unknot with .p � 1/.q � 1/ surgeries. Starting from the
left most string of crossings, do .q� 1/ successive surgeries as illustrated for the
.5; 3/-torus knot in Figure 16; in this sequence of surgeries, one begins with the
surgery on the innermost strands, and then performs a Legendrian isotopy so that
it is possible to do a surgery on the next set of innermost strands. In general, this
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q

p

Figure 16. The Legendrian .5; 3/-torus knot with maximal tb
invariant. The general, positive Legendrian .p; q/-torus knot
with maximal Thurston–Bennequin invariant is constructed us-
ing q strands and a length p string of crossings. Shown are the
.p� 1/.q� 1/ oriented Legendrian surgeries that unknot the Leg-
endrian positive .p; q/-torus knot with maximal tb.

takes the .p; q/-torus knot to the .p�1; q/-torus link. Repeating this p�1 times
results in the .1; q/-torus knot, which is an unknot.6

The above proof easily generalizes to positive torus links of nontrivial components.
Dalton [2008] showed that there is a unique Legendrian linkƒC that is topologically
T .jp; j q/ with maximal Thurston–Bennequin invariant tb.ƒC/D jpj q�jp�j q.
The construction of this one exactly parallels the construction in Figure 16, and so
the same pattern of .jp� 1/.j q� 1/ surgeries will produce a Legendrian unknot.

Next consider the case where ƒ is topologically a negative torus knot, T .p; q/

with p < 0. In this case, Etnyre and Honda have shown that the list of different
Legendrian representations of a negative torus knots, T .p; q/ for p < 0 and jpj>
q > 1, can be represented as a many-peaked “mountain range” where the number
of representatives with maximal Thurston–Bennequin invariant depends on the
divisibility of p by q. Namely, if jpj DmqC e, 0< e < q, then there will be 2m

Legendrian representatives of T .p; q/ with maximal Thurston–Bennequin invariant
of pq<0. Half of these different representatives with maximal Thurston–Bennequin
invariant are obtained by writing m D 1C n1C n2, where n1; n2 � 0, and then
ƒC

.n1;n2/
is constructed using the form shown in Figure 17 with n1 and n2 copies

of the tangle B inserted as indicated:

r
�
ƒC

.n1;n2/

�
D q.n2� n1/C e:

The other m Legendrian versions of T .p; q/ with maximal Thurston–Bennequin
invariant are obtained by reversing the orientation. For negative torus knots,
Lemma 3.8 will not be a useful lower bound. However, since the calculation
of the 4-ball genus is the same for both the knot and its mirror, the calculations in

6By Corollary 1.3, we can now deduce the Milnor conjecture as mentioned in Corollary 1.5.
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Figure 17. The .jpj�1/.q�1/ oriented Legendrian surgeries that
unknot a Legendrian negative .p; q/-torus knot with maximal
Thurston–Bennequin invariant.

the positive torus knot case and Corollary 1.3, (or [Kronheimer and Mrowka 1993]),
show that for a negative torus knot T .p; q/, 2g4.T .p; q//D .jpj�1/.q�1/. Thus,
by Lemma 3.9

.jpj�1/.q�1/� �0.ƒ/:

In fact, it is possible to arrive at an unknot with .jpj�1/.q�1/ surgeries. Figure 17
shows the claimed surgeries: a surgery is done to the right of all crossings in
the L, R, and B regions (contributing 1

2
q.q�1/C 1

2
q.q�1/C.n1Cn2/q.q�1/

surgeries), and between each Z in the e string one does q�1 successive surgeries
(contributing .e�1/.q�1/ surgeries). Thus the total number of surgeries is

.1Cn1Cn2/q.q�1/C.e�1/.q�1/D .mqCe�1/.q�1/D .jpj�1/.q�1/:

The proof easily generalizes to negative torus links. It follows from [Nakamura
2000] that g4.T .jp; j q//C .j � 1/D .j jpj � 1/.j q� 1/; see Remark 4.3. It was
shown in [Dalton 2008] that there are 2m Legendrian linksƒC that are topologically
T .jp; j q/ with maximal Thurston–Bennequin invariant, and all Legendrians that
are topologically T .jp; j q/ are obtained by stabilizations of one of these. Each
of these with maximal Thurston–Bennequin invariant can be constructed as in
Figure 17, and so the same pattern of .j jpj � 1/.j q� 1/ surgeries will produce a
Legendrian unknot. �

Remark 4.3. Nakamura’s formula [2000] for the smooth 4-ball genus of a j -
component positive link L is that

2g4.L/D 2� j � s.D/C c.D/;
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where s.D/ is the number of Seifert circles and c.D/ is the number of crossings in
a non-split positive diagram D for L. It is straightforward to see that when L is
the positive torus link T .jp; j q/, using the diagram D corresponding to Figure 16,
s.D/D j q and c.D/D jp.j q� 1/. So,

2g4.T .jp; j q//D 2� j � j qC jp.j q� 1/D .1� j /C .jp� 1/.j q� 1/:

Thus for any Legendrian linkƒ that is topologically T .jp; j q/, for either p positive
or negative,

2g4.T .jp; j q//C .j � 1/D �0.ƒ/:

Positive, Legendrian rational links.

Definition 4.4. Given a vector of integers .cn; : : : ; c2; c1/, where cn � 2, and n� 2

implies ci � 1 for i D 1; : : : ; n � 1, we construct the rational Legendrian link
ƒ.cn; : : : ; c2; c1/ to be the Legendrian numerator closure of the Legendrian tangle
.cn; : : : ; c2; c1/ as demonstrated in Figure 18; see also [Adams 2004; Traynor 1998;
Schneider 2011]. The rational Legendrian link ƒ.cn; : : : ; c2; c1/ is positive if all
crossings are positive.

This Legendrian link ƒ.cn; : : : ; c1/ is topologically the numerator closure of the
rational tangle associated to the rational number q with continued fraction expansion
q D c1C 1=.c2C 1=.c3C : : : //; see [Conway 1970].

c1 c1c2

c3

c2

c1

c4 c3

c2

c1

Figure 18. The general form of ƒ.c1/, ƒ.c2; c1/, ƒ.c3; c2; c1/,
and ƒ.c4; c3; c2; c1/.
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The “even” entries c2; c4; : : : of the vector .cn; : : : ; c2; c1/ denote the strings of
vertical crossings. It is straightforward to verify that the parity of these vertical
entries determine when ƒ.cn; : : : ; c1/ is a positive link:

Lemma 4.5. (1) When n is odd, there exists an orientation on the components of
ƒ.cn; : : : ; c1/ so that it is a positive link if and only if ci is even, for all i even.
Moreover, ƒ.cn; : : : ; c1/ is a knot when

P
i odd ci is odd.

(2) When n is even, there exists an orientation on the components ofƒ.cn; : : : ; c1/

so it is a positive link if and only if cn is odd and cn�2; cn�4; : : : ; c2 are all
even. Moreover, ƒ.cn; : : : ; c1/ is a knot when

P
i odd ci is even.

The Legendrian surgery unknotting number of a positive link has a convenient
formula in terms of the “odd” entries, which correspond to the strings of horizontal
crossings. There will be some differences in following formulas depending on
whether ƒ is constructed from an odd or an even length vector. Define

p.n/D

(
1; n odd;

0; n evenI

p.n/ measures the parity of the “length” of the vector .cn; : : : ; c1/.

Theorem 4.6. If ƒ.cn; : : : ; c2; c1/ is a positive, Legendrian rational link, then

�0.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/:

Proof. This will be proved using the lower bound on �0.ƒ/ provided by Lemma 3.8,
and explicit calculations.

We will first show that

r.ƒ.cn; : : : ; c2; c1//D 0 and tb.ƒ.cn; : : : ; c2; c1//D
X
i odd

ci �p.n/� 1:

It is easy to verify that when all the crossings are positive, the up and down cusps
cancel in pairs and thus the rotation number vanishes. To calculate tb.ƒ.cn; : : : ; c1//,
notice that when n is odd the number of right cusps is 2 more than the number of
vertical crossings,

P
i even ci , while when n is even, the number of rights cusps is 1

more than the number of vertical crossings. Thus:

tb.ƒ.cn; : : : ; c2; c1//D

nX
iD1

ci �

� X
i even

ci C 1Cp.n/

�
D

X
i odd

ci � 1�p.n/:

Thus, by Lemma 3.8,X
i odd

ci �p.n/� �0.ƒ.cn; : : : ; c2; c1//:
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Figure 19. Two positive, Legendrian rational knots of odd and
even lengths. In both cases, it is possible to unknot by doing ci �1

surgeries in each horizontal segment (i odd) and 1 surgery in each
vertical segment.

In fact, it is possible to unknotƒ.cn; : : : ; c2; c1/ by doing ci�1 surgeries in each
horizontal component and 1 surgery in each vertical segment; Figure 19 illustrates
some examples of this. When nD 1, there are no vertical segments; for other odd
n, the number of vertical components is one less than the number of horizontal
components, and when n is even, the number of vertical components agrees with
the number of horizontal components. Thus

�0.ƒ.cn; : : : ; c1//�
X
i odd

ci �p.n/;

and the desired calculation of �0.ƒ.cn; : : : ; c1// follows. �

Remark 4.7. In the above proof, �0.ƒ.cn; : : : ; c1// is obtained by realizing the
lower bound given by the classical Legendrian invariants. Thus, by Corollary 1.3,
we see that when ƒ.cn; : : : ; c1/ has an underlying topological type of the knot Kƒ,
�0.ƒ.cn; : : : ; c1//D 2g4.Kƒ/. Moreover, when ƒ.cn; : : : ; c1/ has an underlying
topological type of a 2-component link Lƒ, we can compare �0.ƒ.cn; : : : ; c1// to
the smooth 4-ball genus of Lƒ using Nakamura’s formula (see Remark 4.3) for the
smooth 4-ball genus of a positive link. When n is odd, the number of Seifert circles
is s.D/D 2C

P
i even ci , while when n is even, s.D/D 1C

P
i even ci . Thus we

find that for a 2-component, positive, Legendrian rational link ƒ.cn; : : : ; c1/,

2g4.Lƒ/C 1D c.D/� s.D/C 1D
X
i odd

ci �p.n/D �0.ƒ.cn; : : : ; c1//:

5. The surgery unknotting number for small crossing knots

Given the calculations of the previous section, it is natural to ask Question 1.9
in the Introduction. To investigate the knot portion of this question, we exam-
ined Legendrian representatives of low-crossing knots. There is not a Legendrian
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73 m.73/

74
m.74/

Figure 20. Front projections representing all conjectured Leg-
endrian representatives of 73, m.73/, 74, and m.74/ with maxi-
mal Thurston–Bennequin invariant. For all of these knot types,
g3.Kƒ/D g4.Kƒ/; the indicated surgery points realize �0.ƒ/D

2g4.Kƒ/.

classification of all these knot types, but a conjectured classification of these knot
types can be found in [Chongchitmate and Ng 2013]. In the following, we prove
Proposition 1.10, which says that the surgery unknotting number of the Legendrian
agrees with twice the smooth 4-ball genus of the underlying smooth knot for all
Legendrians that are topologically a nonslice knot with crossing number at most 7.

In Section 4, Proposition 1.10 is verified for all torus and twist knots. The
only non-torus and non-twist knots with 7 or fewer crossings are 62;m.62/, 63 D

m.63/, 73, m.73/, 74, m.74/, 75, m.75/, 76, m.76/, 77, and m.77/. The needed
calculations fall into three categories as described below.

Example 5.1. For the smooth knots 73;m.73/; 74;m.74/; 75, and m.75/, the genus,
g3, agrees with the smooth 4-ball genus g4.7 In general, we find that for a Legen-
drian ƒ whose underlying knot type Kƒ satisfied g3.Kƒ/D g4.Kƒ/, it is fairly
straightforward to show that �0.ƒ/D 2g4.Lƒ/. For example, Figure 20 shows all
conjectured representatives of 73, m.73/, 74, m.74/, 75, and m.75/ with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or
performing the Legendrian mirror operation, which consists of rotating the diagram
180ı). For each of these with maximal Thurston–Bennequin invariant, it is possible
to unknot with 2g4.Kƒ/ surgeries as indicated.

In general, we found that for a Legendrian ƒ whose underlying knot type
Kƒ satisfied g4.Kƒ/ < g3.Kƒ/, it is more difficult to calculate �0.ƒ/. To do
calculations for our remaining cases, we made use of the well known fact that the

7This is also the situation for the torus and nonslice twist knots studied in Section 4.
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Figure 21. A sequence of two topological surgeries in a neighbor-
hood of a negative crossing that topologically change the crossing.
An analogous picture shows that a positive crossing can be changed
into a negative crossing by two topological surgeries.

unknotting number of a knot, u.K/, gives an upper bound to the smooth 4-ball
genus:

g4.K/� u.K/: (5-1)

Figure 21 demonstrates two topological surgeries that produce a crossing change;
an argument as in the proof of Lemma 3.9 then proves inequality (5-1). Notice that
the topological Reidemeister moves used in the equivalence are not Legendrian
Reidemeister moves. However, near a negative crossing, it is possible to “Legendrify”
this construction:

Lemma 5.2. If the Legendrian knot ƒ has a front projection that can be topologi-
cally unknotted by changing a negative crossing, then

�0.ƒ/� 2:

Proof. Figure 22 demonstrates how two surgeries can locally produce a topological
crossing change. �

Example 5.3. Using Lemma 5.2, it is possible to show that for any conjectured
Legendrian representative ƒ of 62, 63, 76, or 77, �0.ƒ/ D 2g4.Kƒ/. Figure 23
shows the conjectured Legendrian representatives of these knot types with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or
performing a mirror operation, which corresponds to a rotation of the front diagram

Figure 22. A sequence of two oriented surgeries in a neighborhood
of a negative crossing that topologically change the crossing.
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62 63

76 77

Figure 23. Front projections representing all conjectured Legen-
drian representatives of 62, 63, 76, and 77 with maximal Thurston–
Bennequin invariant. These projections can be topologically un-
knotted at the indicated negative crossing.

by 180ı), and the negative crossing that when topologically changed produces an
unknot.

We were not able to find front projections of the conjectured maximal Thurston–
Bennequin representatives of m.62/, m.76/, or m.77/ that could be topologically
unknotted by changing a negative crossing; in fact, by [Soteros et al. 2011], it is
not possible to do this even in the smooth setting. Luckily, sometimes we can
topologically change a positive crossing when it has a special form.

Definition 5.4. A positive crossing is of S form, Z form, or hooked-X form if it
takes the form as shown in Figure 24.

Lemma 5.5. If ƒ is a nontrivial Legendrian knot that has a projection that can
be topologically unknotted by changing a positive crossing in S , Z, or hooked-X
form, then

�0.ƒ/� 2:

(a) (b) (c)

Figure 24. A positive crossing of (a) S form, (b) Z form, and (c)
hooked-X form. Reversing the orientations on both strands keeps
the respective forms. Also reflecting the planar figure in (c) about
a horizontal line produces another hooked-X form.
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Figure 25. A positive crossing of S form can be transformed into
a negative crossing with 2 surgeries. Similarly, a positive crossing
of Z form can be transformed into a negative crossing with 2

surgeries.

Figure 26. A positive crossing of hooked-X form can be trans-
formed into a negative crossing with 2 Legendrian surgeries.

Proof. Figures 25 and 26 show how a positive crossing in S , Z, or hooked-X form
can be transformed into a negative crossing using two surgeries and Legendrian
isotopies. �

Example 5.6. Using Lemma 5.5, it is possible to show that for any conjectured Leg-
endrian representativeƒ of m.62/, m.76/, or m.77/, �0.ƒ/D 2g4.Kƒ/. Figure 27
shows the conjectured Legendrian representatives of these knot types with maximal
Thurston–Bennequin invariant (after perhaps selecting alternate orientations and/or

    
    m.62/ m.76/

m.77/

Figure 27. Front projections representing all conjectured Legen-
drian representatives of m.62/, m.76/ and m.77/ with maximal
Thurston–Bennequin invariant. Each of these can be topologically
unknotted by changing the indicated positive crossing in S form or
hooked-X form.
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performing a mirror operation). These projections differ from those in [Chong-
chitmate and Ng 2013] by Legendrian Reidemeister moves of type II and III. The
black dot indicates a positive crossing that when topologically changed produces
an unknot.

The proofs of Lemmas 5.2 and 5.5 in fact show that if the Legendrian knot ƒ
has a front projection that can be topologically unknotted by changing � negative
crossings and � crossings in S, Z, or hooked-X form, then �0.ƒ/ � 2� C 2�.
However, for our calculations we did not need this more general form.
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The concept of frames in a Banach space has been introduced by Gröchenig
and developed by several authors. The main feature of a frame is to present
every element of the underlying Banach space as a norm-convergent series. In
this decomposition, the dual frame plays an essential role. The existence of a
dual p-frame is not guaranteed in general. Some characterizations of duals of
p-frames are given in this paper.

1. Introduction and preliminaries

A sequence ffig
1
iD1

in a Hilbert space H is called a frame if there exist constants
A, B > 0 such that

Akf k2 �

1X
iD1

jhf; fiij
2
� Bkf k2 .f 2H/: (1-1)

The numbers A and B are called frame bounds. A frame is called tight if AD B.
In frame theory, the operator T W l2!H given by T fcig

1
iD1
D
P1

iD1 cifi is useful
in analyzing various properties of frames. It is called the synthesis or preframe
operator. Its adjoint T � WH! l2; f 7! fhf; fiig

1
iD1

is called the analysis operator.
By composing T and T �, we obtain the frame operator

S WH!H; Sf D

1X
iD1

hf; fiifi .f 2H/:

The frame operator S is invertible and the reconstruction formula

f D S�1Sf D

1X
iD1

hf;S�1fiifi .f 2H/ (1-2)

MSC2010: primary 42C15; secondary 46B15.
Keywords: frame, Banach space, dual frame, p-frame, alternate dual.
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holds. The sequence fS�1fig
1
iD1

which plays the same role as the dual in the theory
of bases is also a frame. It is called the canonical dual of ffig

1
iD1

. In general, the
Bessel sequence fgig

1
iD1

is called a dual of ffig
1
iD1

if

f D

1X
iD1

hf;giifi .f 2H/: (1-3)

For general references on this theory, we refer the reader to [Christensen 2008,
Section 5.1]. Recently, various generalizations of frames have been proposed:
continuous frames [Ali et al. 1993; Askari-Hemmat et al. 2001; Gabardo and Han
2003], g-frames [Sun 2006], fusion frames [Casazza et al. 2008], von Neumann–
Schatten frames [Sadeghi and Arefijamaal 2012], and so on. Frames for Banach
spaces were first introduced in [Gröchenig 1991] and were developed in [Aldroubi
et al. 2001; Cazassa and Christensen 1997; Casazza et al. 1999; 2005]. In particular,
Christensen and Stoeva [2003] studied p-frames in Banach spaces and obtained a
lot of interesting and important results.

In applications of frame theory the goal is to recognize the finer properties
of functions by means of the magnitudes of the frame coefficients [Benedetto
et al. 2006; Bolcskei et al. 1998; Candès and Donoho 2004; Heath and Paulraj
2002]. These properties, typically smoothness and decay properties or phase-space
localization of functions, are measured by the Banach space norm. Dual frames
have a key role in the decomposition of elements in the underlying space. Casazza
et al. [2005] present some equivalent conditions for the existence of reconstruction
formulas in Banach spaces. Moreover, sufficient conditions for the existence of dual
frames are studied in [Aldroubi et al. 2001]. In this article, at the first, we review the
definition and basic properties of p-frames, and then express some characterizations
of duals of p-frames. The analogous results concerning frames in Hilbert spaces
may be found in [Li 1995]. Finally, we discuss a stability theorem for duals of
p-frames.

2. Elementary properties of p-frames

Throughout this paper, X is a separable Banach space with dual X �, 1< p; q <1

and 1
p
C

1
q
D 1. A sequence fgig

1
iD1
�X � is called a p-frame for X if there exist

constants A, B > 0 such that

Akxk �

� 1X
iD1

jgi.x/j
p

�1
p

� Bkxk .x 2X /: (2-1)

The sequence fgig
1
iD1

is a p-Bessel sequence if at least the upper p-frame
condition is satisfied. Analogous to frame theory in Hilbert spaces, one can define
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the synthesis operator as

T W lq
!X �; T fdig WD

1X
iD1

digi :

A straightforward calculation shows that fgig
1
iD1
� X � is a p-Bessel sequence

with bound B if and only if T is well-defined and kT k �B; see [Christensen and
Stoeva 2003, Proposition 2.2].

The following result shows other aspects of the synthesis operator:

Proposition 2.1 [Christensen and Stoeva 2003]. Let fgig�X � be a p-frame. Then

(i) the adjoint of T given by T � WX ! lp; f 7! fgi.f /g
1
iD1

has closed range;

(ii) X is reflexive;

(iii) T is onto.

The next proposition deals with preservation of the p-frame property under the
action of various operators. Its proof is straightforward and we omit it.

Proposition 2.2. Let X and Y be two Banach spaces and‰ WY !X be a bounded
operator. Then

(i) if fgig
1
iD1
�X � is a p-Bessel sequence for X , then f‰�gig

1
iD1

is a p-Bessel
sequence for Y ;

(ii) if fgig
1
iD1

is a p-frame for X , and ‰ is one-to-one with closed range, then
f‰�gig

1
iD1

is a p-frame for Y .

Definition 2.3. Let X be a Banach space and 1<p<1. A sequence ffig
1
iD1
�X

is called a p-Riesz basis for X if the closed linear span of ffig
1
iD1

is X and there
exist constants A and B such that, for any finite scalars fcig,

A
�P
jci j

p
� 1

p �
P cifi

� B
�P
jci j

p
� 1

p : (2-2)

Clearly, if fgig
1
iD1
�X � is a p-Riesz basis for X � then its synthesis operator

has a bounded inverse. In particular, every p-Riesz basis for X � is a q-frame for
X with the same bounds.

If fgig
1
iD1
� X � is a p-frame for X , then Proposition 2.1 shows that every

g 2 X � can be written as g D
P1

iD1 digi for some fdig
1
iD1
2 lq . Our aim is to

find such a decomposition for the elements of X .

3. Main results

Let ffig
1
iD1

be a frame in a Hilbert space H with the synthesis operator T . The
canonical dual fS�1fig

1
iD1

deals with the frame operator S ; see (1-2). It is not
guaranteed that the canonical dual frame has the same structure as the frame itself
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[Daubechies 1990]. Alternate duals are now presented as being a good candidate to
apply the reconstruction formula (1-2).

Unfortunately, in p-frames, the frame operator cannot be defined. Hence, we
first try to describe the canonical dual with respect to the synthesis operator. In
fact, let ffig

1
iD1

be a frame in a Hilbert space H with the analysis operator T �.
Then the frame condition (1-1) implies that T � is injective and has closed range
[Christensen 2008, Corollary 5.4.3]. Hence, the operator .T �/�1 W R.T �/! H

can be extended to a bounded operator ˆ W l2!H. Therefore,

S�1fi D S�1T ıi D S�1T T �ˆıi Dˆıi ;

where fıig1iD1
is the canonical orthonormal basis for l2.

We summarize this fact in the following lemma.

Lemma 3.1. Let ffig
1
iD1

be a frame in H with the analysis operator T �. The
canonical dual ffig

1
iD1

can be represented as fˆıig1iD1
, where ˆ W l2!H is the

unique extension of .T �/�1 and fıig1iD1
is the canonical orthonormal basis of l2.

Let X be a Banach space with dual X � and 1 < p <1. The usual duality
between X and X � allows us to consider p-frames for X �. In fact, a sequence
ffig

1
iD1
�X is a p-frame if there exist constants A and B such that

Akgk �

�
1P

iD1

jg.fi/j
p

�1
p

� Bkgk .g 2X �/:

If the upper frame condition is satisfied we call ffig
1
iD1

a p-Bessel sequence.

Definition 3.2. Let fgig
1
iD1
� X � be a p-Bessel sequence for X . A q-Bessel

sequence ffig
1
iD1
�X for X � is called a dual for fgig

1
iD1

if

g D
X

g.fi/gi .g 2X �/ or f D
X

gi.f /fi .f 2X /: (3-1)

If fgig
1
iD1

is p-frame, by using the Cauchy–Schwarz inequality, ffig
1
iD1

is auto-
matically a q-frame for X �, and vice versa. For more details see Theorem 2.10 of
[Christensen and Stoeva 2003].

Denote the synthesis operators of fgig
1
iD1

and ffig
1
iD1

by T and U , respectively.
Also let X be reflexive. Then (3-1) holds if and only if T U �D IX � or U T �D IX .
Although, for every p ¤ 2, there exist a Banach space X and a p-frame for X

without any dual [Casazza et al. 1999], Christensen and Stoeva [2003] showed that a
p-frame fgig

1
iD1

has a dual if and only if R.T �/, the range of T �, is complemented
in lp. Obviously, every p-Riesz basis for X � has a unique dual.

Now we give a characterization of dual p-frames:
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Proposition 3.3. Let fgig
1
iD1
�X � be a p-frame for X with the synthesis opera-

tor T . Then there exists a one-to-one correspondence between duals of fgig
1
iD1

and bounded left inverses of T �.

Proof. Suppose that ˆ W lp ! X is a bounded left inverse of T � and consider
fıig
1
iD1

as the canonical basis of lp. It is obvious that ffig
1
iD1
WD fˆıig

1
iD1

is a
q-Bessel sequence and

f DˆT �f Dˆ

1X
iD1

gi.f /ıi D

1X
iD1

gi.f /fi .f 2X /:

Thus ffig
1
iD1

is a q-frame for X �. Conversely, let ffig
1
iD1
� X be a dual for

fgig
1
iD1

. Consider ˆ W lp ! X as the synthesis operator of ffig
1
iD1

. Then ˆ is
bounded and for each f 2X we have

f D

1X
iD1

gi.f /fi D

1X
iD1

gi.f /ˆıi Dˆ.fgi.f /g
1
iD1/DˆT �f: �

As a consequence, we show that a p-frame fgig
1
iD1
� X � with a unique dual

is a q-Riesz basis for X �. In fact, by Proposition 3.3 there exists a one-to-one
correspondence between the dual frames of fgig

1
iD1

and all bounded left inverse
operators of T �, in which T is the synthesis operator of fgig

1
iD1

. Hence, fgig
1
iD1

has a unique dual if and only if T is injective. T is also surjective by Proposition 2.1.
Thus T is invertible and kT �1k<1. This implies that fgig

1
iD1

is a q-Riesz basis
for X �.

Proposition 3.4. Assume that p-frame fgig
1
iD1
�X � has a dual. Then the q-Bessel

sequence ffig
1
iD1
� X is a dual for fgig

1
iD1

if there exists a bounded operator
‰ W X � ! lq such that T‰ D 0. Conversely, all duals of fgig

1
iD1

(provided
existence) can be described in this manner.

Proof. Let fgig
1
iD1

be a p-frame. As a consequence of Proposition 2.1, the operator
.T �/�1 W R.T �/ ! X is well-defined. If fgig

1
iD1

has a dual, then R.T �/ is
complemented and so this operator can be extended to a bounded linear operator
W W lp!X . Now assume that ffig

1
iD1
�X is a dual for fgig

1
iD1

with the synthesis
operator U . Then (3-1) immediately implies that T U � D I . Define ‰ WX �! lq

by ‰ D U ��W �. Clearly, ‰ is a bounded operator and

T‰ D T U ��T W � D I � .W T �/� D 0:

Conversely, suppose that ‰ W X �! lq is a bounded operator via T‰ D 0. Take
ˆDW � �. Then ˆ is a bounded operator and ˆT � D I . Using Proposition 3.3
we conclude that fˆıig1iD1

is a dual for fgig
1
iD1

. �
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Suppose that fgig
1
iD1
� X � is a p-frame with the synthesis operator T such

that R.T �/� lp is complemented. Then fW ıig
1
iD1

is called the canonical dual of
fgig

1
iD1

, where W W lp! X is the extension of .T �/�1. Other duals, which are
characterized by Proposition 3.3, are called alternate duals. In other words, the
canonical dual is associated to the bounded inverse of T � whereas alternate duals
are in fact obtained by the left inverses of T �.

Now we are ready to state a perturbation theorem about duals.

Theorem 3.5. Let fgig
1
iD1
�X � be a p-frame for X with bounds A1 and B1. The

p-frames sufficiently close to fgig
1
iD1

have a dual. More precisely, let ffig
1
iD1
�X

be a dual for fgig
1
iD1

with bounds A2 and B2, and let fg0ig
1
iD1

be another p-frame
with bounds A0 and B0 such that fgi �g0ig

1
iD1

is a p-Bessel sequence with constant
sufficiently small �. Then there exists a dual q-frame ff 0i g

1
iD1

for fg0ig
1
iD1

such that
ffi �f

0
i g
1
iD1

is also a q-Bessel sequence with bound multiplied by �.

Proof. Denote by T1 and T2 the synthesis operators of fgig
1
iD1

and fg0ig
1
iD1

,
respectively. Then kT1�T2k < � by Proposition 2.2 of [Christensen and Stoeva
2003]. Moreover, .T �

1
/�1 W R.T �

1
/! X can be extended to a bounded operator

W W lp!X by the assumption. Hence

kI �T �2 W k D k.T1�T2/
�W k � kW kkT1�T2k � �kW k:

Consequently T �
2

W is invertible. It follows that T �
2

has a bounded right inverse. A
similar argument shows that its left inverse also exists. Consider U1 W l

p!X as
the synthesis operator of ffig

1
iD1

. Then

kI �U1T �2 k D kU1.T1�T2/
�
k � kU1kkT1�T2k � �kU1k:

Therefore, the p-frame fg0ig
1
iD1

has a dual. We are looking for the desired dual.
First by Proposition 3.4 there exists a bounded operator ‰ W X � ! lq such that
T1‰ D 0. Assume that W2 W l

p!X is an extension of .T �
2
/�1. Put

hi D .W2C‰
�/ıi :

Then fhig
1
iD1

is a q-Bessel sequence with the synthesis operator U2 WDW2C‰
�

by Proposition 2.2. Moreover, for each f 2X we have

kf �U2T �2 f k D k‰
�T �2 f k

D k‰�T �1 f �‰
�T �2 f k

� kT1�T2kk‰kkf k � �k‰kkf k:

Therefore, U2T �
2

is invertible for sufficiently small � > 0. In particular,

kI �U2T �2 k � �k‰k:
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It remains to show that the q-frame ff 0i g
1
iD1
WD f.U2T �

2
/�1fig

1
iD1

satisfies the
theorem. It is easy to see that

U2T �2 D I C‰�.T �1 �T �2 /: (3-2)

Hence,

1� �k‰k � kU2T �2 k: (3-3)

For each sequence fdig
1
iD1

in lp by using (3-2) and (3-3) we get 1P
iD1

di.fi �f
0

i /

D kU1fdig� .U2T �2 /
�1U1fdigk

� kU1kkI � .U2T �2 /
�1
k

�
1P

iD1

jdi j
p

�1
p

� kU1kk.U2T �2 /
�1
kkU2T �2 � Ik

�
1P

iD1

jdi j
p

�1
p

�
�k‰kB2

1� �k‰k

�
1P

iD1

jdi j
p

�1
p

:

This means that ffi � f
0

i g
1
iD1

is a q-Bessel sequence and its bound is a multiple
of �. �

Let fgig
1
iD1
�X � be a p-Bessel sequence for X with the synthesis operator T .

We say that a q-Bessel sequence ffig
1
iD1
�X with the synthesis operator U is an

approximately dual of fgig
1
iD1

if

kI �T U �k< 1 or kI �U T �k< 1: (3-4)

Obviously, ffig
1
iD1

is a dual of fgig
1
iD1

when T U �D I or U T �D I . Approximate
duals are studied in a Hilbert space setting in [Christensen and Laugesen 2010]. They
are easier to construct than the classical dual frames. For p-frames, which don’t
have duals in general, it is natural to ask whether we can exploit the approximate
duals instead of duals. Unfortunately, the answer is negative. In fact, if fgig

1
iD1

is a
p-frame for X with an approximate dual ffig

1
iD1

, then, with notation as above, the
operator U T � is invertible. Hence, fU T �fig

1
iD1

is a p-frame by Proposition 2.2.
Moreover,

f D .U T �/�1U T �f D .U T �/�1
1X

iD1

gi.f /fi D

1X
iD1

gi.f /.U T �/�1fi :

Therefore, f.U T �/�1fig is a dual of fgig
1
iD1

.
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Shock profile for gas dynamics in
thermal nonequilibrium

Wang Xie

(Communicated by John Baxley)

In this paper, we study the existence and the properties of a shock profile for a
system of thermal nonequilibrium gas dynamics. We find a neat condition to
ensure the existence of the shock profile. Moreover, we calculate the shock profile
solution explicitly.

1. Introduction

The motion of a gas in local thermodynamic equilibrium is governed by the
compressible Euler equations. In Lagrangian coordinates, the equations for one-
dimensional flow read (see [Courant and Friedrichs 1948])

vt − ux = 0,
ut + px = 0,(
e+ 1

2 u2
)

t + (pu)x = 0,
(1-1)

where v, u, p and e are, respectively, the specific volume, velocity, pressure and
internal energy of the gas. For an ideal gas,

e =
1

γ − 1
pv, (1-2)

where γ > 1 is the adiabatic constant. During rapid changes in the flow the
internal energy e may lag behind the equilibrium value corresponding to the ambient
pressure and density. The translational energy adjusts quickly, but the rotational and
vibrational energy may take an order of magnitude longer. If we suppose that α of
the degrees of freedom adjust instantaneously but a further α f degrees of freedom
take longer to relax, we may take (see [Whitham 1974])

e =
α

2
pv+ q, (1-3)
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where q is the energy in the lagging degrees of freedom. In equilibrium, q would
have the value

qequil =
α f

2
pv. (1-4)

A simple overall equation to represent the relaxation is (in Lagrangian coordinates)

qt =−
1
τ

(
q −

α f

2
pv
)
, (1-5)

where τ > 0 is the relaxation time. Therefore, in thermal nonequilibrium, we have
the following system of equations to model the gas motion:

vt − ux = 0,
ut + px = 0,( 1

2αpv+ q + 1
2 u2

)
t + (pu)x = 0,

qt =−
1
τ

1
(
q − 1

2α f pv
)
.

(1-6)

If the relaxation time τ is taken to be so short that q = (α f /2)pv is an adequate
approximation to the last equation in (1-6), we have the following equilibrium
theory: 

vt − ux = 0,
ut + px = 0,( 1

2(α+α f )pv+ 1
2 u2

)
t + (pu)x = 0.

(1-7)

The three characteristic speeds for (1-7) are

λ1 =−

√(
1+

2
α+α f

)
p
v
, λ2 = 0, λ3 =

√(
1+

2
α+α f

)
p
v
.

For the system (1-7), the setup ((v−, u−, p−), (v+, u+, p+), σ ) with two con-
stant states (v−, u−, p−) and (v+, u+, p+) and speed σ is called a shock wave (see
[Courant and Friedrichs 1948]) if the Rankine–Hugoniot conditions
−σ(v+−v−)= (u+−u−),
σ (u+−u−)= (p+− p−),

σ
((1

2(α+α f )p+v++ 1
2 u2
+

)
−
( 1

2(α+α f )p−v−+ 1
2 u2
−

))
= (p+u+− p−u−)

(1-8)

hold, and some other entropy conditions hold, where v−, v+, p−, p+ are positive
constants, u− and u+ are constants. A shock wave is called a 1-shock wave if

−

√(
1+

2
α+α f

)
p−
v−

> σ >−

√(
1+

2
α+α f

)
p+
v+
. (1-9)
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A shock wave is called a 3-shock wave if√(
1+

2
α+α f

)
p−
v−

> σ >

√(
1+

2
α+α f

)
p+
v+
. (1-10)

In this paper, we consider a 3-shock wave, because a 1-shock wave can be handled
by the same method. For a 3-shock wave, it follows from (1-8) and (1-10) that

v− < v+, u− > u+, p− > p+. (1-11)

A shock profile for the 3-shock wave ((v−, u−, p−), (v+, u+, p+), σ ) is a trav-
eling-wave solution for system (1-6) of the form (v, u, p, q)((x−σ t)/τ) satisfying

(v, u, p, q)(±∞)= (v±, u±, p±, (α f /2)p±v±). (1-12)

So we have 
−σv′− u′ = 0,
−σu′+ p′ = 0,

−σ
(1

2αpv+ q + 1
2 u2

)′
+ (pu)′ = 0,

−σq ′ =−
(
q − 1

2α f pv
)
,

(1-13)

where ′ = d/dξ and ξ = (x − σ t)/τ .
In this paper, we are interested in the existence and properties of the shock profile.

For a general hyperbolic system with relaxation, the existence of the shock profile
has been proved in [Yong and Zumbrun 2000] by using the center manifold method
with the assumption that the shock strength is sufficiently small. In this paper, we
find the sufficient and necessary condition, which is

p−
p+

< 1+
2α f

α(1+α+α f )
,

to ensure the existence of the shock profile. Moreover, we can calculate the shock
profile solution in some explicit details. This is in sharp contrast to the abstract
construction in [Yong and Zumbrun 2000]. Before we state our theorem, we
introduce some notation. Let

m = σv−+ u− = σv++ u+,

P =−σu−+ p− =−σu++ p+,

Q =−σ
( 1

2α+α f p−v−+ 1
2 u2
−

)
+ p−u−

=−σ
( 1

2α+α f p+v++ 1
2 u2
+

)
+ p+u+,

f (v)=−σ 2(1+α)v+
(
1+ 1

2α
)
(σ 2v−+ p−)

=−σ 2(1+α)v+
(
1+ 1

2α
)
(σ 2v++ p+).

(1-14)
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Theorem. Suppose the two constant states (v−, u−, p−), (v−, u−, p−) and the
speed σ satisfy the Rankine–Hugoniot conditions (1-8) and the Lax shock condition
(1-10).

(1) If
p−
p+

< 1+
2α f

α(1+α+α f )
, (1-15)

then there exists a solution to the problem (1-13) and (1-12).

(2) If
p−
p+
≥ 1+

2α f

α(1+α+α f )
, (1-16)

the problem (1-13) and (1-12) does not admit a smooth solution.

(3) In case (1), that is, if (1-15) holds, the solution of the problem (1-13) and
(1-12) satisfying v(0) = v0 for some constant v0 satisfying v− < v0 < v+ is
given by

2 f (v+)
(
ln(v+−v)−ln(v+−v0)

)
−2 f (v−)

(
ln(v−v−)−ln(v0−v−)

)
=−σξ(1+α+α f )(v+− v−), (1-17)

u(ξ)= m− σv(ξ), p(ξ)= mσ + P − σ 2v(ξ) (1-18)

for −∞< ξ <+∞. For this solution, we have

v′(ξ) > 0, u′(ξ) < 0, p′(ξ) < 0 (1-19)

for −∞< ξ <+∞, and

C1v
′(ξ)≤ exp

(
−

1+α+α f

2 f (v+)
σ (v+− v−)ξ

)
≤ C2(v+− v(ξ)) (1-20)

for ξ > 0, and

C3v
′(ξ)≤ exp

(
1+α+α f

2 f (v−)
σ (v+− v−)ξ

)
≤ C4(v(ξ)− v−) (1-21)

for ξ < 0, where Ci (i = 1, 2, 3, 4) are some positive constants. For u(ξ)
and p(ξ), we have similar estimates.

2. Proofs

To prove our theorem, we start by integrating (1-13) to get
σv+ u = m,
−σu+ p = P,

−σ
( 1

2αpv+ q + 1
2 u2

)
+ pu = Q,

(2-1)
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where m, P and Q are given by (1-14). By the third equation of (2-1), we have

q =−
(
α

2
pv+

u2

2

)
+

pu− Q
σ

. (2-2)

Substituting (2-2) into the fourth equation of (1-13), using (2-1) and (2-2), we
get

f (v)
dv
dξ
=

1
σ

(
α+α f

2
pv+

u2

2
−

pu− Q
σ

)
, (2-3)

where f (v) is given by (1-14). So

f (v−)= v−

(
−
α

2
σ 2
+

(
1+

α

2

)
p−
v−

)
. (2-4)

In view of (1-10), we have

−
α

2
σ 2
+

(
1+

α

2

)
p−
v−

>−
α

2

(
1+

2
α+α f

)
p−
v−
+

(
1+

α

2

)
p−
v−

=

(
1−

α

α+α f

)
p−
v−

> 0. (2-5)

Therefore
f (v−) > 0.

By (1-14), we get

f (v+)= v+
(
−

1
2ασ

2
+
(
1+ 1

2α
)

p+/v+
)
. (2-6)

Let

v̄ =
1+ 1

2α

1+α
σ 2v++ p+

σ 2 . (2-7)

Then
f (v̄)= 0. (2-8)

So, if
v+ < v̄, (2-9)

then, because f is a decreasing function,

f (v+) > 0. (2-10)

In the next lemma, we will give a neat condition to ensure (2-10).

Lemma. (1) If
p−
p+

< 1+
2α f

α(1+α+α f )
, then v+ < v̄ and thus f (v+) > 0.

(2) If
p−
p+
= 1+

2α f

α(1+α+α f )
, then v+ = v̄ and f (v+)= 0.
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(3) If
p−
p+

> 1+
2α f

α(1+α+α f )
, then v+ > v̄ and f (v+) < 0.

Proof. First, we use (1-8) to show that

1
2(α+α f )(p+v+− p−v−)= (v−− v+) 1

2(p++ p−). (2-11)

In fact, by the third equation of (1-8), we have

1
2(α+α f )(p+v+− p−v−)=

1
σ
(p+u+− p−u−)− 1

2(u
2
+
−u2
−
)

=
1
σ
(p+u+− p−u−)− 1

2(u++u−)(u+−u−). (2-12)

By the second equation of (1-8), we have (u+ − u−) = (1/σ)(p+ − p−). This,
together with (2-12), implies that

1
2(α+α f )(p+v+− p−v−)=

1
σ

(
p+u+− p−u−− 1

2(p+− p−)(u++u−)
)

=
1
σ

(1
2 p+u+− 1

2 p−u−− 1
2 p+u−+ 1

2 p−u+
)

=
1
σ
(u+−u−)(p++ p−). (2-13)

This proves (2-11). Dividing by p−v+ both sides of (2-11), we get

α+α f

2

(
p+
p−
−
v−

v+

)
=

(
v−

v+
− 1

)
(p+/p−)+ 1

2
.

We solve for v−/v+ from this to get

v−

v+
=
(α+α f )(p+/p−)+ (p+/p−)+ 1

(α+α f )+ (p+/p−)+ 1
. (2-14)

It is easy to verify that v+ < v̄ is equivalent to

σ 2 <

(
1+

2
α

)
p+
v+
. (2-15)

From the first and second equations of (1-8), we know that

σ 2
=

p−− p+
v+− v−

. (2-16)

So v+ < v̄ is equivalent to

p−− p+
v+− v−

<

(
1+

2
α

)
p+
v+
. (2-17)

Now we use (2-14) to show (2-17) if (1-15) is true.
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By (2-14), we have

p−− p+
v+− v−

=
(p−/p+)− 1
1− (v−/v+)

(p+/v+)

=
(p−/p+)− 1

1−
(α+α f )(p+/p−)+ (p+/p−)+ 1

(α+α f )+ (p+/p−)+ 1

(
p+
v+

)

=
(p−/p+)− 1

(α+α f )(1− (p+/p−))

[
(α+α f )+ (p+/p−)+ 1

]( p+
v+

)

=
(p−/p+)− 1
1− (p+/p−)

(
1+

(p+/p−)+ 1
α+α f

)(
p+
v+

)

=
(p−/p+)(p−/p+− 1)

(p−/p+)− 1

(
1+

(p+/p−)+ 1
α+α f

)(
p+
v+

)

=

(
p−
p+

)(
1+

(p+/p−)+ 1
α+α f

)(
p+
v+

)

=

(
p−
p+
+

1
α+α f

(
1+

p−
p+

))(
p+
v+

)

=

((
1+

1
α+α f

)(
p−
p+

)
+

1
α+α f

)(
p+
v+

)
. (2-18)

So, if (1-15) holds, then we have(
1+

1
α+α f

)
p−
p+
+

1
α+α f

<

(
1+

1
α+α f

)(
1+

2α f

α(1+α+α f )

)
+

1
α+α f

= 1+
1

α+α f

(
2+

2α f

α(1+α+α f )

)
+

2α f

α(1+α+α f )

= 1+
1

α+α f

(
2α(1+α+α f )+ 2α f

α(1+α+α f )

)
+

2α f

α(1+α+α f )

= 1+
2

α+α f

(α+α f )(1+α)
α(1+α+α f )

+
2α f

α(1+α+α f )

= 1+
2(1+α)

α(1+α+α f )
+

2α f

α(1+α+α f )

= 1+
2
α
. (2-19)
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Inequality (2-17) follows from (2-18) and (2-19). This proves item (1) of the
Lemma. Items (2) and (3) follow from the same arguments. �

Proof of the Theorem. Let

G(v, u, p)= (α+α f )pv+ u2
−

2(pu− Q)
σ

. (2-20)

It follows from (2-1) and (2-20) that

G(v, u, p)= (α+α f )(mσ + P − σ 2v)v+ (m− σv)2

−
2
σ

(
(m− σv)(mσ + P − σ 2v)− Q

)
, (2-21)

where m, P , Q are given in (1-14). Therefore, G(v, u, p) is a function of the single
variable v, and we simply write it G(v) from now on. It is a quadratic function.
Moreover, by (1-14), we have

G(v+)= G(v−)= 0. (2-22)

Therefore,
G(v)=−β(v− v−)(v− v+) (2-23)

for some constant β. By comparing (2-23) with (2-21), we get β = σ 2(1+α+α f ).
Hence,

G(v)=−σ 2(1+α+α f )(v− v−)(v− v+). (2-24)

So
G(v) > 0 (2-25)

as v− < v < v+.
In case (1) of the Theorem, we choose a constant v0 satisfying v− < v0 < v+

and set v(0)= v0. Then we have from (2-3) that∫ v

v0

2σ f (v)
G(v)

dv = ξ, (2-26)

and consider the expression ∫ v

v0

2σ f (s)
G(s)

dv = F(v),

where F(v)= ξ .
Also, by the Lemma, and (2-24), we have, if

p−
p+

< 1+
2α f

α(1+α+α f )
,
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then f (v)/G(v) > 0 for v− < v < v+, and∫ v+

v0

2σ f (v)
G(v)

dv =+∞, (2-27)∫ v−

v0

2σ f (v)
G(v)

dv =−∞. (2-28)

Therefore, ξ = F(v) is an increasing mapping of (v−, v+) onto (∞−,∞+), which
clearly maps v0 to 0. Thus the inverse mapping ξ→ v(ξ) is a differentiable function
(with a positive derivative) and is one-to-one and onto from (−∞,+∞) to (v−, v+)
with v(0)= v0. Moreover, it follows from (2-26) and (2-27) that

v(−∞)= v−, v(+∞)= v+.

Therefore the substitution s = v(t) gives

ξ =

∫ ξ

0

2σ f (v(t))
G(v(t))

v′(t) dt

and differentiation gives

1=
2σ f (v(ξ))

G(v(t))
v′(ξ),

and so we have a solution v of (2-3), which proves part (1) of the Theorem.
We prove part (2) as follows. If

p−
p+
≥ 1+

2α f

α(1+α+α f )
, (2-29)

by the Lemma, we know that v− < v̄ ≤ v+. In this case, we use the proof by
contradiction to prove (2) as follows. Suppose that the problem (1-12) and (1-13)
has a solution v(ξ). Since, in this case, v− < v̄ ≤ v+, and f ′(v) < 0, we have
f (v−) > 0≥ f (v+). We may write (2-3) as

2σ f (v)
dv
dξ
= G(v). (2-30)

Since v(−∞)= v− and f (v)> 0 for v−<v< v̄ and G(v)> 0 for v−<v<v+, we
have dv/dξ > 0 when v− < v < v̄ ≤ v+. For a constant v1 satisfying v− < v1 < v̄,
there exists ξ1 ∈ (−∞,+∞) such that v(ξ1)= v1. It follows from (2-30) that∫ v

v1

2σ f (w)
G(w)

dw = ξ − ξ1. (2-31)

By (1-14), we know that f (v) is a linear function of v in the form

f (v)=−k(v− v̄), (2-32)
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where k = σ 2(1+ α). It follows from (2-23), and the fact that v− < v < v̄ ≤ v+
(when (2-29) holds), that ∫ v̄

v1

2σ f (w)
G(w)

dw <+∞. (2-33)

We let

ξ̄ = ξ1+

∫ v̄

v1

2σ f (w)
G(w)

dw.

By (2-33),
−∞< ξ̄ <∞. (2-34)

It follows from (2-31) that, as

v(ξ)→ v̄, ξ → ξ̄ . (2-35)

This will lead to a contradiction by the following argument. By (2-30), (2-32) and
(2-22), we have

dv
dξ
=

G(v)
2σ f (v)

=
β

2σ
(v− v−)(v− v+)

v− v̄
. (2-36)

Therefore, if
p−
p+

> 1+
2α f

α(1+α+α f )
,

then v̄ < v+, and then by (2-35) and (2-36), we have dv(ξ)/dξ →+∞ as ξ → ξ̄ .
This is a contradiction due to (2-34) because the solution v(ξ) is smooth, so its
derivative cannot tend to +∞ for finite ξ .

If
p−
p+
= 1+

2α f

α(1+α+α f )
,

then v̄ = v+, and then (2-36) reduces to

dv
dξ
=
β

2σ
(v− v−). (2-37)

So dv/(v− v−)= (β/2σ) dξ . In this case, (2-31) becomes∫ v

v1

dw
w− v−

dw =
β

2σ
(ξ − ξ1). (2-38)

This implies that

ln(v− v−)− ln(v1− v−)= (β/2σ)(ξ − ξ1).
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Solving this for v, we obtain

v(ξ)= v−+ (v1− v−)e(β/2σ)(ξ−ξ1).

Hence, v(ξ)→∞ as ξ →∞. Therefore, it is impossible that v(+∞)= v+. This
is a contradiction. Thus, part (2) of the Theorem is proved by the above argument.

We can prove part (3) as follows. We have already proved that, if

p−
p+

< 1+
2α f

α(1+α+α f )
,

the problem (1-13) and (1-12) has a solution. In this case, v′(ξ) > 0 is an easy
consequence of the above argument in (i). So v− < v(ξ) < v+ for −∞< ξ <+∞.
Next, we prove (1-17). We may write (2-26) as, in view of (2-26) and (2-24),∫ v

v0

2 f (w)
(w− v−)(w− v+)

dw =−σ(1+α+α f )ξ. (2-39)

It is easy to verify that, by noting that f (w)= (1+α/2)(σm+ P)− σ 2(1+α)w
(see (1-14)),

2 f (w)
(w− v−)(w− v+)

=
−2 f (v−)
(w− v−)

1
(v+− v−)

+
2 f (v+)
(w− v+)

1
(v+− v−)

. (2-40)

Equation (1-17) then follows from (2-39) and (2-40). From (1-17), we can easily get
the bounds for v+− v(ξ) in (1-20). Similarly, we can get the bounds for v(ξ)− v−
in (1-21). By (1-17), we have(

2 f (v+)
v+− v

+
2 f (v−)
v− v−

)
v′(ξ)=−σ(1+α+α f )(v+− v−).

Therefore, the bounds for v′(ξ) in (1-20) and (1-21) can be derived from the
bounds of v+− v(ξ) and v(ξ)− v− which we have just proved. This finishes the
proof of the Theorem. �
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Expected conflicts in pairs of rooted binary trees
Timothy Chu and Sean Cleary

(Communicated by Robert W. Robinson)

Rotation distance between rooted binary trees measures the extent of similarity of
two trees with ordered leaves. There are no known polynomial-time algorithms
for computing rotation distance. If there are common edges or immediately
changeable edges between a pair of trees, the rotation distance problem breaks
into smaller subproblems. The number of crossings or conflicts of a tree pair also
gives some measure of the extent of similarity of two trees. Here we describe
the distribution of common edges and immediately changeable edges between
randomly selected pairs of trees via computer experiments, and examine the
distribution of the amount of conflicts between such pairs.

1. Introduction

Binary trees are used in a broad spectrum of computational and mathematical
applications. Binary search trees, for example, are widely used in databases and can
be used to ensure efficient searches. The shape of a binary search tree is important
in guaranteeing this efficiency — a balanced binary tree guarantees worst-case
search time on the order of log(n), whereas a tree with a stringy shape will have
worst-case search time on the order of n, where n is the number of nodes in the
tree, or equivalently, items to be stored. Because of such applications, there has
been a great deal of interest in operations which preserve the left-to-right order
of the leaves of a tree while adjusting the shape of the tree. See [Knuth 1973]
for background and numerous algorithms related to tree shape and balance. One
widely studied approach to adjust tree shape uses rotations in binary trees where
there is a left-to-right order on the leaves. A rotation is a single move at a particular
node which promotes one of the grandchild nodes to a child node, switches another
grandchild to have a different parent, and demotes a child node to a grandchild
node, while preserving the order. Such an operation is pictured in Figure 1.
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Keywords: random binary tree pairs.
The authors gratefully acknowledge support from the National Science Foundation under
grant 0811002.

323

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2013.6-3
http://dx.doi.org/10.2140/involve.2013.6.323


324 TIMOTHY CHU AND SEAN CLEARY

N

A B
C

←→ N

A
B C

Figure 1. Rotation at a node N . Right rotation at N transforms
the left tree to the right one, and left rotation at N is the inverse
operation which transforms the right tree to the left one. A, B,
and C represent leaves or subtrees, and the node N could be at the
root or any other position in the tree.

Any shape tree of size n nodes can be converted to any other tree of the same size
via a sequence of rotations, as described in [Culik and Wood 1982]. The minimum
length of possible sequences of rotations converting a tree S with n nodes to a
tree T with n nodes is the rotation distance between S and T . Though there are
some properties of rotation distance that are well understood, there is no known
effective algorithm for computing rotation distance. Sleator, Tarjan and Thurston
[STT 1988] showed that the distance is never more than 2n− 6, and furthermore
that for very large n that bound is achieved.

Here, we investigate some measures of tree similarity which are related to rotation
distance. When there are common edges, described below, this reduces rotation
distance and allows breaking of the problem into smaller parts. When there are
one-off edges, described below, there is an immediate essential possible first move
which then results in a common edge, again allowing reduction into parts. Another
measure of tree similarity is the count of the number of conflicting edge pairs,
described below. For each of these quantities, we investigate with a large number
of computational experiments how quickly these quantities grow with tree size. In

0 1 2

3

4 5
6

[0,1]

[0,6]

[2,6]

[3,6]

[4,6]

A

0

1 2

3 4

5 6
[1,2]

[0,2]

[0,3]

[0,6]

[4,6]

[5,6]

B

Figure 2. A common edge between a pair of trees. The green edge
is common to both trees and separates leaves 4–6 from the other
leaves in both trees. The root node interval is always [0, n], and
we do not consider that to represent a common edge.
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the case of common edges and one-off edges, the growth is linear with tree size and
in a manner consistent with the asymptotic behavior understood combinatorially.
In the case of conflicting edges, we see growth which appears to lie between linear
and quadratic.

By binary tree of size n, we mean a rooted binary tree with n leaves arranged
in a left-to-right order, with leaves numbered from 0 to n− 1. To each edge, we
associate an interval [i, j], where i is the leftmost leaf in the subtree attached to that
edge’s lower side, and similarly j is the rightmost such leaf. A pair of trees (S, T )
has a common edge if an edge [i, j] is present in both trees, as illustrated in Figure 2.
An edge [i, j] in S is a one-off edge with respect to T if it is itself not a common
edge of S with respect to T , but there is a single rotation in S which changes [i, j]
to a new edge which is now in common with T .

An edge [i, j] is in conflict with an edge [l,m] if it is not possible for both
edges to exist simultaneously in the same tree. We can readily detect edge conflicts
by noting that each edge partitions the set of leaves into two sets, obtained by
considering connected components of the forest obtained by deleting that edge. If
the partitions of leaves are incompatible, the edges had a conflict. For example, in a
tree with six leaves, an edge with interval label [2, 5] conflicts with an edge [0, 3].
The edge [2, 5] partitions the leaves into two sets: {0, 1} and {2, 3, 4, 5} and the

0 1 2

3 4
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[0,1]

[0,5]

[2,5]

[3,5]

[3,4]

A

0

1 2

3 4 5
[0,2]

[1,2]

[0,3]

[0,5]

[4,5]
B

0 1
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3 4

5
[0,1]

[0,2]

[0,5]
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[3,4]

C

0 1 2

3

4 5

[0,1]

[0,5]

[2,5]

[3,5]

[4,5]

D

Figure 3. The tree pair (A, B) has two one-off edges in A, marked
in red and blue. The tree pair (A, B) has no edges in common,
but left rotation at the root of A gives tree C , which has the red
edge [0, 2] in common with B. Similarly, right rotation at the node
marked [3, 5] in A gives tree D which has the blue edge [4, 5] in
common with B.



326 TIMOTHY CHU AND SEAN CLEARY

edge [0, 3] partitions the leaves into two sets: {0, 1, 2, 3} and {4, 5}. There is no
overall partition compatible with both such partitions, so that edge pair is in conflict,
as it would not be possible for those two edges to be present in the same tree
simultaneously. An example illustrating this particular edge pair in conflict is given
as trees A and B in Figure 3. Using the bijection between trees and triangulations
of regular polygons, described in [STT 1988], each conflict can be counted as an
intersection between edges of superimposed triangulations.

Since the number of trees of size n is the n-th Catalan number Cn , and Cn grows
exponentially on the order of 4nn−3/2, the number of pairs of trees of size n grows on
the order of 16nn−3. Thus, computing these quantities exhaustively is not possible
except for very small n. Instead, we use sampling techniques, experimenting
computationally by repeatedly choosing pairs of trees of size n uniformly at random
and computing and tabulating the results.

2. Conflicts and one-off edges

As described in [Cleary and St. John 2010], common edges permit the subdivision
of the rotation distance problem into smaller pieces. From [STT 1988], one-off
edges can be moved immediately to find a geodesic, and the resulting common
edge will then subdivide the problem as well.

The existence of common edges of a particular peripheral type was investigated by
Cleary, Elder, Rechnitzer and Taback, who showed in [CERT 2010], in connection
with using tree-pair diagrams to represent elements of Thompson’s group F , that a
randomly selected tree pair has at least one common peripheral edge. The number
of such common edges with respect to trees generated randomly by the Yule process
was investigated experimentally by Cleary, Passaro and Toruno [CPT 2013].

To understand the typical behavior of common edges, one-off edges, and con-
flicts between tree pairs, we performed a range of computational experiments to
investigate. In each case, we generated tree pairs of a particular size randomly
using Rémy’s bijection [Rémy 1985], which allows efficient generation of trees
of size n uniformly at random through an iterative process. After generating two
trees randomly, we collected the relevant information about common edges, one-off
edges, and conflicts and then iterated to collect large-sample data. As anticipated,
the various measures of complexity grew with tree size. We present summaries of
those experiments below.

We considered approximately 10 million tree pairs total of sizes ranging from
10 to 12,000. The bulk of the computational effort lay for trees of size 20 to 800.
These results are presented in Tables 1–3.

The number of common edges grows linearly with size as shown in Figure 4,
and the line of best fit for the data is an excellent match with the asymptotic exact
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Tree size range Average common edge fraction σ edge fraction

≤ 40 0.1361 0.09462
41–80 0.1052 0.04494
81–120 0.1004 0.03422

121–200 0.09720 0.02613
201–400 0.09534 0.01945
401–1000 0.09409 0.01358

1001–12000 0.09310 0.004324

Table 1. Fractions of tree common edges and their standard devia-
tions. The asymptotic fraction is known to be about 0.092958.
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Figure 4. The average number of common edges grows linearly
with tree size, with tight error bars from the large sample sizes
used over this range. The slope of this line is very close to the
expected 0.093 from the asymptotic analysis.

growth proven by Cleary, Rechnitzer and Wong in [CRW 2013].
The number of one-off edges grows linearly with size as shown in Figure 5,

and the line of best fit for the data shows very close agreement with the number
of common edges. This experimental, numerical observation led to renewed ef-
forts using asymptotic combinatorial methods, and that equivalence is now proven
asymptotically in [CRW 2013] by a delicate analysis of some of the relevant
generating functions. We note that though the means are asymptotically the same,
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Tree size range Average one-off fraction σ one-off fraction

≤ 40 0.1362 0.04890
41–80 0.1053 0.02591
81–120 0.1004 0.01986

121–200 0.09725 0.01516
201–400 0.09536 0.01129
401–1000 0.09408 0.007932

1001–12000 0.09307 0.002619

Table 2. Fractions of tree one-off edges and their standard devia-
tions. The asymptotic fraction is known to be about 0.092958.
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Figure 5. The average number of one-off edges grows linearly
with tree size, again with tight error bars from the large sample
sizes used over this range and this quantity is very close to the
average number of common edges of similarly sized tree pairs.
The slope of this line is very close to the expected 0.093 from the
asymptotic analysis.

the distributions appear to be significantly different. The standard deviation for the
number of one-offs generally has a standard deviation of a little more than half that
of the number of common edges. The combinatorial analysis of [CRW 2013] only
applies to the means — it appears that the distributions are genuinely different.
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Tree size range Average conflicts per edge σ conflicts per edge

≤ 40 3.2418 0.9985
41–80 5.837 1.320

*81–120 6.968 1.409
121–200 8.321 1.533
201–400 9.768 1.628

*401–1000 11.71 1.792
*1001–12000 17.45 1.887

Table 3. Average number of conflicts per edge and their standard deviations.

The asymptotic analysis of [CRW 2013] shows that for large n, the expected
number of common edges is

16− 5π
π

n+
7π − 20
π

+ O
(

log n
n

)
,

which is approximately

0.092958n+ 0.633802+ O
(

log n
n

)
.

For the average number of common edges in a tree of size n, this experimental data
yields a best linear fit of 0.092950n+ 0.643, and similarly for the average number
of one-off edges, the experimental data yields a best linear fit of 0.092867n+0.711.

We now turn to the number of conflicts between randomly selected pairs of trees,
shown in Figure 6. It is apparent from this data that the typical number of conflicts
per edge grows quite slowly. Even in trees of size multiple thousands, where in
theory an edge could cross hundreds of other edges, typically the mean number of
conflicts per edge is quite small, for example about 17. This illustrates that a tree of
size n selected uniformly at random tends to be rather “stringy” rather than balanced
(see [Knuth 1969]), and a pair of such stringy trees is not likely to have edges that
conflict with large swaths of the other trees. Though it is possible to construct
tree pairs of increasing size whose number of conflicts grows quadratically, these
constructions do not represent typical behavior of randomly selected tree pairs.

This data shows that the average number of conflicts grows more than linearly
with n, but subquadratically. The maximum possible number of conflicts is bounded
above by a quadratic function — each edge could conflict with at most n− 1 other
edges, giving a crude upper bound of n2

− n. Since each unmatched edge gives
at least one conflict, the average number of conflicts thus is growing somewhere
between linearly and quadratically. It is difficult to ascertain the exact growth of
the mean number of conflicts. Using the data set over the range from 5 to 12,000, a
log-log analysis, as shown in Figure 7, suggests that the power law of best fit over
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Figure 6. The number of conflicts grows with tree size in a manner
which appears to be between linear and quadratic, with a slight
upward concavity apparent over this range.
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Figure 7. Log-log plot of the average number of conflicts against
size. This relationship appears to be slightly concave downward,
indicating that the asymptotic behavior is probably a lower-degree
power law than the straight-line fit analysis would indicate.
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the pictured range is 1.3173. There may also be logarithmic terms present in the
growth which are difficult to detect experimentally.

3. Discussion

For common edges and one-off edges, these experiments worked well to establish
the behavior for growing tree size. These computational experiments confirm close
agreement to the asymptotic behavior of common edges, with relatively quick
convergence to the asymptotic limit. Furthermore, if we ignore the smaller tree
pairs of size 16 and less, the agreement is even stronger with the asymptotic behavior.
These experiments also suggested that the average number of one-off edges was the
same as common edges, which in other work has now been proven asymptotically to
be the case. Again we saw close agreement with the asymptotic limit and relatively
quick convergence.

For conflicts between tree pairs, these experiments gave some indication of the
order of growth, with some insight coming from the relatively low overall average
conflicts between randomly selected tree pairs. But there was not conclusive enough
behavior to establish a likely asymptotic estimate for the growth of the number
of conflicts as tree size increases. The possibility of logarithmic terms in the
asymptotic terms suggests that it may be difficult to detect the asymptotic behavior
more precisely with experimental methods. With fixed computational resources
and computation time, investigating larger size trees gives a significant increase in
the resulting error bars. Nevertheless, the power-law behavior is apparent from the
analysis and we expect the possible logarithmic correction terms, for example, to
not be dramatic.
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Hyperbolic construction of Cantor sets
Zair Ibragimov and John Simanyi

(Communicated by Kenneth S. Berenhaut)

In this paper we present a new construction of the ternary Cantor set within
the context of Gromov hyperbolic geometry. Unlike the standard construction,
where one proceeds by removing middle-third intervals, our construction uses the
collection of the removed intervals. More precisely, we first hyperbolize (in the
sense of Gromov) the collection of the removed middle-third open intervals, then
we define a visual metric on its boundary at infinity and then we show that the
resulting metric space is isometric to the Cantor set.

1. The ternary Cantor set

The ternary Cantor set C is one of the most familiar fractals in mathematics. Recall
its standard construction, which is based on the Euclidean notion of length. Begin
with the closed unit interval C0 = [0, 1] ⊆ R, then remove the open middle-third
interval, constructing C1 =

[
0, 1

3

]
∪
[ 2

3 , 1
]
. We then remove the middle-third of

each resulting closed interval again, finding

C2 =
[
0, 1

9

]
∪
[ 2

9 ,
1
3

]
∪
[ 2

3 ,
7
9

]
∪
[ 8

9 , 1
]
.

Continuing in this manner, we construct C by taking the intersection of all C ′ks,

C=

∞⋂
k=1

Ck .

Graphically, C0 through C6 are shown in Figure 1. The ternary Cantor set has
many interesting properties. As the intersection of closed intervals in (R, | . |), it
is compact. It is also perfect (i.e., it contains no isolated points), uncountable and
totally disconnected. The complement of the ternary Cantor set in [0, 1], CS, is
called the Cantor string. It consists of the countable union of the removed open
middle-third intervals. Cantor strings are subjects of study in fractal geometry
[Lapidus and van Frankenhuijsen 2006].

MSC2010: primary 30C65; secondary 05C25.
Keywords: Cantor set, Gromov hyperbolic spaces.
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Figure 1. Sets C0 through C6.

2. Hyperbolic construction

We begin with a brief discussion of Gromov hyperbolic spaces. A metric space
(X, d) is called Gromov δ-hyperbolic (or δ-hyperbolic) if there exists a δ ≥ 0 such
that for all x, y, z, w ∈ X ,

d(x, y)+ d(z, w)≤max{d(x, z)+ d(y, w), d(x, w)+ d(y, z)}+ 2δ. (2-1)

For x, y, z ∈ X , the Gromov product of x and y with respect to z is defined by

(x |y)z = 1
2 [d(x, z)+ d(y, z)− d(x, y)]. (2-2)

Alternatively, the space (X, d) is δ-hyperbolic if

(x |y)v ≥min{(x |z)v, (z|y)v}− δ,

for all x, y, z, v ∈ X (see, for example, [Väisälä 2005]). A bounded metric space
X is always δ-hyperbolic with δ ≤ diam X , so only unbounded metric spaces may
have more interesting characteristics.

To each Gromov hyperbolic space X , we associate a boundary at infinity, ∂X
(also called the Gromov boundary). Fix a base point v ∈ X . A sequence {ai } in X
is said to converge at infinity if (ai |a j )v→∞ as i, j→∞. Two such sequences
{ai } and {bi } are equivalent if (ai |bi )v→∞ as i→∞. The boundary at infinity
is defined to be the equivalence classes of sequences converging at infinity. The
boundary at infinity supports a family of so-called visual metrics. A metric d on
∂X is called a visual metric if there exists a v ∈ X,C ≥ 1 and ε > 0 such that for
all x, y ∈ ∂X ,

1
C
ρε,v(x, y)≤ d(x, y)≤ Cρε,v(x, y), where ρε,v(x, y)= e−ε(x |y)v .

Here (x |y)v is the Gromov product on ∂X , defined by

(x |y)v = inf{lim inf
i→∞

(ai |bi )v : ai ∈ x, bi ∈ y}
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and we set e−∞ = 0. The boundary at infinity of any Gromov hyperbolic space
endowed with a visual metric is bounded and complete [Bonk and Schramm 2000].

Our goal is to produce the ternary Cantor set within the framework of Gromov
hyperbolic spaces. As mentioned above, we do this by hyperbolizing the collection
of the removed middle-third intervals. Let X be the collection of all such intervals.
Hence, X contains intervals such as

( 1
3 ,

2
3

)
,
( 1

9 ,
2
9

)
,
( 7

9 ,
8
9

)
and so on. Note that

C= [0, 1] \
⋃
I∈X

I.

We now proceed to construct a metric h on X so that the space (X, h) is Gromov
hyperbolic. Let u H be a distance function defined on the set of all nonempty subsets
of [0, 1], defined by

u H (A, B)= sup{|x − y| : x ∈ A and y ∈ B}.

This distance function is called the upper Hausdorff distance (see, for instance,
[Hausdorff 1957; Ibragimov 2011a]). If I, J ∈ X with I = (a, b), J = (c, d) and
b < c, then u H = |a− d|. Note also that for each I, J ∈ X , we have

u H (I, J )≥ l(I )∨ l(J )≥
√

l(I ) · l(J ), (2-3)

where the first equality holds only if I = J and the second equality holds only if
l(I )= l(J ). Here, and in what follows, l(I ) denotes the Euclidean length of I ∈ X
and a ∨ b =max{a, b} for positive numbers a, b ∈ R.

Observe that since X consists of a disjoint collection of open intervals, it has a
natural order � induced by the usual order ≤ on R. Namely, we say that I � J if I
is to the left of J or if I = J . Observe also that if I � J � K , then

u H (I, K )≥ u H (I, J ). (2-4)

Now we define a distance function h on X . Given I, J ∈ X , let

h(I, J )= 2 log
u H (I, J )
√

l(I ) · l(J )
.

It is an immediate consequence of (2-3) that h is nonnegative, symmetric and
h(I, J )= 0 if and only if I = J . To show that h also satisfies the triangle inequality,
let I, J and K be arbitrary elements of X . Then the triangle inequality h(I, J )≤
h(I, K )+ h(K , J ) is equivalent to

2 log
u H (I, J )
√

l(I ) · l(J )
≤ 2 log

u H (I, K )
√

l(I ) · l(K )
+ 2 log

u H (K , J )
√

l(K ) · l(J )

= 2 log
u H (I, K ) · u H (K , J )

l(K )
√

l(I ) · l(J )
.
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This is true if and only if

l(K ) · u H (I, J )≤ u H (I, K ) · u H (K , J ). (2-5)

It is also a consequence of (2-3) and (2-4) that inequality (2-5) holds if either K � I
and K � J or I � K and J � K . Therefore, due to symmetry, it is enough to verify
the validity of (2-5) when I � K � J . In this case, since

u H (I, J )= u H (I, K )+ u H (J, K )− l(K ),

inequality (2-5) is equivalent to (u H (I, K )− l(K ))(u H (J, K )− l(K ))≥ 0, whose
validity follows from (2-3). Thus, h is a metric on X .

Next, we will show that h satisfies the Gromov hyperbolicity condition (2-1)
with δ = log 2. We will need the following lemma.

Lemma 2.6. For all I, J, K , L ∈ X , we have

u H (I, J ) · u H (K , L)≤ u H (I, K ) · u H (J, L)+ u H (I, L) · u H (J, K ).

Proof. Without loss of generality we can assume that I � J � K � L . Then
inequality (2-4) implies that

u H (I, K ) · u H (J, L)≥ u H (I, J ) · u H (K , L).

It also implies that

(u H (I, K )− u H (J, K ))(u H (J, L)− u H (J, K ))≥ 0,

which is equivalent to

u H (I, K ) · u H (J, L)≥ u H (J, K )((u H (I, K )+ u H (J, L)− u H (J, K )).

Since u H (I, L)= u H (I, K )+ u H (J, L)− u H (J, K ), we obtain that

u H (I, K ) · u H (J, L)≥ u H (J, K ) · u H (I, L).

Therefore, to prove the lemma it is enough to show that

u H (I, K ) · u H (J, L)≤ u H (I, L) · u H (J, K )+ u H (I, K ) · u H (J, L).

Let i, j, k, l denote the lengths of I, J, K , L and let a, b, c denote the distances
between I and J , J and K , K and L , respectively:

I J K L

cb
lk

a
i j
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Then

u H (I, K ) ·u H (J, L)

= (i+a+ j+b+k)( j+b+k+c+ l)

= (i+a+ j+b+k)( j+b+k)+(i+a+ j+b+k)(c+ l)

= (i+a+ j+b+k)( j+b+k)+(c+ l)( j+b+k)+(i+a)(c+ l)

< (i+a+k+b+ j+c+ l)( j+b+k)+(i+a+ j)(k+c+ l)

= u H (I, L) ·u H (J, K )+u H (I, J ) ·u H (K , L),

completing the proof. �

Theorem 2.7. The metric space (X, h) is Gromov δ-hyperbolic with δ ≤ log 2.

Proof. Let I, J, K , L ∈ X be arbitrary. Lemma 2.6 implies that

u H (I, J ) · u H (K , L)≤ 2
[
u H (I, K ) · u H (J, L)∨ u H (I, L) · u H (J, K )

]
.

Hence

h(I, J )+ h(K , L)= 2 log
u H (I, J )
√

l(I ) · l(J )
+ 2 log

u H (K , L)
√

l(K ) · l(L)

= 2 log
u H (I, J ) · u H (K , L)
√

l(I ) · l(J ) · l(K ) · l(L)

≤ 2 log
2
(
[u H (I, K ) · u H (J, L)] ∨ [u H (I, L) · u H (J, K )]

)
√

l(I ) · l(J ) · l(K ) · l(L)

= [h(I, K )+ h(J, L)] ∨ [h(I, L)+ h(J, K )] + 2 log 2,

as required. �

3. The boundary at infinity

We now discuss the boundary at infinity ∂X of the Gromov hyperbolic space (X, h).
Our goal is to construct a visual metric d on ∂X so that the space (∂X, d) is
isometric to the Cantor set C equipped with the standard Euclidean metric of the
real line. Denote the distance between real numbers x and y by |x − y|. Recall
that ∂X is the collection of equivalence classes of sequences in X converging at
infinity. Fix V =

( 1
3 ,

2
3

)
∈ X to be the base point. Observe that if the sequence {In}

converges at infinity, then lim j,k→∞(I j |Ik)V =∞.

Lemma 3.1. Given a ∈ ∂X , there exists unique xa ∈ C with the property that

lim
n→∞

u H (In, {xa})= 0 for each In ∈ a.
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Conversely, for each x ∈ C there exists a ∈ ∂X such that

lim
n→∞

u H (Jn, {x})= 0 for each Jn ∈ a.

Proof. Given {In} ∈ a, we have

(I j |Ik)V =
1
2

(
h(I j , V )+ h(Ik, V )− h(I j , Ik)

)
= log

u H (I j , V ) · u H (Ik, V )
l(V ) · u H (I j , Ik)

≤ log
2
3 ·

2
3

1
3 · u H (I j , Ik)

= log
4
3

u H (I j , Ik)
.

Since lim j,k→∞(I j |Ik)V = ∞, we obtain lim j,k→∞ u H (I j , Ik) = 0. For each n
choose some point xn ∈ In .

Next, given ε > 0, we can find n0 ∈ N such that

|x j − xk | ≤ u H (I j , Ik) < ε whenever j, k ≥ n0.

Hence the sequence {xn} is a Cauchy sequence in [0, 1]. Since [0, 1] is complete, it
converges to some point in [0, 1], call it xa . Now if we choose a different sequence
{yn}, where yn ∈ In , then

|yn − xa| ≤ |yn − xn| + |xn − xa| ≤ u H (In, In)+ |xn − xa|,

which implies that {yn} also converges to xa . Therefore, the point xa is well defined.
Finally, since

u H (In, {xa})≤ u H (In, {xn})+ u H ({xn}, {xa})≤ u H (In, In)+ |xn − xa|,

we obtain that limn→∞ u H (In, {xa})= 0, as required.
Now let {Kn} be another sequence converging at infinity and equivalent to {In},

i.e.,{Kn} ∈ a. Then we need to show that limn→∞ u H (Kn, {xa})= 0. Recall that the
equivalence of the two sequences {In} and {Kn} means that limn→∞(In|Kn)V =∞.
The latter implies, by the same argument as above, that limn→∞ u H (In, Kn)= 0.
Since

u H (Kn, {xa})≤ u H (Kn, In)+ u H (In, {xa}),

we obtain that limn→∞ u H (Kn, {xa})= 0. Thus, we have shown the existence and
uniqueness of xa .

It remains to show that xa ∈ C. Assume by contrary that x ∈ [0, 1] \C. Then
xa ∈ I for some I ∈ X . Since

0<
l(I )

2
≤ u H (In, {xa}) and lim

n→∞
u H (In, {xa})= 0,

we obtain the required contradiction. Thus, xa ∈ C, completing the proof of the
first part.
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To prove the second part, we first show that there exists a sequence {Jn} in X
converging at infinity and such that limn→∞ u H (Jn, {x})= 0. To construct such a
sequence, index X as follows: let Ji, j ∈ X , where 3−i is the length of the interval
Ji, j and j represents each interval in X of length 3−i . Here

i = 1, 2, 3, . . . and j = 1, 2, . . . 2i−1.

Note that J1,1 = V and that u H ({x}, J1,1)≤ 2/3 while l(J1,1)= 1/3. We can then
find J2, j2 such that u H ({x}, J2, j2)≤

2
9 and l(J2, j2)=

1
9 . Continuing in this manner,

for each n ∈ N, there exists jn such that

u H ({x}, Jn, jn )≤
2
3n and l(Jn, jn )= 3−n.

Put Jn = Jn, jn . Then limn→∞ u H (Jn, {x}) = 0, as required. Observe that since
u H (J j , Jk)≤ u H (J j , {x})+ u H (Jk, {x}), we have lim j,k→∞ u H (J j , Jk)= 0. Also,
since

(J j |Jk)V = log
u H (J j , V ) · u H (Jk, V )

l(V ) · u H (J j , Jk)

and u H (J j , V ) · u H (Jk, V ) ≤ 4
9 , we obtain that the sequence {Jn} converges at

infinity.
Finally, we let a ∈ ∂X to be the equivalence class of sequences converging at

infinity and equivalent to {Jn}. Then it follows from the first part that

lim
n→∞

u H (Jn, {x})= 0 for each Jn ∈ a,

completing the proof of the lemma. �

Lemma 3.1 implies that the map f : ∂X → C, given by f (a) = xa , is a well
defined, bijective map. Now we define a metric d on ∂X by setting d(a, b) =
|xa − xb|.

Lemma 3.2. The metric d is a visual metric. More precisely,

1
3 e−(a|b)V ≤ d(a, b)≤ 3e−(a|b)V for all a, b ∈ ∂X .

Proof. Recall that V =
( 1

3 ,
2
3

)
and

(a|b)V = inf{lim inf
n→∞

(In|Jn)V : In ∈ a, Jn ∈ b}.

Given a, b ∈ ∂X , let In ∈ a and Jn ∈ b be arbitrary sequences. Then

(In|Jn)V = log
u H (In, V ) · u H (In, V )

l(V ) · u H (In, Jn)
.

Lemma 3.1 implies that

lim
n→∞

u H (In, {xa})= 0 and lim
n→∞

u H (Jn, {xb})= 0.
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In particular, since∣∣u H (In, Jn)− |xa − xb|
∣∣≤ u H (In, {xa})+ u H (Jn, {ba}),

we have
lim

n→∞
u H (In, Jn)= |xa − xb| = d(a, b).

Also, since ∣∣u H (V, In)− u H (V, {xa})
∣∣≤ u H (In, {xa}),

we have

lim
n→∞

u H (V, In)= u H (V, {xa}) and lim
n→∞

u H (V, Jn)= u H (V, {xb}).

Therefore, as the sequences {In} ∈ a and {Jn} ∈ b were arbitrary, we obtain

(a|b)V = log
u H (V, {xa}) · u H (V, {xb})

l(V ) · d(a, b)
.

Finally, since l(V )= 1
3 and since 1

3 ≤ u H (V, {x})≤ 2
3 for all x ∈ [0, 1], we have

1
3 d(a, b)≤ 3

4 d(a, b)=
1
3

2
3 ·

2
3

d(a, b)≤ e−(a|b)V ≤
1
3

1
3 ·

1
3

d(a, b)= 3d(a, b).

Equivalently,
1
3 e−(a|b)V ≤ d(a, b)≤ 3e−(a|b)V ,

completing the proof. �

As an immediate consequence of Lemma 3.2 we obtain our main result.

Theorem 3.1. The spaces (∂X, d) and (C, | − |) are isometric.

4. Further remarks

Although this particular geometric approach was successful, there is no guarantee
that any such construction will produce the desired results. Consider, for example,
the following seemingly natural distance function ĥ, defined for any I, J ∈ X by

ĥ(I, J )= 2 log
l(I ∪ J )
√

l(I ) · l(J )
.

Since the distinct intervals in X are disjoint, l(I ∪ J ) = l(I ) + l(J ) whenever
I 6= J , from which it follows that ĥ(I, J ) ≤ ĥ(I, K )+ ĥ(K , J ), for all I, J, K ∈
X . Hence the space (X, ĥ) is a metric space. In fact, it is Gromov hyperbolic.
Indeed, by setting µ(I, J )= l(I ∪ J ), we find that µ(I, I ) > 0, µ(I, J )= µ(J, I )
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and µ(I, J ) ≤ µ(I, K ) + µ(K , J ), for all I, J, K ∈ X . By [Ibragimov 2011a,
Lemma 3.7], we have

µ(I, J ) ·µ(K , L)≤ 4
[
(µ(I, K ) ·µ(J, L))∨ (µ(I, L) ·µ(J, K ))

]
,

for all I, J, K , L ∈ X . Hence the space (X, ĥ) is δ-hyperbolic with δ ≤ log 4 (see,
for example, the proof of [Ibragimov 2011b, Theorem 2.1(2)]).

Next, we investigate the boundary at infinity of (X, ĥ). Observe that

m(I, J )≤ ĥ(I, J )≤ m(I, J )+ log 4 for all I, J ∈ X,

where

m(I, J )= log
max{l(I ), l(J )}
min{l(I ), l(J )}

.

Fix V =
( 1

3 ,
2
3

)
∈ X to be the base point. Then we have the following estimates for

the Gromov products in (X, ĥ) with respect to V :

(I |J )V = 1
2 [ĥ(I, V )+ĥ(J, V )−ĥ(I, J )]≤ 1

2 [m(I, V )+m(J, V )−m(I, J )]+log 4,

for all I, J ∈ X and, similarly

(I |J )V = 1
2 [ĥ(I, V )+ĥ(J, V )−ĥ(I, J )]≥ 1

2 [m(I, V )+m(J, V )−m(I, J )]−log 2.

Since
1
2 [m(I, V )+m(J, V )−m(I, J )] = log

1
l(I )∨ l(J )

− log 3,

we find

log
1

l(I )∨ l(J )
− log 6≤ (I |J )V ≤ log

1
l(I )∨ l(J )

+ log
4
3
.

Hence a sequence {In} in (X, ĥ) converges at infinity if and only if

max{l(In), l(Ik)} → 0 as n, k→∞.

But all such sequences are equivalent and, consequently, we obtain that the boundary
at infinity of (X, ĥ) consists of a single point.

We would like to also point out that this geometric construction differs from a
topological approach. Topologically, the Cantor set can be viewed as the end space
of the infinite binary tree, known as the Cantor tree (Figure 2), when the latter
is endowed with a path metric. The end space of such a tree is the collection of
all possible infinite branches emanating from its root, and is an ultrametric space
when equipped with a visual metric (see [Hughes 2004] for details). As the end
space is an ultrametric space, it can not be isometric to the Cantor set, although it
is homeomorphic to it.
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(root)

Figure 2. The Cantor tree.

Figure 3. The standard Sierpiński carpet and some of its removed squares.

Finally, although we will not pursue it in this paper, many other fractals, such as
Sierpiński carpets, can also be isometrically identified with the boundary at infinity
of a similarly hyperbolized collection of removed squares (Figure 3).
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Extensions of the Euler–Satake characteristic for
nonorientable 3-orbifolds and indistinguishable

examples
Ryan Carroll and Christopher Seaton

(Communicated by Colin Adams)

We compute the Fl-Euler–Satake characteristics of an arbitrary closed, effective
3-dimensional orbifold Q where Fl is a free group with l generators. We focus
on the case of nonorientable orbifolds, extending previous results for the case
of orientable orbifolds. Using these computations, we determine examples of
distinct 3-orbifolds Q and Q′ such that χES

0 (Q) = χ
ES
0 (Q

′) for every finitely
generated discrete group 0.

1. Introduction

This paper completes a program to determine what information about the singular
set of an effective, low-dimensional orbifold is determined by the collection of
0-extensions of the Euler–Satake characteristic. For a finitely generated discrete
group 0 and an orbifold Q, the orbifold of 0-sectors of Q is a collection of orbifolds
of different dimensions containing Q as well as finite singular covers of the singular
strata of Q. The 0-extension of an orbifold invariant is defined by applying the
invariant to the orbifold of 0-sectors of Q.

The Euler–Satake characteristic χES(Q) of a closed orbifold Q is a rational
number that corresponds to χtop(M)/|G| in the case that Q is a global quotient
orbifold, i.e., is presented by the quotient of a closed manifold M by a finite group
G, where χtop denotes the usual Euler characteristic. It was defined in [Satake 1957]
where it is referred to as the Euler characteristic as a V -manifold and [Thurston
1997] where it is called the orbifold Euler characteristic. The 0-extensions of
the Euler–Satake characteristic of Q, denoted χES

0 (Q), include many interesting
orbifold invariants. When 0 = Z, χES

0 (Q) coincides with the Euler characteristic of
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the underlying topological space of Q. When 0=Z2, χES
0 (Q) is the stringy orbifold

Euler characteristic defined in [Dixon et al. 1985] for global quotients and [Roan
1996] for general orbifolds; see also [Adem and Ruan 2003]. Further extensions
corresponding to 0=Zl were suggested in [Atiyah and Segal 1989] and defined for
global quotients in [Bryan and Fulman 1998]. In [2001; 2003], Tamanoi introduced
and studied extensions of orbifold invariants for global quotients, including the
Euler–Satake characteristic, corresponding to arbitrary 0, and this definition was
extended to arbitrary orbifolds in [Farsi and Seaton 2010b; 2011].

In [Duval et al. 2010], it was demonstrated that the collection of Zl-extensions
of the Euler–Satake characteristic determine the diffeomorphism type of a closed,
effective, orientable 2-dimensional orbifold and that infinitely many were required to
do so. In addition, it was demonstrated that the χES

0 corresponding to any collection
of finitely generated discrete groups do not distinguish between certain effective,
nonorientable 2-orbifolds.

However, in [Schulte et al. 2011], it was shown that any infinite collection χES
Zl

along with any infinite collection of χES
Fl

determines the number and type of point
singularities of a closed, effective, nonorientable 2-orbifold and that an infinite
collection of both is required. In dimension 3, it is shown in [Carroll and Seaton
2013] that any infinite collection of the χES

Fl
determines the number and type of

point singularities of a closed, effective, orientable 3-orbifold and that infinitely
many are required to do so.

Here, we study the 0-Euler–Satake characteristics of effective, nonorientable
3-dimensional orbifolds and demonstrate that the above results do not extend to this
case. For a closed, effective 3-orbifold Q, we show that the χES

0 (Q) depend only on
the number and type of point singularities of Q and the Euler characteristic of the
(topological manifold) boundary of the underlying space of Q. In particular, these
invariants can be computed without determining the structure of the 2-dimensional
sectors of Q, which can be complicated and difficult to describe in general. We
detail a general computation of these invariants for 0 = Fl . This computation is
used to determine examples of closed, effective 3-orbifolds whose 0-Euler–Satake
characteristics coincide for every finitely generated discrete group 0, though the
point singularities and the topology of the underlying space are different.

This paper is organized as follows. In Section 2, we review the relevant back-
ground on orbifolds and 0-sectors as well as the structure of the singular set of a
closed 3-orbifold. In Section 3, we compute the Fl-Euler–Satake characteristics of
closed, effective 3-orbifolds. In particular, we demonstrate Proposition 3.6, which
reduces the computation of the χES

0 (Q) for any finitely generated discrete 0 to an
expression that does not involve the 2-dimensional sectors of Q. In Section 4, we
give an example of distinct orbifolds whose 0-Euler–Satake characteristics coincide
for every 0.
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2. Background and definitions

In this section, we review the relevant background material and fix notation. In
Section 2A, we recall the definition of an orbifold Q as well as the 0-sectors Q̃0 of
Q. Note that there are many definitions of orbifolds in the literature that are more
or less equivalent and suited to different purposes. Here, we consider an orbifold to
be the Morita equivalence class of a proper, étale, Lie groupoid, and the definition
of the 0-sectors is most natural from this perspective. However, we expect this
work to be accessible to readers with no knowledge of groupoids, and hence adapt
these definitions to the framework in which an orbifold structure is designated by
an atlas of orbifold charts. Though many of the required properties of 0-sectors are
developed elsewhere using groupoid language, we explain the ingredients we will
need in the language of charts below. In Section 2B, we review the classification of
finite subgroups of O(3), and in Section 2C, we use this classification to describe
the topology of a closed, effective 3-orbifold and its singular set.

The reader is referred to [Adem et al. 2007; Moerdijk and Mrčun 2003; Moerdijk
2002] for background on orbifolds from the perspective of Lie groupoids. See
[Thurston 1997; Chen and Ruan 2002; Satake 1957] for background from the
perspective of orbifold charts, [Boileau et al. 2003; Scott 1983] for more discussion
of 3-dimensional orbifolds and [Lerman 2010; Iglesias et al. 2010] for alternate
approaches to orbifolds. Note that some of the above references restrict their
attention to effective orbifolds. The 0-sectors of an orbifold are defined for global
quotient orbifolds in [Tamanoi 2001; 2003], and are defined for general orbifolds
in [Farsi and Seaton 2010b]; see also [Farsi and Seaton 2010a; 2011]. Note that the
0-sectors extend the definition of the inertia orbifold (see [Kawasaki 1978]) and
multi-sectors defined in [Adem et al. 2007; Chen and Ruan 2004].

2A. Orbifolds and 0-sectors. By an orbifold Q, we will mean a paracompact
Hausdorff space XQ that is homeomorphic to the orbit space |G| of a proper, étale
Lie groupoid G. We refer to a choice of G and homeomorphism between |G| and
XQ as a presentation of Q. For G, we may take an orbifold atlas for Q, consisting
of charts of the form {V,G, π} where V is an open neighborhood of the origin
in Rn equipped with the action of the finite group G, which may be taken to be a
subgroup of O(n) with respect to an inner product on Rn , and π : V → XQ is a
continuous function that induces a homeomorphism of G\V onto an open subset
of XQ . When a chart is labeled {Vp,G p, πp} for a point p ∈ XQ , we assume that
πp(0) = p and refer to {Vp,G p, πp} as an orbifold chart at p. An injection of
orbifold charts {V,G, π} → {V ′,G ′, π ′} is a pair ( f, λ) where λ : G→ G ′ is an
injective homomorphism and f : V → V ′ is a λ-equivariant open embedding such
that π ◦ f = π ′. Two charts {V,G, π} and {V ′,G ′, π ′} are said to be compatible if
for each p ∈ π(V )∩π ′(V ′), there is an orbifold chart {Vp,G p, πp} at p and a pair
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of injections of {Vp,G p, πp} into {V,G, π} and {V ′,G ′, π ′}, respectively. Then
an orbifold atlas is a collection of compatible charts whose images in XQ cover
XQ , and an equivalence of atlases can be defined which corresponds to Morita
equivalence for groupoid presentations. Diffeomorphic orbifolds are those presented
by Morita equivalent groupoids, e.g, equivalent orbifold atlases.

Note that any two injections ( f1, λ1) and ( f2, λ2) of orbifold charts {V,G, π}→
{V ′,G ′, π ′} are related by an element g of G ′; that is, f2(x) = g f1(x) for each
x ∈ V , and λ2(h) = gλ1(h)g−1 for each h ∈ G; see [Moerdijk and Pronk 1997,
Proposition A.1]. Applying this result to injections between a chart and itself, it
follows that the (isomorphism class of the) isotropy group G p of a point p ∈ XQ

does not depend on the choice of chart at p, and in fact can be defined as the
isotropy group of an arbitrary lift of p into an arbitrary chart. Moreover, though
the elements of G p depend on the choice of chart, their G p-conjugacy classes in a
chart at p are well-defined.

An orbifold Q is effective if it is presented by an effective groupoid G, or
equivalently if it is equipped with an atlas such that the group action in each chart is
effective. It is closed if XQ is compact and Q does not have boundary as an orbifold;
note that we have only considered orbifolds without boundary in the definitions
above. When Q is connected, the dimension of Q is the dimension of the object
space of an étale presentation G of Q, or equivalently the dimension of the domain
of each orbifold chart.

The Euler–Satake characteristic χES(Q) of a closed orbifold Q is defined in
terms of a triangulation of Q such that the isomorphism class of the isotropy group
is constant on the interior of each simplex. If T is such a triangulation and for each
σ ∈ T, Gσ denotes the isotropy group of a point on the interior of σ , then

χES(Q)=
∑
σ∈T

(−1)dim σ

|Gσ |
.

Let 0 be a finitely generated discrete group. The simplest description of the
0-sectors of Q is in terms of a proper étale Lie groupoid G presenting Q. In this
case the collection HOM(0,G) of groupoid homomorphisms from 0 to G inherits
the structure of a disjoint union of smooth manifolds, potentially of different
dimensions, as well as a smooth action of G. Then GnHOM(0,G) is itself a proper
étale Lie groupoid presenting the orbifold of 0-sectors Q̃0. Note that Q̃0 always
includes a connected component diffeomorphic to Q, called the nontwisted 0-sector
corresponding to the trivial homomorphisms; all other sectors are called twisted
0-sectors If Q is closed, then Q̃0 is a finite union of connected, closed orbifolds.

Alternatively, the 0-sectors of Q can be defined as follows. Let

XQ̃0
= {(p, (ϕp)G p) : p ∈ XQ, ϕp : 0→ G p},
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where (ϕp)G p denotes the G p-conjugacy class of ϕp. Given an orbifold chart
{Vp,G p, πp} for Q at a point p, define the orbifold chart {V 〈ϕp〉

p ,CG p(ϕp), π
ϕp
p }

for Q̃0 at (p, (ϕp)G p), where V 〈ϕp〉
p denotes the points in Vp fixed by the image

of ϕp, CG p(ϕp) denotes the centralizer of ϕp in G p, and πϕp
p : V 〈ϕp〉

p → XQ̃0
is

defined as follows. Given y ∈ V 〈ϕp〉
p , identify the isotropy group of πp(y) with

the isotropy group (G p)y ≤ G p, and then let ϕπp(y) : 0 → (G p)y denote the
homomorphism given by restricting the codomain of ϕp to this subgroup. Note
that the image Im(ϕp) of ϕp is contained in (G p)y precisely when y ∈ V 〈ϕp〉

p . Note
further that ϕπp(y) is well-defined only up to its Gπp(x)-conjugacy class. Then we
define πϕp

p (y)= (πp(y), (ϕπp(y))(G p)y ). The proof that the {V 〈ϕp〉
p ,CG p(ϕp), π

ϕp
p }

define an orbifold structure for XQ̃0
is omitted; it is given by translating the proof in

groupoid language given in [Farsi and Seaton 2010b] to this context. It is, as well,
a direct generalization of the proof of [Chen and Ruan 2004, Lemma 3.1.1] (see
also [Kawasaki 1978]), which is given in atlas language for the case 0 = Z. We
will, however, require an understanding of the injections between orbifold charts
for Q̃0, which we now describe.

Given an injection ( f, λ) of orbifold charts {Vq ,Gq , πq} → {Vp,G p, πp}, we
say that a homomorphism ϕq : 0→ Gq is locally covered by a homomorphism
ϕp : 0 → G p (with respect to the choice of charts and injection) if λ ◦ ϕq =

ϕp. Then it is easy to see that { f |
V
〈ϕq 〉
q
, λ|CGq (ϕq )} is an injection of the orbifold

chart {V 〈ϕq 〉
q ,CGq (ϕq), π

ϕq
q } into the orbifold chart {V 〈ϕp〉

p ,CG p(ϕp), π
ϕp
p }. Note

that if ϕp locally covers ϕq with respect to the injection ( f, λ) as above, then
for any other choice of injection ( f ′, λ′) : {Vq ,Gq , πq} → {Vp,G p, πp}, there
is a g ∈ G p such that g(λ ◦ ϕq)g−1

= ϕp; compare [Farsi and Seaton 2010b,
Definition 2.6]. In particular, if ϕp and ψp are both homomorphisms 0→G p, then
by the characterization of injections of a chart into itself given in [Moerdijk and
Pronk 1997, Proposition A.1] and recalled above, ϕp locally covers ψp if and only
if ϕp and ψp are G p-conjugate. By allowing finite sequences of local coverings (in
either direction), we extend the notion of local covering to an equivalence relation
on
⋃

p∈XQ
HOM(0,G p) and let ≈ denote this relation. We let (ϕp)≈ denote the

≈-class of a homomorphism ϕp and T 0
Q the set of equivalence classes. Note that

ϕp and ϕq are equivalent if and only if (p, (ϕp)G p) and (q, (ϕq)Gq ) are in the same
connected component of XQ̃0

.

2B. The finite subgroups of O(3). In this section, we recall the classification of
finite subgroups G of O(3) given in [Benson and Grove 1971, Theorem (2.5.2)] as
well as the corresponding orbifold singularities. In each case, we fix a representation
of the group G to refer to in the sequel.

First, recall that every element of SO(3) acts as a rotation about a line in R3. Up
to conjugation in SO(3), the finite subgroups of SO(3) consist of the cyclic groups
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Z/nZ

(a)

Z/nZ

Z/2Z Z/2Z

(b)

Z/3Z

Z/2Z Z/3Z

(c)

Z/4Z

Z/2Z Z/3Z

(d)

Z/5Z

Z/2Z Z/3Z

(e)

Figure 1. Singular sets in the quotients of R3 by the finite sub-
groups of SO(3): (a) a cyclic group Z/nZ; (b) a dihedral group
D2n; (c) the tetrahedral group T; (d) the octahedral group O; (e) the
icosahedral group I.

Z/nZ, the dihedral groups D2n of order 2n, the tetrahedral group T of order 12,
the octahedral group O of order 24, and the icosahedral group I of order 60. The
quotient G\R3 is homeomorphic to R3 in each case; see [Boileau et al. 2003]. In
Zn\R

3 the singular set is a line fixed by the entire group Zn , while for the other
groups, the singular set is the origin as well as three rays fixed by cyclic groups;
see Figure 1. The 0-Euler–Satake characteristics of orientable 3-orbifolds, which
contain only these singularities, are studied in [Carroll and Seaton 2013].

Let J denote the negative identity element in O(3). A finite subgroup of O(3)
generated by J and a finite subgroup G of SO(3) is called a full group, denoted G∗.
Note that as J is central and J 2

= I is the identity in O(3), G∗ is isomorphic to
G×Z/2Z. There are five classes of full groups corresponding to the five classes of
subgroups of SO(3). See Figure 2 for diagrams of the quotient spaces and singular
sets in each case, and note that they refer to mixed groups and Pproj, which are
defined below. Note that the quotient space G∗\R3 is homeomorphic to closed
half-space in R3 except in the case of G = (Z/nZ)∗ with n odd, where (Z/nZ)∗\R3

is homeomorphic to the cone on RP2.

• A full cyclic group (Z/nZ)∗ has order 2n and is generated by An and J , where

An =

cos(2π/n) −sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1


satisfies An

n = I .



EULER–SATAKE CHARACTERISTICS OF NONORIENTABLE 3-ORBIFOLDS 351

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................

Z/nZ

(a)

.............
............
............
............
............
...........
...........
........................

.................................................................................................................................................................................. . ........... ........ ........
.....................................................................�.............................. ........ .......... ............. ............... ................-

Z/nZ

(p ∈ Pproj)

(b)

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................
D4](Z/2Z)

D4](Z/2Z)

D2n](Z/nZ)

(c)

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................

Z/2Z

D2n](Z/nZ)

(d)

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................

Z/3Z

D4](Z/2Z)

(e)

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................
D4](Z/2Z)

D6](Z/3Z)

D8](Z/4Z)

(f)

.............
............
............
............
............
...........
...........
........................

..................................................................................................................................................................................
D4](Z/2Z)
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Figure 2. Singular sets corresponding to the finite full subgroups
of O(3), where the lightly shaded boundary disks have generic
isotropy Z/2Z and the darkly shaded boundary disk is identified
via the antipodal map as indicated by curved arrows: (a) a full
cyclic group (Z/nZ)∗ for n even; (b) a full cyclic group (Z/nZ)∗

for n odd; (c) a full dihedral group D∗2n for n even; (d) a full
dihedral group D∗2n for n odd; (e) the full tetrahedral group T∗;
(f) the full octahedral group O∗; (g) the full icosahedral group I∗.

• A full dihedral group D∗2n has order 4n and is generated by An , B, and J ,
where An is as above and

B =

1 0 0
0 −1 0
0 0 −1


is a rotation about the x-axis through an angle of π . Note that An B = B An−1

n .
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• The full tetrahedral group T∗ has order 24 and is generated by C , D, and J ,
where

C =

−1 0 0
0 −1 0
0 0 1

 and D =

0 −1 0
0 0 −1
1 0 0

 .
Note that C2

= D3
= (C D)3 = I .

• The full octahedral group O∗ has order 48 and is generated by R, S, and J ,
where

R =

0 1 0
1 0 0
0 0 −1

 and S =

1 0 0
0 0 1
0 −1 0

 .
Note that R2

= S4
= (RS)3 = I .

• The full icosahedral group I∗ is generated by B, E , and J , where B is as above
and

E =

+φ/2 +φ/2 +1/2
+φ/2 +1/2 −φ/2
−1/2 +φ/2 +φ/2

 .
Here, φ = (1+

√
5)/2 and φ = (1−

√
5)/2. Note that B2

= E5
= (B E)3 = I .

A finite subgroup G<O(3) that is not full or contained in SO(3) is a mixed group.
A mixed group G is denoted H ]K , where H and K are finite subgroups of SO(3)
such that K is a subgroup of H of index 2. Then G is isomorphic to H as a group, but
the representation of G on R3 is given by multiplying those elements in the nontrivial
coset of H/K by J . The quotient spaces and singular sets of G\R3 for mixed
groups G are pictured in Figure 3. Again, each quotient space is homeomorphic
to closed half-space in R3 with the exception of (Z/2nZ)](Z/nZ)\R3 for n even,
which is homeomorphic to the cone on RP2. The four families of mixed subgroups
of O(3) are as follows:

• A mixed cyclic group (Z/2nZ)](Z/nZ) has order 2n and is generated by A2n J
where A2n is as above.

• A mixed dihedral group D4n]D2n of order 4n is generated by A2n J and B.

• A dihedral extending cyclic group D2n](Z/nZ) of order 2n is generated by An

and B J .

• The octahedral extending tetrahedral group O]T is generated by R J and S J .

Every finite subgroup of O(3) is conjugate to one of the groups listed above.
When referring to these groups, we will always mean the group as well as its
standard representation on R3 in coordinates as described above.
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Figure 3. Singular sets corresponding to the finite mixed sub-
groups of O(3), where the lightly shaded boundary disks have
generic isotropy Z/2Z and the darkly shaded boundary disk is
identified via the antipodal map as indicated by curved arrows: (a)
a mixed cyclic group (Z/2nZ)](Z/nZ) for n even; (b) a mixed
cyclic group (Z/2nZ)](Z/nZ) for n odd; (c) a mixed dihedral
group D4n]D2n for n even; (d) a mixed dihedral group D4n]D2n

for n odd; (e) a dihedral extending cyclic group D2n](Z/nZ) for n
of either parity; (f) the octahedral extending tetrahedral group O]T.

2C. Closed, effective 3-dimensional orbifolds. Let Q be a closed, effective 3-
orbifold. Then each point of Q is contained in a neighborhood that is homeo-
morphic to G\R3 where G is a finite subgroup of O(3). Inspecting the possible
homeomorphism classes of G\R3, it follows that there is a finite, possibly empty
collection Pproj = {p1, . . . , pk} of points in Q such that XQ rPproj is a topological
3-manifold, potentially with boundary. In particular, Pproj consists of those points
with isotropy group (Z/nZ)∗ for n odd or (Z/2nZ)](Z/nZ) for n even. Note that
Q is orientable if and only if Pproj =∅ and XQ is an orientable 3-manifold without
boundary. In the case that XQ has boundary as a topological manifold, we let ∂top Q
denote the boundary and caution the reader that Q does not have boundary as an
orbifold.
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The singular set of Q consists of ∂top Q ∪Pproj along with a disjoint collection
of circles in the interior of XQ r Pproj and a not-necessarily connected graph G

that is trivalent on the interior of XQ rPproj and has univalent vertices in Pproj and
∂top Q. Note that the (isomorphism class of the) isotropy group is constant on each
circle as well as the interior of each edge; however, it need not be constant on ∂top Q.
Rather, ∂top Q itself contains a union of circles and a (not necessarily connected)
graph with trivalent vertices as well as univalent vertices where G intersects ∂top Q.
The isotropy type is constant on the circles and the interiors of the edges of this
graph and is Z/2Z elsewhere in ∂top Q.

By a point singularity of Q, we mean a point p∈XQ contained in a neighborhood
U such that the isotropy group of p is strictly larger than all points in U r {p}.
Equivalently, a point singularity corresponds to a 0-dimensional stratum of XQ with
respect to the stratification by orbit types. Note that the point singularities of Q
correspond to the vertices of the graphs described above.

In the sequel, we will let P denote the set of point singularities of Q and P∂

denote the set of point singularities that occur on ∂top Q. Note that Pproj is the set of
point singularities that occur on nonmanifold points of XQ . Then Pr (P∂ ∪Pproj)

is exactly the set of point singularities at which Q is locally orientable, i.e., with
isotropy group contained in SO(3).

The 0-sectors of a closed, effective 3-orbifold Q include the nontwisted 0-sector
of dimension 3 and may include twisted 0-sectors of dimensions 0, 1, or 2. Each
0-sector is a closed orbifold, and only the nontwisted 0-sector is effective. Sectors
of dimension 0 are points equipped with the trivial action of a finite group, and it is
easy to see that such sectors correspond to homomorphisms ϕp : 0→ G p where
p is a point singularity of the orbifold and the image of ϕp fixes a single point.
The only closed, effective 1-dimensional orbifolds are circles or mirrored intervals,
i.e., intervals with Z/2Z-isotropy at the endpoints, and so all closed 1-dimensional
sectors are given by circles with the trivial action of a finite group or noneffective
mirrored intervals.

The 2-dimensional sectors correspond to homomorphisms ϕp : 0→ G p where
p ∈ ∂top Q and the image of ϕp fixes a plane. However, the 2-dimensional sectors
of Q need not correspond to entire connected components of ∂top Q. In fact, the 0-
and 1-dimensional singular strata contained in ∂top Q divide ∂top Q into regions, and
the closures of these regions can be covered by distinct sectors. We illustrate this
with the following, considering an open orbifold for simplicity.

Example 2.1. Let n≥ 4 be even and let Q denote the orbifold given by the quotient
of R3 by the full dihedral group D∗2n; see Figure 2(c). Then Q is homeomorphic to
closed half-space, and the singular strata divide ∂top Q into three dense regions with
isotropy Z/2Z.
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Let0=Z, and then there are three 2-dimensional sectors. The first, corresponding
to homomorphisms that map 1 ∈ Z to the central element An/2

n J ∈ D∗2n , is given by
the quotient of a plane R2 by the action of D2n× (Z/2Z), where the D2n-factor acts
via the standard effective action of a dihedral group on R2, and the Z/2Z-factor
acts trivially. The resulting orbifold is homeomorphic to a closed quadrant in R2,
where the origin is a corner reflector with isotropy D2n × (Z/2Z), other points on
the (topological) boundary have isotropy (Z/2Z)2, and points on the interior have
isotropy Z/2Z. The map (p, (ϕp)G p) 7→ p is a bijection between this sector and the
single closed region in ∂top Q bounded by the two rays with isotropy D4](Z/2Z).

The other 2-dimensional sectors cover the respective closures of the other two
regions in ∂top Q. They corresponds to the two conjugacy classes of homomorphisms
that map 1 ∈ Z to Ak

n B J ∈ D∗2n where k 6= n/2. Each is given by the quotient
of R2 by 〈An/2

n , Ak
n B J, J 〉 ∼= (Z/2Z)3, where Ak

n B J acts trivially and the other
two factors act via the standard action of (Z/2Z)2 ∼= D4 on R2. These sectors are
also each homeomorphic to a closed quadrant in R2, where the origin is a corner
reflector with isotropy D4 × (Z/2Z), other points on the (topological) boundary
have isotropy (Z/nZ)2, and points on the interior have isotropy Z/2Z. The map
(p, (ϕp)G p) 7→ p is a bijection from each of these sectors to the closures of the
corresponding regions in ∂top Q.

From this example, it is clear that a description of the 2-dimensional sectors of
an arbitrary closed, effective 3-orbifold Q would require a detailed description of
the topology of ∂top Q as well as the configuration of the singular strata it contains.
As we will see in Section 3A, however, the sum of the Euler–Satake characteristics
of the 2-dimensional sectors of Q depends only on χtop(∂top Q) and the number
and type of point singularities in Q, and hence can be computed using only this
information.

3. Computation of χES
Fl
(Q)

In this section, we compute the Fl-Euler–Satake characteristics of a closed, effective
3-orbifold Q where Fl is the free group with l generators. In Section 3A, we
simplify this computation by demonstrating Proposition 3.6, which expresses the
0-Euler–Satake characteristic in terms of quantities involving only the number and
type of point singularities of Q as well as χtop(∂top Q). In Section 3B, we compute
these quantities for each of the finite subgroups of O(3) when 0= Fl . The formulas
for the Fl-Euler–Satake characteristics are given in Section 3C.

3A. General observations. Let 0 be a finitely generate discrete group and Q a
closed, effective 3-orbifold. The 0-Euler–Satake characteristic of Q is given by

χES
0 (Q)= χES(Q̃0),
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the usual Euler–Satake characteristic of the orbifold of 0-sectors Q̃0 of Q. We let
Q̃0,d denote the collection of 0-sectors of Q of dimension d, and then

Q̃0 = Q̃0,0 t Q̃0,1 t Q̃0,2 t Q̃0,3,

where Q̃0,3 = Q consists only of the nontwisted sector. By [Satake 1957, The-
orem 4], the Euler–Satake characteristic of an odd-dimensional closed orbifold
vanishes; note that Satake assumes that orbifolds do not have singular strata of
codimension 1, but his result can be applied to the orientable double-cover of an
orbifold and hence extended to arbitrary orbifolds. Therefore, we have that

χES
0 (Q)= χES(Q̃0,0)+χES(Q̃0,2). (3-1)

As was illustrated in Example 2.1 above, the structure of Q̃0,2 is complicated and
depends heavily on the graph structure of the singular strata in ∂top Q. However,
our first goal of this section is to indicate how χES

0 (Q) can be computed without
determining the structure or number of components of Q̃0,2. First, we have the
following.

Lemma 3.1. Let Q be a closed, effective, 3-dimensional orbifold with underlying
space XQ and let Pproj denote the finite set of projective points of Q. Then

χtop(XQ)=
1
2χtop(∂top Q)+ 1

2 |Pproj|.

Proof. For each p ∈ Pproj, choose a neighborhood Up of p homeomorphic to
G p\R

3 and small enough so that Up ∩Uq = ∅ for p 6= q, each Up ∩ ∂top Q = ∅,
and ∂(Up) is homeomorphic to G p\S

2, where by ∂(Up), we mean the boundary
of the manifold Up r {p}. Then the topological space X = XQ r

⋃
p∈Pproj

Up is a
topological 3-manifold with boundary given by ∂X = ∂top Q∪

⋃
p∈Pproj

∂(Up). Note
that each ∂(Up) is homeomorphic to RP2 and hence χtop(∂(Up))= 1. Expressing
XQ as X ∪

⋃
p∈Pproj

Up and noting that the intersection of each Up with X is ∂(Up),
we have

χtop(XQ)= χtop(X)+
∑

p∈Pproj

χtop(Up)−
∑

p∈Pproj

χtop(∂(Up)).

However, as Up is homeomorphic to the cone on RP2 and hence is contractible,
we have χtop(Up)= 1= χtop(∂(Up)). It follows that

χtop(XQ)= χtop(X).

As the Euler characteristic of a 3-manifold is half that of its boundary, we then have

χtop(XQ)= χtop(X)=
1
2χtop(∂X)= 1

2(χtop(∂top Q)+ |Pproj|)). �
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Using the fact that χtop(XQ)= χ
ES
Z (Q) (see [Farsi and Seaton 2011] or [Seaton

2008]), we have the following.

Corollary 3.2. Let Q be a closed, effective, 3-dimensional orbifold with underlying
space XQ and let Pproj denote the finite set of projective points of Q. Then

χES
Z (Q)= 1

2χtop(∂top Q)+ 1
2 |Pproj|.

In particular, as χES
Z (Q)= χES(Q̃Z,0)+χES(Q̃Z,2), we have

χES(Q̃Z,2)=
1
2χtop(∂top Q)+ 1

2 |Pproj| −χES(Q̃Z,0). (3-2)

Hence, using Corollary 3.2, we can compute the Euler–Satake characteristic of
the 2-dimensional Z-sectors in terms of the 0-dimensional Z-sectors and χtop(∂Q).
We can use this to compute the Euler–Satake characteristic of the 2-dimensional 0-
sectors for arbitrary 0 using the following. For p ∈ Q, let HOM(0,G p)d denote the
collection of homomorphisms 0→ G p whose image fix a d-dimensional subspace
in a chart at p.

Lemma 3.3. Let Q be a closed, effective, 3-dimensional orbifold and let 0 be a
finitely generated discrete group. Then the 2-dimensional 0-sectors of Q consist
of |HOM(0,Z/2Z)| − 1 identical copies of the 2-dimensional Z-sectors of Q. In
particular, the 2-dimensional Fl-sectors of Q consist of 2l

− 1 copies of the 2-
dimensional Z-sectors of Q.

Proof. By inspection, the only elements of O(3) that fix planes are reflections
that generate a subgroup isomorphic to Z/2Z. Hence each element in the union⋃

p∈Q HOM(0,G p)2 has image isomorphic to Z/2Z. Define the map

9 :
⋃
p∈Q

HOM(0,G p)2 −→
⋃
p∈Q

HOM(Z,G p)2

by sending ϕp ∈HOM(0,G p)2 to the homomorphism in HOM(Z,G p)2 that maps
the generator of Z to the unique generator of the image Im(ϕp) of ϕp. Then as
the image of a homomorphism Z→ Z/2Z uniquely characterizes the homomor-
phism, we have for each ψp ∈ HOM(Z,G p)2 that 9−1(ψp) consists of every
element of HOM(0, Im(ψp)) except the trivial homomorphism. Therefore, 9
is a (|HOM(0,Z/2Z)| − 1)-to-1 map. It is clear from its construction that 9 is
equivariant with respect to the G p-actions by conjugation on HOM(Z,G p)2 and
HOM(0,G p)2, and moreover that the centralizer of each ψp in G p coincides with
the centralizer of 9−1(ψp) in G p, so that 9 induces a (|HOM(0,Z/2Z)|−1)-to-1
map

9̃ : Q̃0,2→ Q̃Z,2, (p, (ϕp)G p) 7→ (p, (9(ϕp))G p).
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To complete the proof, we demonstrate that the restriction of 9̃ to each 2-
dimensional 0-sector of Q is a diffeomorphism onto a Z-sector of Q. In groupoid
language, this can be accomplished by extending 9 to a map HOM(0,G)2 →

HOM(Z,G)2, where HOM(0,G)2 denotes the groupoid homomorphisms corre-
sponding to points in 2-dimensional sectors, and then computing directly that the
resulting map is in fact equivariant with respect to the G-actions, and hence a Lie
groupoid isomorphism when restricted to each sector.

To demonstrate this in terms of an atlas, suppose (p, (ϕp)G p) and (q, (ϕq)Gq )

are points in XQ̃0
contained in orbifold charts for Q̃0 related by an injection.

Specifically, suppose ( f, λ) : {Vq ,Gq , πq}→{Vp,G p, πp} is an injection of orbifold
charts with respect to which ϕp : 0→ G p locally covers ϕq : 0→ Gq for ϕp ∈

HOM(0,G p)2 and ϕq ∈ HOM(0,Gq)2. Then

{ f |
V
〈ϕq 〉
q
, λ|CGq (ϕq )}

is an injection of the orbifold chart {V 〈ϕq 〉
q ,CGq (ϕq), π

ϕq
q } for Q̃0 at (q, (ϕq)Gq )

into the chart {V 〈ϕp〉
p ,CG p(ϕp), π

ϕp
p } for Q̃0 at (p, (ϕp)G p). As9 preserves images

of homomorphisms, it is easy to see that

V 〈ϕp〉
p = V 〈9(ϕp)〉

p and CG p(ϕp)= CG p(9(ϕp)).

Moreover, from λ ◦ ϕq = ϕp, it is easy to see that λ ◦9(ϕq)= 9(ϕp). It follows
that

{ f |
V
〈9(ϕq )〉
q

, λ|CGq (9(ϕq ))}

is an injection of the chart
{

V 〈9(ϕq )〉
q ,CGq (9(ϕq)), π

9(ϕq )
q

}
for Q̃Z at (q, (9(ϕq))Gq )

into the chart
{

V 〈9(ϕp)〉
p ,CG p(9(ϕp)), π

9(ϕp)
p

}
for Q̃Z at (p, (9(ϕp))G p). With this,

it follows that there is a bijection between orbifold charts and injections for each
connected component of Q̃0,2 and its image under 9̃, completing the proof. �

We conclude that for a 3-dimensional closed, effective orbifold Q, the 0-Euler–
Satake characteristics can be determined from the number and type of point singu-
larities of Q as well as the Euler characteristic χtop(∂top Q). We recall the following,
which was also observed in [Carroll and Seaton 2013, Proposition 2.1].

Lemma 3.4. Let Q be a closed, effective 3-orbifold, let P denote the collection of
point singularities of Q and let 0 be a finitely generated discrete group. Then

χES(Q̃0,0)=
∑
p∈P

|HOM(0,G p)0|

|G p|
.
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Proof. First, we have by definition of the Euler–Satake characteristic that

χES(Q̃0,0)=
∑
p∈P

∑
(ϕp)G p∈HOM(0,G p)0/G p

1
|CG p(ϕp)|

.

Using the fact that |CG p(ϕp)||(ϕp)G p | = |G p|, this is equal to∑
p∈P

∑
(ϕp)G p∈HOM(0,G p)0/G p

|(ϕp)G p |

|G p|
=

∑
p∈P

|HOM(0,G p)0|

|G p|
. �

Lemma 3.5. Let Q be a closed, effective 3-orbifold and let P∂ denote the set of
point singularities contained in ∂top Q. Then

χES(Q̃Z,0)=
1
2
|Pproj| +

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

Proof. For each p ∈P such that G p ≤ SO(3), each element of G p is a rotation and
hence fixes a line. As the image of any element of HOM(Z,G p) must be cyclic,
it follows that HOM(Z,G p)0 =∅ for each such p. Recalling that all other point
singularities are elements of Pproj ∪P∂ and applying Lemma 3.4, we have

χES(Q̃Z,0)=
∑

p∈Pproj

|HOM(Z,G p)0|

|G p|
+

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

If p ∈Pproj, then G p is given either by (Z/nZ)∗ for n odd or (Z/2nZ)](Z/nZ) for
n even. In the former case, it is easy to see that all elements of (Z/nZ)∗ of the form
Ak

n J fix a point, while nontrivial elements of the form Ak
n fix a line, so that

|HOM(Z, (Z/nZ)∗)0|

|(Z/nZ)∗|
=

n
2n
=

1
2
.

In the latter case, (Z/2nZ)](Z/nZ) is generated by A2n J , and odd powers of An J
fix a point while nontrivial even powers fix a line. We have again

|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
=

n
2n
=

1
2
.

The claim follows. �

With this, combining Equation (3-2) and Lemma 3.5 yields

χES(Q̃Z,2)=
1
2
χtop(∂top Q)−

∑
p∈P∂

|HOM(Z,G p)0|

|G p|
.

Along with Equation (3-1) and Lemmas 3.3 and 3.4, this establishes the following.
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Proposition 3.6. Let Q be a closed, effective 3-orbifold and let 0 be a finitely
generated discrete group. Then

χES
0 (Q)= (|HOM(0,Z/2Z)| − 1)

(
1
2
χtop(∂top Q)−

∑
p∈P∂

|HOM(Z,G p)0|

|G p|

)

+

∑
p∈P

|HOM(0,G p)0|

|G p|
. (3-3)

In particular, χES
0 (Q) depends only on χtop(∂top Q) and the number and type of

point singularities of Q. For 0 = Fl , we have

χES
Fl
(Q)=

2l
− 1
2

χtop(∂top Q)+
∑

p∈PrP∂

|HOM(Fl,G p)0|

|G p|

+

∑
p∈P∂

|HOM(Fl,G p)0| − (2l
− 1)|HOM(Z,G p)0|

|G p|
.

3B. Counting point-fixing homomorphisms. In view of Proposition 3.6, to com-
plete the computation of the Fl-Euler–Satake characteristic of an arbitrary closed,
effective 3-orbifold Q, we need only determine the value of |HOM(Fl,G p)0|/|G p|

for each G p corresponding to p ∈ PrP∂ and that of(
|HOM(Fl,G p)0| − (2l

− 1)|HOM(Z,G p)0|
)
/|G p|

for p∈P∂ . To organize the computations of these quantities, we make the following
observations.

Given an arbitrary finitely generated discrete group 0, for each finite subgroup
G < O(3) corresponding to a point singularity, we have

HOM(0,G)= HOM(0,G)0+HOM(0,G)1+HOM(0,G)2+HOM(0,G)3.

Clearly, |HOM(0,G)3| = 1, as only the trivial homomorphism fixes all of R3.
Similarly, as the only plane-fixing elements of O(3) generate a subgroup isomorphic
to Z/2Z, and as a plane in R3 is fixed by exactly one nontrivial element of O(3),
HOM(0,G)2 contains c(|HOM(0,Z/2Z)| − 1) homomorphisms where c is the
number of planes in R3 fixed by an element of G. Finally, by inspection, any
1-dimensional singular stratum of G\R3 has isotropy group D2n](Z/nZ) or Z/nZ.
Hence, as each such subgroup fixes a unique line, we have

|HOM(0,G)1| =
∞∑

n=2

an|HOM(0, D2n](Z/nZ))1| + bn|HOM(0,Z/nZ)1|,

where an denotes the number of distinct lines in R3 with isotropy group D2n](Z/nZ)

and bn denotes the number of distinct lines in R3 with isotropy group Z/nZ.



EULER–SATAKE CHARACTERISTICS OF NONORIENTABLE 3-ORBIFOLDS 361

With this, we note that if 0 = Fl , then by considering the images of a chosen set
of generators for Fl , it is easy to compute that

|HOM(Fl,Z/nZ)1| = nl
− 1.

Recall that D2n](Z/nZ) is generated by An and B J , where An acts as a rotation
about the z-axis and B J as a reflection through the yz-plane. Then there are n
plane-fixing elements of the form Ak

n B J for 0 ≤ k ≤ n− 1, and hence n(2l
− 1)

elements of HOM(Fl, D2n](Z/nZ))2. Then as each element of D2n](Z/nZ) fixes
the z-axis, there are no point-fixing elements, so that

|HOM(Fl, D2n](Z/nZ))1| = (2n)l − n(2l
− 1)− 1.

We summarize these observations with the following.

Lemma 3.7. Let G be a finite subgroup of O(3). For each n ≥ 2, let an denote the
number of lines in R3 with isotropy group D2n](Z/nZ), let bn denote the number of
lines in R3 with isotropy group Z/nZ, and let c denote the number of planes in R3

fixed by a nontrivial element of G. Then for each l ≥ 1,

|HOM(Fl,G)0| = |G|l − c(2l
− 1)− 1−

∞∑
n=2

an
(
(2n)l − 2ln+ n− 1

)
+ bn(nl

− 1).

We will now apply this result to each of the point-fixing subgroups of O(3).
To simplify the notation, for a finite G < O(3) such that G\R3 has nonempty
topological boundary (i.e., G is the isotropy group of a point singularity p ∈P∂ ),
we let

S∂(G) :=
|HOM(Fl,G)0| − (2l

− 1)|HOM(Z,G)0|
|G|

denote the corresponding term of χES
Fl
(Q) in Proposition 3.6.

G = (Z/nZ)∗. Recall that (Z/nZ)∗ has order 2n, and first assume n is even. Then
(Z/nZ)∗ contains one plane-fixing element An/2

n J so that c = 1, and a point with
isotropy group (Z/nZ)∗ is contained in P∂ . The z-axis is the only line in R3 with
nontrivial isotropy Z/nZ, and so ak = 0 for each k, bn = 1, and bk = 0 for k 6= n.
Applying Lemma 3.7,

|HOM(Fl, (Z/nZ)∗)0| = (nl
− 1)(2l

− 1) (n even),

and in particular |HOM(Z, (Z/nZ)∗)0| = n− 1. Then

S∂
(
((Z/nZ)∗)0

)
=

2l
− 1
2

(nl−1
− 1), (n even). (3-4)

For n odd, (Z/nZ)∗ contains no plane-fixing elements so that c = 0, and a point
with isotropy group (Z/nZ)∗ is an element of PrP∂ . The z-axis is again the only
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line in R3 with nontrivial isotropy Z/nZ so the ak and bk vanish except for bn = 1.
Again applying Lemma 3.7,

|HOM(Fl, (Z/nZ)∗)0| = nl(2l
− 1) (n odd),

and so
|HOM(Fl, (Z/nZ)∗)0|

|(Z/nZ)∗|
=

2l
− 1
2

nl−1 (n odd). (3-5)

G = (Z/2nZ)](Z/nZ). We again have (Z/2nZ)](Z/nZ) has order 2n. Assume n
is even. Then (Z/2nZ)](Z/nZ) contains no plane-fixing elements, so c = 0, and
the corresponding point singularity is in PrP∂ . Other than the origin, only the
z-axis has nontrivial isotropy Z/nZ, so the computation is identical to the case of
(Z/nZ)∗ for n odd given in Equation (3-5) above. That is,

|HOM(Fl, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
=

2l
− 1
2

nl−1 (n even). (3-6)

If n is odd, then (Z/2nZ)](Z/nZ) contains one plane-fixing element (A2n J )n ,
and one line in R3 is fixed by Z/nZ. The point singularity is contained in P∂ , and
the computation is identical to the case of (Z/nZ)∗ for n even in Equation (3-4).
Hence,

S∂((Z/2nZ)](Z/nZ))=
2l
− 1
2

(nl−1
− 1) (n odd). (3-7)

G = D∗2n . Recall that D∗2n has order 4n. Suppose n is even. There are n+ 1 plane-
fixing elements given by An/2

n J and Ak
n B J for k= 0, . . . , n−1 so that c= n+1 and

the point singularity is an element of P∂ . The z-axis has isotropy D2n](Z/nZ), and
the n lines spanned by (cos(kπ/n), sin(kπ/n), 0) for 0≤ k ≤ n− 1 have isotropy
D4](Z/2Z). Therefore, a2 = n, an = 1, and the other ak and bk vanish, so that by
Lemma 3.7,

|HOM(Fl, D∗2n)0| = (2
l
− 1)

(
(2n)l − 2ln+ n− 1

)
, (n even).

Therefore,
S∂(D∗2n)= 2l−2(2l

− 1)(nl−1
− 1) (n even). (3-8)

If n is odd, there are n plane-fixing elements Ak
n B J for k= 0, . . . , n−1 so c= n.

A D2n](Z/nZ) subgroup fixes the z-axis, and n lines in the xy-plane have isotropy
〈Ak B〉 ∼= Z/2Z, so that an = 1, b2 = n, and all others vanish. This yields

|HOM(Fl, D∗2n)0| = (2
l
− 1)

(
(2n)l − n

)
, (n odd),

and so

S∂(D∗2n)=
2l
− 1
2

(
(2n)l−1

− 1
)
, (n odd). (3-9)
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G = T∗. In this case, the plane fixing elements are the three conjugates of C J . We
have c = 3, a2 = 3, b3 = 4, and all ak and bk vanish. Then Lemma 3.7 yields

|HOM(Fl,T∗)0| = (24)l − 3 · 4l
+ 3 · 2l

+ 3,

and
S∂(T∗)= 1

2(2 · 24l−1
− 4l−1

− 3l−1
− 2l−1

+ 1). (3-10)

G =O∗. Here, the plane fixing elements are the three conjugates of S2 J and the
six conjugates of R J . We have c = 9, a2 = 6, a3 = 4, a4 = 3, and all others vanish.
Applying Lemma 3.7,

|HOM(Fl,O∗)0| = 48l
− 3 · 8l

− 4 · 6l
− 6 · 4l

+ 27 · 2l
− 15,

and
S∂(O∗)= 2l−2(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1). (3-11)

G= I∗. The plane fixing elements are the fifteen conjugates of B J . We have c= 15,
a2 = 15, a3 = 10, a5 = 6, and the others vanish, so by Lemma 3.7,

|HOM(Fl, I∗)0| = 120l
− 6 · 10l

− 10 · 6l
− 15 · 4l

+ 75 · 2l
− 45,

and
S∂(I∗)= 2l−2(2 · 60l−1

− 5l−1
− 3l−1

− 2l−1
+ 1). (3-12)

G = D4n]D2n . Assume n is even, and then the plane fixing elements are (A2n J )k B
for k odd. Then c = n, an = 1, b2 = n, and the other ak and bk vanish. Hence

|HOM(Fl, D4n]D2n)0| = (2l
− 1)

(
(2n)l − n

)
(n even),

and

S∂(D4n]D2n)=
2l
− 1
2

(
(2n)l−1

− 1
)
(n even). (3-13)

If n is odd, then the plane fixing elements are (A2n J )n and (A2n J )k B for k odd.
Hence c = n+ 1, a2 = n, an = 1, and the other ak and bk vanish so that

|HOM(Fl, D4n]D2n)0| = (2l
− 1)

(
(2n)l − 2ln+ n− 1

)
, (n odd),

and
S∂(D4n]D2n)= 2l−2(2l

− 1)(nl−1
− 1), (n odd). (3-14)

G =O]T. In this case, the six plane fixing elements are the conjugates of R J . We
have c = 6, a2 = 3, a3 = 4, and the other ak and bk vanish. Therefore

|HOM(Fl,O]T)0| = 24l
− 4 · 6l

− 3 · 4l
+ 3 · 2l+2

− 6,

and
S∂(O]T)= 2l−2(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1). (3-15)
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3C. The Fl -Euler–Satake characteristics of a closed, effective 3-orbifold. Com-
bining Proposition 3.6 with Equations (3-4) through (3-15) as well as [Carroll and
Seaton 2013, Theorem 3.1], which computes the terms associated to the finite
subgroups of SO(3), we have the following.

Theorem 3.8. Let Q be a closed, effective 3-orbifold with:

t point singularities with isotropy T;
o point singularities with isotropy O;
i point singularities with isotropy I;
d point singularities with isotropy D2n for each n;
ce∗

n point singularities with isotropy (Z/nZ)∗ for each even n;
co∗

n point singularities with isotropy (Z/nZ)∗ for each odd n;
t∗ point singularities with isotropy T∗;
o∗ point singularities with isotropy O∗;
i∗ point singularities with isotropy I∗;
de∗

n point singularities with isotropy D∗2n for each even n;
do∗

n point singularities with isotropy D∗2n for each odd n;
cem

n point singularities with isotropy (Z/2Z)](Z/nZ) for each even n;
com

n point singularities with isotropy (Z/2nZ)](Z/nZ) for each odd n;
dem

n point singularities with isotropy D4n]D2n for each even n;
dom

n point singularities with isotropy D4n]D2n for each odd n;
om point singularities with isotropy O]T.

Then

χES
Fl
(Q)= 2l

−1
2

χtop(∂top Q)+ t
2
(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1)

+
o
2
(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1)

+
i
2
(2 · 60l−1

− 5l−1
− 3l−1

− 2l−1
+ 1)

+
t∗

2
(2 · 24l−1

− 4l−1
− 3l−1

− 2l−1
+ 1)

+2l−2o∗(2 · 24l−1
− 4l−1

− 3l−1
− 2l−1

+ 1)

+2l−2i∗(2 · 60l−1
− 5l−1

− 3l−1
− 2l−1

+ 1)

+om
[2l−2(2 · 12l−1

− 2 · 3l−1
− 2l−1

+ 1)]

+

(2l
−1
2

) ∞∑
n=1

(
dn (nl−1

− 1)+ ce∗
n (nl−1

− 1)+ co∗
n nl−1

+de∗
n 2l−1(nl−1

− 1)+ do∗
n
(
(2n)l−1

− 1
)
+ cem

n nl−1

+com
n (nl−1

− 1)+ dem
n
(
(2n)l−1

− 1
)
+ com

n 2l−1(nl−1
− 1)

)
.
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We note that a closed orbifold Q has a finite number of point singularities, and
hence there is a finite number of nonzero terms in the sum over n.

4. Indistinguishable orbifolds

Based on Theorem 3.8, it is easy to see that, in contrast with the orientable case, no
collection of the χES

Fl
(Q) determine the point singularities of the closed, effective

3-orbifold Q. In fact, in this section, we describe a pair of closed, effective 3-
orbifolds Q1 and Q2 such that χES

0 (Q1) = χ
ES
0 (Q2) for every finitely generated

discrete group 0.
Let n be an odd integer and let B 3 denote the closed unit ball in R3. Let Q1 be the

orbifold formed by gluing together two copies of (Z/nZ)∗\B 3 along (Z/nZ)∗\S2

so that Q1 has two point singularities with isotropy (Z/nZ)∗ connected by a segment
with isotropy Z/nZ. See Figure 4, left.

Let Q2 be the orbifold formed by gluing together two copies of

(Z/2nZ)](Z/nZ)\B 3

along (Z/2nZ)](Z/nZ)\S2 so that ∂top Q2 is homomorphic to S2 and contains two
point singularities with isotropy (Z/2nZ)](Z/nZ) connected by a segment with
isotropy Z/nZ contained in the complement of ∂top Q2. See Figure 4, right.

Let 0 be an arbitrary finitely generated discrete group. Note that ∂top Q1 is empty
so that Proposition 3.6 yields

χES
0 (Q1)= 2

|HOM(0, (Z/nZ)∗)0|

|(Z/nZ)∗|
=
|HOM(0, (Z/nZ)∗)0|

n
.

A nontrivial homomorphism ϕ : 0→ (Z/nZ)∗ corresponds to a 1-dimensional

............................................ ....... .............. ................. .................... ......................-- . .......... ........ ....... ........
...................

.........................................................................� . ................. .............. ........... ..............
...................................................................................�

............................................................... ......... ............ ............... ................. ...................-

(Z/nZ)∗

(Z/nZ)∗

Z/nZ

Q1

................................................................................................................................................................................... ......... ........... ............. ............... .......................... ............................ .............................. ............................... ............................... .............................. ............................. .......................... ............... ............. ...........
.........
.......
......
.....
......
.......

..........
...........................................................................................................................................

(Z/2nZ)](Z/nZ)

(Z/2nZ)](Z/nZ)

Z/nZ

Q2

Figure 4. The orbifolds Q1 and Q2. Note that the boundary of the
region describing Q1 is identified antipodally in horizontal planes
as indicated by the curved arrows, while Q2 has (topological)
boundary homeomorphic to S2.
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sector if its image is contained in (Z/nZ)∗ ∩SO(3)= Z/nZ. So using the fact that
(Z/nZ)∗ is isomorphic to Z/2nZ, we have

χES
0 (Q1)=

|HOM(0,Z/2nZ)| − |HOM(0,Z/nZ)|

n
.

In the case of Q2, we have ∂top Q2 = S2 so that χtop(∂top Q2) = 2. Therefore,
Proposition 3.6 yields

χES
0 (Q2)= (|HOM(0,Z/2Z)| − 1)

(
1− 2

|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|

)
+ 2
|HOM(0, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
.

Then HOM(Z, (Z/2nZ)](Z/nZ)) contains 2n elements, of which the n−1 nontrivial
elements of (Z/2nZ)](Z/nZ)∩SO(3)=Z/nZ correspond to 1-dimensional sectors,
so that |HOM(Z, (Z/2nZ)](Z/nZ))0| = n. It follows that

1− 2
|HOM(Z, (Z/2nZ)](Z/nZ))0|

|(Z/2nZ)](Z/nZ)|
= 0.

Therefore, as (Z/2nZ)](Z/nZ) is isomorphic to Z/2nZ,

χES
0 (Q2)=

|HOM(0,Z/2nZ)| − |HOM(0,Z/nZ)|

n
.

Hence χES
0 (Q1)= χ

ES
0 (Q2) for every finitely generated discrete group 0.
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Rank numbers of graphs that are
combinations of paths and cycles
Brianna Blake, Elizabeth Field and Jobby Jacob

(Communicated by Joseph A. Gallian)

A k-ranking of a graph G is a function f : V (G)→ {1, 2, . . . , k} such that if
f (u) = f (v), then every u-v path contains a vertex w such that f (w) > f (u).
The rank number of G, denoted χr (G), is the minimum k such that a k-ranking
exists for G. It is shown that given a graph G and a positive integer t , the question
of whether χr (G)≤ t is NP-complete. However, the rank number of numerous
families of graphs have been established. We study and establish rank numbers
of some more families of graphs that are combinations of paths and cycles.

1. Introduction

Let G be an undirected graph with no loops and no multiple edges. A func-
tion f : V (G)→ {1, 2, . . . , k} is a (vertex) k-ranking of G if for u, v ∈ V (G),
f (u)= f (v) implies that every u-v path contains a vertex w such that f (w)> f (u).
By definition, every ranking is a proper coloring. The rank number of G, denoted
χr (G), is the minimum value of k such that G has a k-ranking. If the value of k is
not important then f will be referred to simply as a ranking of G.

Interest in rankings of graphs was sparked by its many applications to other
fields, including designs of very large scale integration (VLSI) layouts, Cholesky
factorizations of matrices in parallel, and scheduling problems of assembly steps
in manufacturing systems [Duff and Reid 1983; Iyer et al. 1991; Leiserson 1980;
Liu 1990; Sen et al. 1992]. The optimal tree node ranking problem is identical to
the problem of generating a minimum-height node separator tree for a tree. Node
separator trees are extensively used in VLSI layout [Leiserson 1980]. Ranking
of graphs is used in communication networks in which information flow between
the nodes has to be monitored. An application of graph ranking to scheduling of
assembly steps in manufacturing system is discussed in [Iyer et al. 1991].
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Bodlaender et al. [1995] show that for a graph G and a positive integer t , the
question of whether χr (G) ≤ t is NP-complete. However, the rank number of
numerous families of graphs have been established [Alpert 2010; Bruoth and
Horňák 1999; Dereniowski and Nadolski 2006; Hsieh 2002; Novotny et al. 2009;
Ortiz et al. 2010; Sergel et al. 2011]. Bodlaender et al. [1995] established that
χr (Pn) = blog2 nc + 1, where Pn is a path on n vertices. They showed that a
k-ranking for Pn = v1v2 · · · vn , where k = χr (Pn), can be obtained by labeling vi

with γ +1, where 2γ is the largest power of 2 that divides i . Throughout this paper,
this particular scheme of ranking of a path will be referred as a standard ranking.

In this paper, we study and establish rank numbers of some more families of
graphs, called flower graphs, lollipop graphs, star-flower graphs, and spider-flower
graphs, which are defined in the following sections. These graphs can be considered
as combinations of paths and cycles. We restate some known results that are used
throughout this paper.

Lemma 1 [Ghoshal et al. 1996]. Let H be a subgraph of G. Then χr (H)≤ χr (G).

Lemma 2 [Sergel et al. 2011]. Let H1 and H2 be two vertex-disjoint graphs such
that χr (H1) = χr (H2) = k. Let G be a connected supergraph of H1 ∪ H2. Then
χr (G)≥ k+ 1.

Theorem 3 [Bodlaender et al. 1995]. χr (Pn) = blog2 nc + 1, where Pn is a path
on n vertices.

If z is an integer, any ranking of P2z must have a label r > z. Hence:

Lemma 4. Let χr (Pn)= j , and let f be a χr -ranking of Pn such that f (vn)= k< j ,
where vn is an end vertex of Pn . Then n ≤

∑ j
i=k 2i−1.

The rank number of a cycle on n vertices, where n ≥ 3, is as follows:

Theorem 5 [Bruoth and Horňák 1999]. χr (Cn)= dlog2 ne+1, where Cn is a cycle
on n > 2 vertices.

2. Flower graphs

A flower graph is a graph consisting of c cycles that share a common vertex. Figure 1
gives an example.

Theorem 6. Let G be a flower graph where Cn is the largest cycle in G. Then
χr (G)= χr (Cn).

Proof. Let G be a flower graph with largest cycle Cn and let χr (Cn)= k. Since Cn

is a subgraph of G, we have χr (G)≥ k by Lemma 1.
Now, consider a labeling f such that each cycle is given its χr -ranking so that the

vertex with the largest label would be the center vertex x . Then, let f (x)= k. This
is a valid k-ranking of G, since for any two vertices u, v on the same cycle in G, if
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Figure 1. A flower graph where all of the cycles are the same size.

f (u)= f (v), then any u-v path will contain some vertex w such that f (w) > f (u)
because f restricted to each cycle is a valid ranking. In addition, if the two vertices
are on different cycles, then any u-v path will contain x , and f (x)= k > f (u).

Therefore, k ≤ χr (G)≤ k and χr (G)= χr (Cn). �

3. Lollipop graphs

A lollipop graph La,b consists of a path of order a and a cycle of order b joined by
an edge, as shown in Figure 2.

In this section, we determine the rank number of La,b for all values of a and
b. In determining the rank number of lollipop graphs, we consider three cases:
χr (Pa) < χr (Cb), χr (Pa)= χr (Cb), and χr (Pa) > χr (Cb).

Theorem 7. Let La,b be a lollipop graph where χr (Pa)<χr (Cb). Then χr (La,b)=

χr (Cb).

Proof. Let La,b be a lollipop graph with χr (Pa) <χr (Cb) and let χr (Cb)= k. Since
Cb is a subgraph of La,b, χr (La,b)≥ k by Lemma 1.

Now, consider a labeling f of La,b where Pa is labeled according to the standard
ranking of a path and the cycle Cb is given a valid k-ranking such that the vertex
adjacent to Pa is labeled k. Note that f restricted to Cb and Pa respectively are
valid rankings. Also, for any two vertices u, v where one is on Pa and the other is
on Cb, if f (u)= f (v), then any u-v path will contain the vertex on Cb labeled k,
and k > f (u). Thus f is a valid k-ranking.

Thus k ≤ χr (La,b)≤ k, and so if χr (Pa) < χr (Cb), then χr (La,b)= χr (Cb). �

Theorem 8. If χr (Pa)= χr (Cb), then χr (La,b)= χr (Pa)+ 1.

Pa

Cb

Figure 2. Lollipop graph.
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Proof. Let La,b be a lollipop graph and let χr (Pa) = χr (Cb) = k. Since La,b is
the connected supergraph of Pa and Cb, and since χr (Pa)= χr (Cb)= k, we have
χr (La,b)≥ k+ 1 by Lemma 2.

Now, consider a labeling f of La,b as in the proof of Theorem 7, and let
f (x) = k + 1, where x is the vertex on Cb that is adjacent to Pa . Clearly f
is a valid (k+1)-ranking, since the restrictions of f to Cb and Pa are valid rankings,
and for any two vertices u, v, one on Pa and the other on Cb, if f (u)= f (v), then
any u-v path will contain x which is labeled k+ 1 and k+ 1> f (u).

Therefore k+1≤ χr (La,b)≤ k+1, and so if χr (Pa)= χr (Cb), then χr (La,b)=

χr (Pa)+ 1. �

Theorem 9. If χr (Pa) > χr (Cb), then

χr (La,b)=

{
χr (Pa) if 2χr (Pa)−1

≤ a ≤
(

χr (Pa)∑
i=χr (Cb)

2i−1
)
− 1,

χr (Pa)+ 1 otherwise.

Proof. Let La,b be a lollipop graph where χr (Pa) > χr (Cb), and let χr (Pa)= j and
χr (Cb)= k. Since La,b can be labeled to have a valid ( j+1)-ranking by giving Cb

a valid k-ranking, Pa a valid j-ranking, and by changing the label of the vertex on
Cb adjacent to Pa to j +1, we have χr (La,b)≤ j +1. Also, since Pa is a subgraph
of La,b, we have χr (La,b)≥ j by Lemma 1. Thus, j ≤ χr (La,b)≤ j + 1.

Let La,b be a lollipop graph such that

2 j−1
≤ a ≤

( j∑
i=k

2i−1
)
− 1.

Now consider a labeling f of La,b defined as follows. Label Cb so that it has a
valid k-ranking, with the vertex adjacent to Pa labeled k. Beginning with the vertex
of Pa that is joined to Cb, label the vertices of Pa starting with the label of the
(2k−1

+ 1)-st vertex in the standard ranking of Pa+2k−1 . Since

2 j−1
≤ a ≤

( j∑
i=k

2i−1
)
− 1,

we have

a+ 2k−1
≤

( j∑
i=k

2i−1
)
− 1+ 2k−1

= 2 j
− 1.

However, χr (P2 j−1)= j , which means χr (Pa+2k−1)≤ j and thus f uses at most j
labels.

Let x be the vertex on Cb that is adjacent to Pa . The restriction of f to Pa+1, the
induced subgraph induced by V (Pa)∪{x}, is part of the standard ranking of Pa+2k−1

and hence is a valid ranking. Also, f restricted to Cb is a valid ranking, and for
any two vertices u, v, one on Pa and the other in V (Cb)\ {x}, if f (u)= f (v), then
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any u-v path contains the x and f (x)= k > f (u). Thus f is a valid j-ranking.
Thus, if χr (Pa)>χr (Cb) and 2 j−1

≤a≤
(∑ j

i=k 2i−1
)
−1, then j ≤χr (La,b)≤ j ,

and hence χr (La,b)= χr (Pa) in this case.
Now, let La,b be a lollipop graph such that a >

(∑ j
i=k 2i−1

)
− 1. Consider any

χr -ranking of La,b. Since χr (Cb) = k, a label of at least k + δ < j , where δ ≥ 0,
must go on Cb. (Note that if Cb has a label j , and since χr (Pa)= j , there must be
a label j + 1.) Assume, without loss of generality, that k+ δ is the largest label on
Cb and that the vertex labeled k+ δ is the vertex which is adjacent to Pa . Then by
Lemma 4, if there is no vertex with label j + 1 on Pa , then

a <
j∑

i=k+δ
2i−1.

This is a contradiction, and thus a vertex on Pa must have label j + 1. This
means χr (La,b)≥ j + 1. Thus if χr (Pa) > χr (Cb) and a >

(∑ j
i=k 2i−1

)
− 1, then

χr (La,b)= χr (Pa)+ 1. �

4. Star-flower graphs

A star-flower graph is a graph that consists of c vertex-disjoint cycles each appended
to a center vertex x by an edge. The largest cycle in a star-flower graph will be
referred to as Cn . An example of a star-flower graph is shown in Figure 3.

Theorem 10. Let G be a star-flower graph such that no two cycles in G have the
same rank number. Then χr (G)= χr (Cn).

Proof. Let G be a star-flower graph where no two cycles in G have the same rank
number and let χr (Cn)= k. Since Cn is a subgraph of G, χr (G)≥ k by Lemma 1.

Consider a labeling f of G in which each cycle is labeled using its χr -ranking
such that the vertices which are adjacent to x are labeled with the highest label

Figure 3. Star-flower graph.
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needed in each cycle. Now let f (x)= 1. This is a valid k-ranking of G, since f
restricted to each cycle is a valid ranking and because for any two vertices u, v with
f (u)= f (v), if u and v are on different cycles or one of them is x , then any u-v
path contains the vertex on the larger cycle adjacent to x which is greater than f (u).
Thus k ≤ χr (G)≤ k, and hence if no cycles in G have the same rank number, then
χr (G)= χr (Cn). �

Theorem 11. Let G be a star-flower graph such that G has two or more cycles with
the same rank number, and let w be the largest repeated rank number among the cy-
cles. Then, χr (G)=χr (Cn) if there exists q such thatw< q <χr (Cn) and such that
there is no cycle C in G with χr (C)= q. In the opposite case, χr (G)= χr (Cn)+1.

Proof. Let G be a star-flower graph with two or more cycles with the same rank
number, and let w be the largest repeated rank number among the cycles. Also, let
χr (Cn)= k. Note that k ≤ χr (G)≤ k+1. The lower bound follows from Lemma 1,
since Cn is a subgraph of G. The upper bound follows from the fact that G can be
given a valid (k+ 1)-ranking by giving the cycles valid k-rankings and labeling x
with k+ 1.

Suppose G is a star-flower graph such that there exists some q , where w< q < k,
for which there is no cycle with a rank number q. Consider a labeling f of G as
follows. Label each cycle using its χr -ranking so that the vertices adjacent to x are
given the highest label needed in each cycle. Now let f (x)= q .

The restriction of f to each cycle is a valid ranking. For any two vertices u
and v, where both are on different cycles with rank number less than q, any u-v
path contains x and f (x)= q > f (u) if f (u)= f (v). Also, if both u and v are on
different cycles where one or both of the cycles have a rank number greater than q ,
and if f (u)= f (v), then any u-v path contains the vertex on the larger cycle which
is greater than f (u). Thus f is a valid k-ranking, and therefore χr (G)≤ k. Hence
in this case χr (G)= χr (Cn).

Now, let G be a star-flower graph such that for all integers q in w ≤ q ≤ k there
is at least one cycle with rank number q. If there are two or more cycles in G
with rank number k (that is, w = k), then by Lemma 2 we have χr (G) ≥ k + 1.
Otherwise, since there are at least two cycles with a rank number ofw, the connected
supergraph of these cycles must have a rank number of at least w+ 1 by Lemma 2.
Since there is a cycle with a rank number of w+ 1, the subgraph of G formed by
taking the connected supergraph of this cycle and the subgraph with rank number
w+ 1 must have a rank number of at least w+ 2, also by Lemma 2. Continuing
this argument, since there are cycles with rank numbers of w+ 2 through k, we see
that χr (G)≥ k+ 1. Thus, if G is a star-flower graph with two or more cycles with
the same rank number and if there is at least one cycle with rank number q for all
integers q in w ≤ q ≤ k, then χr (G)= χr (Cn)+ 1. �
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Figure 4. Spider-flower graph.

5. Spider-flower graphs

A spider-flower graph consists of three or more lollipop graphs

La,b1, La,b2, La,b3, . . . , La,bn

that are appended to a center vertex x (the pendant vertex in each lollipop graph is
adjacent to x in the spider-flower graph). Figure 4 illustrates a spider-flower graph
which consists of five lollipop graphs. The paths of the lollipop graphs comprising
the spider-flower graph are of the same length by definition. The largest cycle in a
spider-flower graph will be referred to as Cn , and the paths of the lollipop graphs
which comprise the spider-flower graph will be referred to as Pa and are the arms
of the spider-flower graph. Note that any spider-flower graph has at least three arms
by definition.

To determine the rank number of a spider-flower graph, as with lollipop graphs,
we will consider three main cases of spider-flower graphs: χr (Cn) < χr (Pa),
χr (Cn)= χr (Pa), and χr (Cn) > χr (Pa).

Theorem 12. Let G be a spider-flower graph such that χr (Cn) < χr (Pa). Then

χr (G)=

{
χr (Pa)+ 1 if 2χr (Pa)−1

≤ a <
χr (Pa)∑

i=χr (Cn)

2i−1,

χr (Pa)+ 2 otherwise.

Proof. Suppose G is a spider-flower graph with χr (Cn) < χr (Pa). Let χr (Pa)= j
and let χr (Cn)= k. Then j + 1≤ χr (G)≤ j + 2. The lower bound follows from
Lemma 2 since there are at least two vertex-disjoint copies of Pa in G. The upper
bound is true because G can be given a valid ( j + 2)-ranking as follows. Label
each of the cycles in G using its χr -ranking, label the vertex on each arm that is
adjacent to the cycles with j + 1, label the remaining vertices of each arm using
the standard ranking of a path, and label x with j + 2.
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Now, suppose G has arms of order a such that

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=χr (Cn)

2i−1.

Consider a labeling f of G as follows. Label the cycles in G using a k-ranking
where the vertices on each cycle that are adjacent to the arms are labeled with k.
Label each arm using the labeling scheme described in the proof of Theorem 9.
Finally, let f (x)= j + 1.

The restriction of f to each lollipop graph is a valid ranking by similar arguments
as in the proof of Theorem 9. Also, for any two vertices u, v with f (u)= f (v), if
u and v occur on different cycles or on different arms, or if one is on a cycle and the
other is on a nonadjacent arm, then any u-v path contains x and f (x)= j+1> f (u).
This means f is a valid j + 1-ranking. Thus χr (G)≤ j + 1, and hence if

χr (Cn) < χr (Pa) and 2 j−1
≤ a <

j∑
i=w

2i−1,

then χr (G)= χr (Pa)+ 1.
Suppose a ≥

∑ j
i=k 2i−1. Since χr (Pa)= j , we have 2 j−1

≤ a < 2 j , so

j∑
i=k

2i−1
≤ a < 2 j .

There is at least one lollipop graph La,b which is a subgraph of G that has rank
number j + 1 by Theorem 9. There are also at least two other arms in G which are
vertex-disjoint from La,b, and the rank number of the connected supergraph H of
these two arms must also be at least j + 1 by Lemma 2. So, by applying Lemma 2
again, the rank number of the connected supergraph of La,b and H must be at least
j + 2, and thus χr (G)≥ j + 2. Therefore, if

χr (Cn) < χr (Pa) and
j∑

i=w

2i−1
≤ a < 2 j ,

then χr (G)= χr (Pa)+ 2. �

Theorem 13. Let G be a spider-flower graph such that χr (Cn) = χr (Pa). Then
χr (G)= χr (Cn)+ 2.

Proof. Let χr (Pa)= χr (Cn)= k. Using the same arguments as in the proof of the
second case in Theorem 12, we have χr (G)≥ k+ 2.

Now consider a labeling f of G as follows. Label the largest cycle(s) using a
valid k-ranking, where the vertex which is adjacent to the arm of G is labeled k.
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Label all of the other cycles using their χr -ranking and placing the largest label on
the vertex adjacent to the arm. Now, label the vertex on each of the arms which is
adjacent to the cycles k+ 1. Label the remainder of each of the arms according to
the standard labeling of a path. Finally, let f (x)= k+ 2.

Note that f restricted to a cycle or an arm is a valid ranking. Also, for any two
vertices u, v where both are on different cycles or both are on different arms, if
f (u)= f (v) then any u-v path will contain x and f (x)= k+ 2> f (u). Finally,
for any two vertices u, v where one is on a cycle and the other is on an adjacent
arm, if f (u) = f (v), then any u-v path will contain the vertex on the arm of G
which is adjacent to the cycle and is labeled k + 1 > f (u). Hence, f is a valid
(k+ 2)-ranking and thus χr (G)≤ k+ 2.

Therefore if χr (Cn)= χr (Pa), then χr (G)= χr (Cn)+ 2. �

Now we consider the case where χr (Cn) > χr (Pn) in a spider-flower graph.

Lemma 14. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Then
χr (Cn)≤ χr (G)≤ χr (Cn)+ 1.

Proof. Cn is a subgraph of G, and thus by Lemma 1, χr (Cn)≤ χr (G).
Consider a labeling f of G as follows. Label all cycles using their χr -ranking

by placing the highest label on the vertices adjacent to the arms, and then relabel
these vertices with χr (Cn). Label the arms of G according to the standard labeling
of a path, and then label x with χr (Cn)+ 1. Note that f restricted to a cycle or an
arm is a valid ranking. If two vertices u, v are on different cycles, different arms,
or one on a cycle and the other on a nonadjacent arm, then any u-v path contains
the vertex x , and f (x)= χr (Cn)+ 1> f (u). Also, since χr (Cn) > χr (Pa), if u is
on a cycle and v is on an adjacent arm, then any u-v path contains vertex adjacent
to the arm labeled χr (Cn) > f (v).

Therefore f is a valid (χr (Cn)+1)-ranking of G, and so χr (G)≤χr (Cn)+1. �

For the rest of the paper, we consider d the largest repeated rank number among
the cycles. If no two cycles have the same rank number, then we assume d = 0.

Theorem 15. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being
d. Let χr (Pa) < d ≤ χr (Cn). Then χr (G) = χr (Cn) if there exists t such that
d < t < χr (Cn) and such that there is no cycle C in G with χr (C) = t . In the
opposite case, χr (G)= χr (Cn)+ 1.

Proof. Let G be a spider-flower graph where two or more cycles have the same
rank number, the greatest of these being d, and χr (Pa) < d ≤ χr (Cn). Also, let
χr (Cn)= k. Suppose there exists some t such that d < t < k and there is no cycle
with rank number t in G. Consider the labeling f of G as follows. The cycles in G
are labeled using their χr -ranking, where the vertices adjacent to the arms are given
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the largest label for each cycle. For those cycles with rank numbers less than d,
replace the largest label with d. Label the arms using the standard labeling of a
path. Finally, since there is some t , where d < t < k, for which there is no cycle
with a rank number t , label x with the greatest such t .

Note that f restricted to a cycle or an arm is a valid ranking. For any two vertices
u, v where both are on different arms of G, if f (u)= f (v), then any u-v path will
contain x , and f (x)= t > χr (Pa) ≥ f (u). Also, for any two vertices u, v where
both are on different cycles of G or where one is on a cycle and the other is on
a nonadjacent arm, if at least one of the cycles has a rank number greater than
t > d , then if f (u)= f (v), any u-v path will contain the vertex on the larger cycle
adjacent to the arm which has a label greater than f (u). And, for any two vertices
u, v where both are on different cycles of G or where one is on a cycle and the
other is on a nonadjacent arm, if none of the cycles have a rank number greater
than t , then if f (u) = f (v), any u-v path will contain the center vertex x , and
f (x) = t > d ≥ f (u). Finally, for any two vertices u, v where one is on a cycle
and the other is on the arm adjacent to that cycle, if f (u) = f (v), then any u-v
path will contain the vertex on the cycle which is adjacent to the arm with label
q ≥ d > χr (Pa)≥ f (u). Thus f is a valid k-ranking, and hence χr (G)≤ χr (Cn).
Therefore, by Lemma 14, we have χr (G)= χr (Cn).

Now, suppose for all t in d < t < k there is a cycle with rank number t in G.
If there are two or more cycles with a rank number of k, then χr (G) ≥ k + 1 by
Lemma 2. Otherwise, since there are at least two cycles with a rank number of d,
the rank number of the connected supergraph of these two cycles must be at least
d+ 1. Then using similar arguments as in the proof of Theorem 11, χr (G)≥ k+ 1.
Thus, by Lemma 14, χr (G)= χr (Cn)+ 1. �

Theorem 16. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being d ,
and that d ≤ χr (Pa) < χr (Cn). Let b be the largest number for which

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=b

2i−1.

Suppose there are no cycles with rank number r where b+ 1≤ r ≤ χr (Pa). Then
χr (G)= χr (Cn) if there exists t such that χr (Pa) < t < χr (Cn) and such that there
is no cycle C in G with χr (C)= t . In the opposite case, χr (G)= χr (Cn)+ 1.

Proof. Assume that there exists t as in the statement. Let χr (Pa) = j and let
χr (Cn) = k. Consider a labeling f of G as follows. Label the cycles in G using
their χr -ranking so that the vertex adjacent to the arm has the largest label on the
cycle. Relabel the highest-labeled vertices in each of the cycles that have rank
numbers less than b with b. Now, label the arms adjacent to cycles with rank
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numbers greater than j using the standard labeling of a path. The rest of the arms
are now adjacent to vertices labeled b. As there are a maximum of

∑ j
i=b2i−1

− 1
vertices on each arm which remain to be labeled, these arms can be labeled with j
labels using the standard labeling of a path beginning with the vertex adjacent to
the cycle and treating that vertex as if it were the (2b−1

+ 1)-st vertex in the path
as in the proof of Theorem 9. Finally, let f (x) = s, where s is the greatest t in
j < t < k for which there is no cycle with a rank number of t .

Note that f restricted to a cycle or an arm is a valid ranking. For any two vertices
u, v where both are on different arms, both are on different cycles whose rank
numbers are less than s, or one is on a cycle with rank number less than s and the
other is on a nonadjacent arm, if f (u)= f (v), then any u-v path will contain the
center vertex x , where f (x)= s > j ≥ f (u). For any two vertices u, v where both
are on cycles where one or both of the rank numbers is greater than s or one is
on a cycle with rank number greater than s and the other is on a nonadjacent arm,
if f (u) = f (v), then any u-v path will contain the vertex that is adjacent to the
arm on the larger cycle and has a label q > f (u). Also, for any two vertices u, v
where one is on a cycle and the other is on an adjacent arm, if the rank number
of the cycle is greater than j and f (u)= f (v), then any u-v path will contain the
vertex on the cycle adjacent to the arm which has a label z > j ≥ f (u). If the rank
number of the cycle is less than j and f (u)= f (v), then any u-v path will either
contain the vertex on the cycle labeled b where b> f (u), or will contain the vertex
with a higher label as in the proof of Theorem 9. Therefore f is a valid k-ranking,
and hence χr (G)≤ χr (Cn). Thus χr (G)= χr (Cn) by Lemma 14.

Now, let G be a spider-flower graph where for every t such that j < t < k,
there exists some cycle with rank number equal to t . Since there are at least two
disjoint copies of Pa in G, a label of y ≥ j +1 must be used to separate these arms.
However, since for every t in j < t < k there is some cycle with rank number equal
to t , χr (G)≥ k+ 1 by the same argument used in the proof of Theorem 11. Thus,
by Lemma 14, χr (G)= χr (Cn)+ 1. �

Theorem 17. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being d ,
and that d ≤ χr (Pa) < χr (Cn). Let b be the largest number for which

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=b

2i−1.

Suppose there is at least one cycle with rank number r for b+1≤ r ≤ χr (Pa). Then
χr (G)= χr (Cn) if there exists t such that χr (Pa)+ 1< t < χr (Cn) and such that
there is no cycle C with χr (C)= t . In the opposite case, χr (G)= χr (Cn)+ 1.
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Proof. Assume there exists t as in the statement. Let χr (Pa)= j and let χr (Cn)= k.
Now, consider a labeling f of G as follows. Label G as in the proof of Theorem 16
except that for those cycles with rank number r , where b+ 1≤ r ≤ j , the vertices
on the arms adjacent to the cycles are labeled j + 1 and the remainder of the arms
are labeled according to the standard labeling of a path. Finally, let f (x)= s, where
s is the largest t in j + 1< t < k for which there is no cycle with rank number t .

For any two vertices u, v where one vertex is on a cycle with rank number r ,
where b+ 1 ≤ r ≤ j , any u-v path will contain the vertex on the arm adjacent
to the cycle labeled j + 1, and j + 1 > f (u). For two vertices u, v in any other
position of the graph, we can use the same arguments as in the proof of Theorem 16
and conclude that f is a valid k-ranking. Therefore χr (G) ≤ χr (Cn), and hence
χr (G)= χr (Cn) by Lemma 14.

Now, let G be a spider-flower graph where for every t in j + 1< t < k there is
some cycle with rank number t . Since there is a cycle with rank number r for each r
such that b+1≤ r ≤ j , G contains a cycle with rank number j . This cycle, together
with its arm Pa , forms a lollipop graph La,z with rank number j + 1 by Theorem 8.
Also, since G has at least three lollipop graphs as subgraphs, there are at least two
disjoint copies of Pa , namely P and Q, which are also disjoint from La,z . G also
has cycles of rank number t , where j + 1< t < k. These cycles, P , Q, and La,z

are mutually vertex-disjoint. Then, using a similar argument as in Theorem 11, we
get χr (G)≥ k+ 1, and hence by Lemma 14 we get χr (G)= χr (Cn)+ 1. �

6. Conclusion and future directions

We determined the rank numbers of flower graphs, lollipop graphs, star-flower
graphs, and spider-flower graphs. We determined the rank number of each of these
graphs for any size of cycles. The spider-flower graphs consists of at least three
lollipop graphs that are appended to a vertex. However, the graph where exactly two
lollipop graphs are appended to a vertex requires significantly different analysis than
the spider-flower graphs. Some cases of this graph were looked into in [McClive
2010].

By definition, the arms of the spider-flower graphs are of the same length. One
related graph to consider would be the graph that consists of lollipop graphs of
different arm lengths appended to a center vertex. Finding the rank number of this
graph requires finding the rank number of a special type of graphs called extended
star graphs. We can define an extended star graph to be a graph that consists of
paths of any length appended to a single vertex. It is clear that the rank number
of an extended star graph is either χr (Pn) or χr (Pn)+ 1, where Pn is the longest
path in the extended star graph. However, characterizing extended star graphs with
respect to their rank numbers turned out to be extremely difficult.
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