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A k-ranking of a graph G is a function f : V (G)→ {1, 2, . . . , k} such that if
f (u) = f (v), then every u-v path contains a vertex w such that f (w) > f (u).
The rank number of G, denoted χr (G), is the minimum k such that a k-ranking
exists for G. It is shown that given a graph G and a positive integer t , the question
of whether χr (G)≤ t is NP-complete. However, the rank number of numerous
families of graphs have been established. We study and establish rank numbers
of some more families of graphs that are combinations of paths and cycles.

1. Introduction

Let G be an undirected graph with no loops and no multiple edges. A func-
tion f : V (G)→ {1, 2, . . . , k} is a (vertex) k-ranking of G if for u, v ∈ V (G),
f (u)= f (v) implies that every u-v path contains a vertex w such that f (w)> f (u).
By definition, every ranking is a proper coloring. The rank number of G, denoted
χr (G), is the minimum value of k such that G has a k-ranking. If the value of k is
not important then f will be referred to simply as a ranking of G.

Interest in rankings of graphs was sparked by its many applications to other
fields, including designs of very large scale integration (VLSI) layouts, Cholesky
factorizations of matrices in parallel, and scheduling problems of assembly steps
in manufacturing systems [Duff and Reid 1983; Iyer et al. 1991; Leiserson 1980;
Liu 1990; Sen et al. 1992]. The optimal tree node ranking problem is identical to
the problem of generating a minimum-height node separator tree for a tree. Node
separator trees are extensively used in VLSI layout [Leiserson 1980]. Ranking
of graphs is used in communication networks in which information flow between
the nodes has to be monitored. An application of graph ranking to scheduling of
assembly steps in manufacturing system is discussed in [Iyer et al. 1991].
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Bodlaender et al. [1995] show that for a graph G and a positive integer t , the
question of whether χr (G) ≤ t is NP-complete. However, the rank number of
numerous families of graphs have been established [Alpert 2010; Bruoth and
Horňák 1999; Dereniowski and Nadolski 2006; Hsieh 2002; Novotny et al. 2009;
Ortiz et al. 2010; Sergel et al. 2011]. Bodlaender et al. [1995] established that
χr (Pn) = blog2 nc + 1, where Pn is a path on n vertices. They showed that a
k-ranking for Pn = v1v2 · · · vn , where k = χr (Pn), can be obtained by labeling vi

with γ +1, where 2γ is the largest power of 2 that divides i . Throughout this paper,
this particular scheme of ranking of a path will be referred as a standard ranking.

In this paper, we study and establish rank numbers of some more families of
graphs, called flower graphs, lollipop graphs, star-flower graphs, and spider-flower
graphs, which are defined in the following sections. These graphs can be considered
as combinations of paths and cycles. We restate some known results that are used
throughout this paper.

Lemma 1 [Ghoshal et al. 1996]. Let H be a subgraph of G. Then χr (H)≤ χr (G).

Lemma 2 [Sergel et al. 2011]. Let H1 and H2 be two vertex-disjoint graphs such
that χr (H1) = χr (H2) = k. Let G be a connected supergraph of H1 ∪ H2. Then
χr (G)≥ k+ 1.

Theorem 3 [Bodlaender et al. 1995]. χr (Pn) = blog2 nc + 1, where Pn is a path
on n vertices.

If z is an integer, any ranking of P2z must have a label r > z. Hence:

Lemma 4. Let χr (Pn)= j , and let f be a χr -ranking of Pn such that f (vn)= k< j ,
where vn is an end vertex of Pn . Then n ≤

∑ j
i=k 2i−1.

The rank number of a cycle on n vertices, where n ≥ 3, is as follows:

Theorem 5 [Bruoth and Horňák 1999]. χr (Cn)= dlog2 ne+1, where Cn is a cycle
on n > 2 vertices.

2. Flower graphs

A flower graph is a graph consisting of c cycles that share a common vertex. Figure 1
gives an example.

Theorem 6. Let G be a flower graph where Cn is the largest cycle in G. Then
χr (G)= χr (Cn).

Proof. Let G be a flower graph with largest cycle Cn and let χr (Cn)= k. Since Cn

is a subgraph of G, we have χr (G)≥ k by Lemma 1.
Now, consider a labeling f such that each cycle is given its χr -ranking so that the

vertex with the largest label would be the center vertex x . Then, let f (x)= k. This
is a valid k-ranking of G, since for any two vertices u, v on the same cycle in G, if



RANK NUMBERS OF GRAPHS THAT ARE COMBINATIONS OF PATHS AND CYCLES 371

Figure 1. A flower graph where all of the cycles are the same size.

f (u)= f (v), then any u-v path will contain some vertex w such that f (w) > f (u)
because f restricted to each cycle is a valid ranking. In addition, if the two vertices
are on different cycles, then any u-v path will contain x , and f (x)= k > f (u).

Therefore, k ≤ χr (G)≤ k and χr (G)= χr (Cn). �

3. Lollipop graphs

A lollipop graph La,b consists of a path of order a and a cycle of order b joined by
an edge, as shown in Figure 2.

In this section, we determine the rank number of La,b for all values of a and
b. In determining the rank number of lollipop graphs, we consider three cases:
χr (Pa) < χr (Cb), χr (Pa)= χr (Cb), and χr (Pa) > χr (Cb).

Theorem 7. Let La,b be a lollipop graph where χr (Pa)<χr (Cb). Then χr (La,b)=

χr (Cb).

Proof. Let La,b be a lollipop graph with χr (Pa) <χr (Cb) and let χr (Cb)= k. Since
Cb is a subgraph of La,b, χr (La,b)≥ k by Lemma 1.

Now, consider a labeling f of La,b where Pa is labeled according to the standard
ranking of a path and the cycle Cb is given a valid k-ranking such that the vertex
adjacent to Pa is labeled k. Note that f restricted to Cb and Pa respectively are
valid rankings. Also, for any two vertices u, v where one is on Pa and the other is
on Cb, if f (u)= f (v), then any u-v path will contain the vertex on Cb labeled k,
and k > f (u). Thus f is a valid k-ranking.

Thus k ≤ χr (La,b)≤ k, and so if χr (Pa) < χr (Cb), then χr (La,b)= χr (Cb). �

Theorem 8. If χr (Pa)= χr (Cb), then χr (La,b)= χr (Pa)+ 1.

Pa

Cb

Figure 2. Lollipop graph.
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Proof. Let La,b be a lollipop graph and let χr (Pa) = χr (Cb) = k. Since La,b is
the connected supergraph of Pa and Cb, and since χr (Pa)= χr (Cb)= k, we have
χr (La,b)≥ k+ 1 by Lemma 2.

Now, consider a labeling f of La,b as in the proof of Theorem 7, and let
f (x) = k + 1, where x is the vertex on Cb that is adjacent to Pa . Clearly f
is a valid (k+1)-ranking, since the restrictions of f to Cb and Pa are valid rankings,
and for any two vertices u, v, one on Pa and the other on Cb, if f (u)= f (v), then
any u-v path will contain x which is labeled k+ 1 and k+ 1> f (u).

Therefore k+1≤ χr (La,b)≤ k+1, and so if χr (Pa)= χr (Cb), then χr (La,b)=

χr (Pa)+ 1. �

Theorem 9. If χr (Pa) > χr (Cb), then

χr (La,b)=

{
χr (Pa) if 2χr (Pa)−1

≤ a ≤
(

χr (Pa)∑
i=χr (Cb)

2i−1
)
− 1,

χr (Pa)+ 1 otherwise.

Proof. Let La,b be a lollipop graph where χr (Pa) > χr (Cb), and let χr (Pa)= j and
χr (Cb)= k. Since La,b can be labeled to have a valid ( j+1)-ranking by giving Cb

a valid k-ranking, Pa a valid j-ranking, and by changing the label of the vertex on
Cb adjacent to Pa to j +1, we have χr (La,b)≤ j +1. Also, since Pa is a subgraph
of La,b, we have χr (La,b)≥ j by Lemma 1. Thus, j ≤ χr (La,b)≤ j + 1.

Let La,b be a lollipop graph such that

2 j−1
≤ a ≤

( j∑
i=k

2i−1
)
− 1.

Now consider a labeling f of La,b defined as follows. Label Cb so that it has a
valid k-ranking, with the vertex adjacent to Pa labeled k. Beginning with the vertex
of Pa that is joined to Cb, label the vertices of Pa starting with the label of the
(2k−1

+ 1)-st vertex in the standard ranking of Pa+2k−1 . Since

2 j−1
≤ a ≤

( j∑
i=k

2i−1
)
− 1,

we have

a+ 2k−1
≤

( j∑
i=k

2i−1
)
− 1+ 2k−1

= 2 j
− 1.

However, χr (P2 j−1)= j , which means χr (Pa+2k−1)≤ j and thus f uses at most j
labels.

Let x be the vertex on Cb that is adjacent to Pa . The restriction of f to Pa+1, the
induced subgraph induced by V (Pa)∪{x}, is part of the standard ranking of Pa+2k−1

and hence is a valid ranking. Also, f restricted to Cb is a valid ranking, and for
any two vertices u, v, one on Pa and the other in V (Cb)\ {x}, if f (u)= f (v), then
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any u-v path contains the x and f (x)= k > f (u). Thus f is a valid j-ranking.
Thus, if χr (Pa)>χr (Cb) and 2 j−1

≤a≤
(∑ j

i=k 2i−1
)
−1, then j ≤χr (La,b)≤ j ,

and hence χr (La,b)= χr (Pa) in this case.
Now, let La,b be a lollipop graph such that a >

(∑ j
i=k 2i−1

)
− 1. Consider any

χr -ranking of La,b. Since χr (Cb) = k, a label of at least k + δ < j , where δ ≥ 0,
must go on Cb. (Note that if Cb has a label j , and since χr (Pa)= j , there must be
a label j + 1.) Assume, without loss of generality, that k+ δ is the largest label on
Cb and that the vertex labeled k+ δ is the vertex which is adjacent to Pa . Then by
Lemma 4, if there is no vertex with label j + 1 on Pa , then

a <
j∑

i=k+δ
2i−1.

This is a contradiction, and thus a vertex on Pa must have label j + 1. This
means χr (La,b)≥ j + 1. Thus if χr (Pa) > χr (Cb) and a >

(∑ j
i=k 2i−1

)
− 1, then

χr (La,b)= χr (Pa)+ 1. �

4. Star-flower graphs

A star-flower graph is a graph that consists of c vertex-disjoint cycles each appended
to a center vertex x by an edge. The largest cycle in a star-flower graph will be
referred to as Cn . An example of a star-flower graph is shown in Figure 3.

Theorem 10. Let G be a star-flower graph such that no two cycles in G have the
same rank number. Then χr (G)= χr (Cn).

Proof. Let G be a star-flower graph where no two cycles in G have the same rank
number and let χr (Cn)= k. Since Cn is a subgraph of G, χr (G)≥ k by Lemma 1.

Consider a labeling f of G in which each cycle is labeled using its χr -ranking
such that the vertices which are adjacent to x are labeled with the highest label

Figure 3. Star-flower graph.
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needed in each cycle. Now let f (x)= 1. This is a valid k-ranking of G, since f
restricted to each cycle is a valid ranking and because for any two vertices u, v with
f (u)= f (v), if u and v are on different cycles or one of them is x , then any u-v
path contains the vertex on the larger cycle adjacent to x which is greater than f (u).
Thus k ≤ χr (G)≤ k, and hence if no cycles in G have the same rank number, then
χr (G)= χr (Cn). �

Theorem 11. Let G be a star-flower graph such that G has two or more cycles with
the same rank number, and let w be the largest repeated rank number among the cy-
cles. Then, χr (G)=χr (Cn) if there exists q such thatw< q <χr (Cn) and such that
there is no cycle C in G with χr (C)= q. In the opposite case, χr (G)= χr (Cn)+1.

Proof. Let G be a star-flower graph with two or more cycles with the same rank
number, and let w be the largest repeated rank number among the cycles. Also, let
χr (Cn)= k. Note that k ≤ χr (G)≤ k+1. The lower bound follows from Lemma 1,
since Cn is a subgraph of G. The upper bound follows from the fact that G can be
given a valid (k+ 1)-ranking by giving the cycles valid k-rankings and labeling x
with k+ 1.

Suppose G is a star-flower graph such that there exists some q , where w< q < k,
for which there is no cycle with a rank number q. Consider a labeling f of G as
follows. Label each cycle using its χr -ranking so that the vertices adjacent to x are
given the highest label needed in each cycle. Now let f (x)= q .

The restriction of f to each cycle is a valid ranking. For any two vertices u
and v, where both are on different cycles with rank number less than q, any u-v
path contains x and f (x)= q > f (u) if f (u)= f (v). Also, if both u and v are on
different cycles where one or both of the cycles have a rank number greater than q ,
and if f (u)= f (v), then any u-v path contains the vertex on the larger cycle which
is greater than f (u). Thus f is a valid k-ranking, and therefore χr (G)≤ k. Hence
in this case χr (G)= χr (Cn).

Now, let G be a star-flower graph such that for all integers q in w ≤ q ≤ k there
is at least one cycle with rank number q. If there are two or more cycles in G
with rank number k (that is, w = k), then by Lemma 2 we have χr (G) ≥ k + 1.
Otherwise, since there are at least two cycles with a rank number ofw, the connected
supergraph of these cycles must have a rank number of at least w+ 1 by Lemma 2.
Since there is a cycle with a rank number of w+ 1, the subgraph of G formed by
taking the connected supergraph of this cycle and the subgraph with rank number
w+ 1 must have a rank number of at least w+ 2, also by Lemma 2. Continuing
this argument, since there are cycles with rank numbers of w+ 2 through k, we see
that χr (G)≥ k+ 1. Thus, if G is a star-flower graph with two or more cycles with
the same rank number and if there is at least one cycle with rank number q for all
integers q in w ≤ q ≤ k, then χr (G)= χr (Cn)+ 1. �
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Figure 4. Spider-flower graph.

5. Spider-flower graphs

A spider-flower graph consists of three or more lollipop graphs

La,b1, La,b2, La,b3, . . . , La,bn

that are appended to a center vertex x (the pendant vertex in each lollipop graph is
adjacent to x in the spider-flower graph). Figure 4 illustrates a spider-flower graph
which consists of five lollipop graphs. The paths of the lollipop graphs comprising
the spider-flower graph are of the same length by definition. The largest cycle in a
spider-flower graph will be referred to as Cn , and the paths of the lollipop graphs
which comprise the spider-flower graph will be referred to as Pa and are the arms
of the spider-flower graph. Note that any spider-flower graph has at least three arms
by definition.

To determine the rank number of a spider-flower graph, as with lollipop graphs,
we will consider three main cases of spider-flower graphs: χr (Cn) < χr (Pa),
χr (Cn)= χr (Pa), and χr (Cn) > χr (Pa).

Theorem 12. Let G be a spider-flower graph such that χr (Cn) < χr (Pa). Then

χr (G)=

{
χr (Pa)+ 1 if 2χr (Pa)−1

≤ a <
χr (Pa)∑

i=χr (Cn)

2i−1,

χr (Pa)+ 2 otherwise.

Proof. Suppose G is a spider-flower graph with χr (Cn) < χr (Pa). Let χr (Pa)= j
and let χr (Cn)= k. Then j + 1≤ χr (G)≤ j + 2. The lower bound follows from
Lemma 2 since there are at least two vertex-disjoint copies of Pa in G. The upper
bound is true because G can be given a valid ( j + 2)-ranking as follows. Label
each of the cycles in G using its χr -ranking, label the vertex on each arm that is
adjacent to the cycles with j + 1, label the remaining vertices of each arm using
the standard ranking of a path, and label x with j + 2.
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Now, suppose G has arms of order a such that

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=χr (Cn)

2i−1.

Consider a labeling f of G as follows. Label the cycles in G using a k-ranking
where the vertices on each cycle that are adjacent to the arms are labeled with k.
Label each arm using the labeling scheme described in the proof of Theorem 9.
Finally, let f (x)= j + 1.

The restriction of f to each lollipop graph is a valid ranking by similar arguments
as in the proof of Theorem 9. Also, for any two vertices u, v with f (u)= f (v), if
u and v occur on different cycles or on different arms, or if one is on a cycle and the
other is on a nonadjacent arm, then any u-v path contains x and f (x)= j+1> f (u).
This means f is a valid j + 1-ranking. Thus χr (G)≤ j + 1, and hence if

χr (Cn) < χr (Pa) and 2 j−1
≤ a <

j∑
i=w

2i−1,

then χr (G)= χr (Pa)+ 1.
Suppose a ≥

∑ j
i=k 2i−1. Since χr (Pa)= j , we have 2 j−1

≤ a < 2 j , so

j∑
i=k

2i−1
≤ a < 2 j .

There is at least one lollipop graph La,b which is a subgraph of G that has rank
number j + 1 by Theorem 9. There are also at least two other arms in G which are
vertex-disjoint from La,b, and the rank number of the connected supergraph H of
these two arms must also be at least j + 1 by Lemma 2. So, by applying Lemma 2
again, the rank number of the connected supergraph of La,b and H must be at least
j + 2, and thus χr (G)≥ j + 2. Therefore, if

χr (Cn) < χr (Pa) and
j∑

i=w

2i−1
≤ a < 2 j ,

then χr (G)= χr (Pa)+ 2. �

Theorem 13. Let G be a spider-flower graph such that χr (Cn) = χr (Pa). Then
χr (G)= χr (Cn)+ 2.

Proof. Let χr (Pa)= χr (Cn)= k. Using the same arguments as in the proof of the
second case in Theorem 12, we have χr (G)≥ k+ 2.

Now consider a labeling f of G as follows. Label the largest cycle(s) using a
valid k-ranking, where the vertex which is adjacent to the arm of G is labeled k.
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Label all of the other cycles using their χr -ranking and placing the largest label on
the vertex adjacent to the arm. Now, label the vertex on each of the arms which is
adjacent to the cycles k+ 1. Label the remainder of each of the arms according to
the standard labeling of a path. Finally, let f (x)= k+ 2.

Note that f restricted to a cycle or an arm is a valid ranking. Also, for any two
vertices u, v where both are on different cycles or both are on different arms, if
f (u)= f (v) then any u-v path will contain x and f (x)= k+ 2> f (u). Finally,
for any two vertices u, v where one is on a cycle and the other is on an adjacent
arm, if f (u) = f (v), then any u-v path will contain the vertex on the arm of G
which is adjacent to the cycle and is labeled k + 1 > f (u). Hence, f is a valid
(k+ 2)-ranking and thus χr (G)≤ k+ 2.

Therefore if χr (Cn)= χr (Pa), then χr (G)= χr (Cn)+ 2. �

Now we consider the case where χr (Cn) > χr (Pn) in a spider-flower graph.

Lemma 14. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Then
χr (Cn)≤ χr (G)≤ χr (Cn)+ 1.

Proof. Cn is a subgraph of G, and thus by Lemma 1, χr (Cn)≤ χr (G).
Consider a labeling f of G as follows. Label all cycles using their χr -ranking

by placing the highest label on the vertices adjacent to the arms, and then relabel
these vertices with χr (Cn). Label the arms of G according to the standard labeling
of a path, and then label x with χr (Cn)+ 1. Note that f restricted to a cycle or an
arm is a valid ranking. If two vertices u, v are on different cycles, different arms,
or one on a cycle and the other on a nonadjacent arm, then any u-v path contains
the vertex x , and f (x)= χr (Cn)+ 1> f (u). Also, since χr (Cn) > χr (Pa), if u is
on a cycle and v is on an adjacent arm, then any u-v path contains vertex adjacent
to the arm labeled χr (Cn) > f (v).

Therefore f is a valid (χr (Cn)+1)-ranking of G, and so χr (G)≤χr (Cn)+1. �

For the rest of the paper, we consider d the largest repeated rank number among
the cycles. If no two cycles have the same rank number, then we assume d = 0.

Theorem 15. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being
d. Let χr (Pa) < d ≤ χr (Cn). Then χr (G) = χr (Cn) if there exists t such that
d < t < χr (Cn) and such that there is no cycle C in G with χr (C) = t . In the
opposite case, χr (G)= χr (Cn)+ 1.

Proof. Let G be a spider-flower graph where two or more cycles have the same
rank number, the greatest of these being d, and χr (Pa) < d ≤ χr (Cn). Also, let
χr (Cn)= k. Suppose there exists some t such that d < t < k and there is no cycle
with rank number t in G. Consider the labeling f of G as follows. The cycles in G
are labeled using their χr -ranking, where the vertices adjacent to the arms are given



378 BRIANNA BLAKE, ELIZABETH FIELD AND JOBBY JACOB

the largest label for each cycle. For those cycles with rank numbers less than d,
replace the largest label with d. Label the arms using the standard labeling of a
path. Finally, since there is some t , where d < t < k, for which there is no cycle
with a rank number t , label x with the greatest such t .

Note that f restricted to a cycle or an arm is a valid ranking. For any two vertices
u, v where both are on different arms of G, if f (u)= f (v), then any u-v path will
contain x , and f (x)= t > χr (Pa) ≥ f (u). Also, for any two vertices u, v where
both are on different cycles of G or where one is on a cycle and the other is on
a nonadjacent arm, if at least one of the cycles has a rank number greater than
t > d , then if f (u)= f (v), any u-v path will contain the vertex on the larger cycle
adjacent to the arm which has a label greater than f (u). And, for any two vertices
u, v where both are on different cycles of G or where one is on a cycle and the
other is on a nonadjacent arm, if none of the cycles have a rank number greater
than t , then if f (u) = f (v), any u-v path will contain the center vertex x , and
f (x) = t > d ≥ f (u). Finally, for any two vertices u, v where one is on a cycle
and the other is on the arm adjacent to that cycle, if f (u) = f (v), then any u-v
path will contain the vertex on the cycle which is adjacent to the arm with label
q ≥ d > χr (Pa)≥ f (u). Thus f is a valid k-ranking, and hence χr (G)≤ χr (Cn).
Therefore, by Lemma 14, we have χr (G)= χr (Cn).

Now, suppose for all t in d < t < k there is a cycle with rank number t in G.
If there are two or more cycles with a rank number of k, then χr (G) ≥ k + 1 by
Lemma 2. Otherwise, since there are at least two cycles with a rank number of d,
the rank number of the connected supergraph of these two cycles must be at least
d+ 1. Then using similar arguments as in the proof of Theorem 11, χr (G)≥ k+ 1.
Thus, by Lemma 14, χr (G)= χr (Cn)+ 1. �

Theorem 16. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being d ,
and that d ≤ χr (Pa) < χr (Cn). Let b be the largest number for which

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=b

2i−1.

Suppose there are no cycles with rank number r where b+ 1≤ r ≤ χr (Pa). Then
χr (G)= χr (Cn) if there exists t such that χr (Pa) < t < χr (Cn) and such that there
is no cycle C in G with χr (C)= t . In the opposite case, χr (G)= χr (Cn)+ 1.

Proof. Assume that there exists t as in the statement. Let χr (Pa) = j and let
χr (Cn) = k. Consider a labeling f of G as follows. Label the cycles in G using
their χr -ranking so that the vertex adjacent to the arm has the largest label on the
cycle. Relabel the highest-labeled vertices in each of the cycles that have rank
numbers less than b with b. Now, label the arms adjacent to cycles with rank
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numbers greater than j using the standard labeling of a path. The rest of the arms
are now adjacent to vertices labeled b. As there are a maximum of

∑ j
i=b2i−1

− 1
vertices on each arm which remain to be labeled, these arms can be labeled with j
labels using the standard labeling of a path beginning with the vertex adjacent to
the cycle and treating that vertex as if it were the (2b−1

+ 1)-st vertex in the path
as in the proof of Theorem 9. Finally, let f (x) = s, where s is the greatest t in
j < t < k for which there is no cycle with a rank number of t .

Note that f restricted to a cycle or an arm is a valid ranking. For any two vertices
u, v where both are on different arms, both are on different cycles whose rank
numbers are less than s, or one is on a cycle with rank number less than s and the
other is on a nonadjacent arm, if f (u)= f (v), then any u-v path will contain the
center vertex x , where f (x)= s > j ≥ f (u). For any two vertices u, v where both
are on cycles where one or both of the rank numbers is greater than s or one is
on a cycle with rank number greater than s and the other is on a nonadjacent arm,
if f (u) = f (v), then any u-v path will contain the vertex that is adjacent to the
arm on the larger cycle and has a label q > f (u). Also, for any two vertices u, v
where one is on a cycle and the other is on an adjacent arm, if the rank number
of the cycle is greater than j and f (u)= f (v), then any u-v path will contain the
vertex on the cycle adjacent to the arm which has a label z > j ≥ f (u). If the rank
number of the cycle is less than j and f (u)= f (v), then any u-v path will either
contain the vertex on the cycle labeled b where b> f (u), or will contain the vertex
with a higher label as in the proof of Theorem 9. Therefore f is a valid k-ranking,
and hence χr (G)≤ χr (Cn). Thus χr (G)= χr (Cn) by Lemma 14.

Now, let G be a spider-flower graph where for every t such that j < t < k,
there exists some cycle with rank number equal to t . Since there are at least two
disjoint copies of Pa in G, a label of y ≥ j +1 must be used to separate these arms.
However, since for every t in j < t < k there is some cycle with rank number equal
to t , χr (G)≥ k+ 1 by the same argument used in the proof of Theorem 11. Thus,
by Lemma 14, χr (G)= χr (Cn)+ 1. �

Theorem 17. Let G be a spider-flower graph such that χr (Cn) > χr (Pa). Suppose
G has two or more cycles with the same rank number, the greatest of these being d ,
and that d ≤ χr (Pa) < χr (Cn). Let b be the largest number for which

2χr (Pa)−1
≤ a <

χr (Pa)∑
i=b

2i−1.

Suppose there is at least one cycle with rank number r for b+1≤ r ≤ χr (Pa). Then
χr (G)= χr (Cn) if there exists t such that χr (Pa)+ 1< t < χr (Cn) and such that
there is no cycle C with χr (C)= t . In the opposite case, χr (G)= χr (Cn)+ 1.
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Proof. Assume there exists t as in the statement. Let χr (Pa)= j and let χr (Cn)= k.
Now, consider a labeling f of G as follows. Label G as in the proof of Theorem 16
except that for those cycles with rank number r , where b+ 1≤ r ≤ j , the vertices
on the arms adjacent to the cycles are labeled j + 1 and the remainder of the arms
are labeled according to the standard labeling of a path. Finally, let f (x)= s, where
s is the largest t in j + 1< t < k for which there is no cycle with rank number t .

For any two vertices u, v where one vertex is on a cycle with rank number r ,
where b+ 1 ≤ r ≤ j , any u-v path will contain the vertex on the arm adjacent
to the cycle labeled j + 1, and j + 1 > f (u). For two vertices u, v in any other
position of the graph, we can use the same arguments as in the proof of Theorem 16
and conclude that f is a valid k-ranking. Therefore χr (G) ≤ χr (Cn), and hence
χr (G)= χr (Cn) by Lemma 14.

Now, let G be a spider-flower graph where for every t in j + 1< t < k there is
some cycle with rank number t . Since there is a cycle with rank number r for each r
such that b+1≤ r ≤ j , G contains a cycle with rank number j . This cycle, together
with its arm Pa , forms a lollipop graph La,z with rank number j + 1 by Theorem 8.
Also, since G has at least three lollipop graphs as subgraphs, there are at least two
disjoint copies of Pa , namely P and Q, which are also disjoint from La,z . G also
has cycles of rank number t , where j + 1< t < k. These cycles, P , Q, and La,z

are mutually vertex-disjoint. Then, using a similar argument as in Theorem 11, we
get χr (G)≥ k+ 1, and hence by Lemma 14 we get χr (G)= χr (Cn)+ 1. �

6. Conclusion and future directions

We determined the rank numbers of flower graphs, lollipop graphs, star-flower
graphs, and spider-flower graphs. We determined the rank number of each of these
graphs for any size of cycles. The spider-flower graphs consists of at least three
lollipop graphs that are appended to a vertex. However, the graph where exactly two
lollipop graphs are appended to a vertex requires significantly different analysis than
the spider-flower graphs. Some cases of this graph were looked into in [McClive
2010].

By definition, the arms of the spider-flower graphs are of the same length. One
related graph to consider would be the graph that consists of lollipop graphs of
different arm lengths appended to a center vertex. Finding the rank number of this
graph requires finding the rank number of a special type of graphs called extended
star graphs. We can define an extended star graph to be a graph that consists of
paths of any length appended to a single vertex. It is clear that the rank number
of an extended star graph is either χr (Pn) or χr (Pn)+ 1, where Pn is the longest
path in the extended star graph. However, characterizing extended star graphs with
respect to their rank numbers turned out to be extremely difficult.
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