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Malaria, an infectious disease prevalent in sub-Saharan Africa, is transmitted
to humans through mosquito bites, and ordinary differential equation models
have often been used to describe the spread of the disease. A basic agent-based
model (ABM) of malaria transmission is established and compared to an ODE
model of the disease in order to ascertain the similarity of the ABM to typical
modeling approaches. Additionally, the ABM is described using protocol from
current literature. In order to illustrate the flexibility of the ABM, the basic ABM
is modified to incorporate the use of insecticide-treated bed nets (ITNs) and the
effect of acquired immunity. The simulations incorporating acquired immunity
and the use of ITNs show a decrease in the prevalence of the disease due to
these factors. Additionally, the ABM can easily be modified to account for other
complicated issues affecting malaria spread.

1. Introduction

Malaria, a blood-borne infectious disease widespread in sub-Saharan Africa, is
characterized by cases of high fever, chills, nausea, sweating, and fatigue. Ac-
cording to the Center for Disease Control in Atlanta (CDC), each year there are
350 to 500 million reported cases of malaria, and around 1 million people die
worldwide from this disease with 90% of these occurring in areas south of the
Sahara [CDC 2012a]. Although malaria has not been eradicated, the spread of
malaria can be controlled through both infection and disease prevention. Current
and potential intervention methods for malaria that are used throughout the world
include vaccination, insecticide-treated bed nets (ITNs) and insecticides such as
indoor residual spray. Disease prevention efforts include antimalarial drugs that
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are administered before infection and hinder the development of malaria parasites
[CDC 2011].

Female Anopheles mosquitoes bite humans in order to obtain a blood meal for
reproduction [Aron and May 1982]; the malaria parasite is transferred to humans
through mosquito saliva and to mosquitoes via human blood taken in the blood
meal. An infected mosquito will bite a susceptible (uninfected) human and transfer
malaria sporozoites from the saliva into the human’s blood, and the sporozoites
then develop in a cycle in the human liver before causing symptoms. After a period
of time (latency), the parasite is then prevalent in the human bloodstream and able
to be passed to a mosquito drawing blood for reproduction. The parasite follows
a cycle in the mosquito’s gut and after some time is ready for transmission to a
susceptible human [CDC 2012c].

Mathematical models of malaria have examined immunity [Aron 1988; 1983;
De Zoysa et al. 1991; Gu et al. 2003; Gurarie and McKenzie 2007; Maire et al.
2006; Tumwiine et al. 2007], control methods [Chiyaka et al. 2008], climate
[Dembele et al. 2009], drug resistance [Aneke 2002; Chiyaka et al. 2009; Koella
and Antia 2003], vaccinations [Smith et al. 2006] and transmission parameters
related to malaria spread [Chitnis et al. 2008]. Environmental, social and economic
factors that contribute to the spread of malaria have also been modeled [Yang and
Ferreira 2000], and several reviews and summaries have been written on existing
mathematical models of malaria [Anderson and May 1991; Koella 1991; Nedelman
1985]. Ronald Ross generated one of the earliest mathematical models [Ross 1910;
Spielman and D’Antonio 2001].

The basis for many of the deterministic models of malaria transmission is the
Ross–MacDonald differential equation model [MacDonald 1957], but MacDonald
himself also investigated more stochastic approaches [MacDonald et al. 1968]
which modeled malaria through simulations based on four key epidemiologic
parameters: the biting rate of the mosquito, the mosquito survival rate, the human
recovery rate, and the reproduction number. These simulations incorporated seasonal
changes but no incubation period of the infection. MacDonald et al. [1968]
pursued computational approaches to malaria modeling “in order to adapt the model
better to the detailed study of various preventive measures and to the process of
eradication which cannot be handled by a deterministic model that deals only in
numbers which never reach very low finite levels.” However, the predictions from
[MacDonald et al. 1968] were shown to have discrepancies with field research
[Nájera 1974].

The current study is intended to investigate malaria transmission through an agent-
based approach. Although many sophisticated malaria differential equation models
have been developed, this investigation seeks to consider a simplistic agent-based
approach and how that approach compares to ordinary differential equation modeling.
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Agent-based approaches have been used previously for biological modeling of
processes that are discrete [Castiglione et al. 2007; Eubank et al. 2004; Hinkelmann
et al. 2011; Pogson et al. 2006; Wang et al. 2009]. This study uses an agent-based
model (ABM) not only because actual infections in small populations may be
more reasonably predicted by low finite numbers [MacDonald et al. 1968], but also
because of the great potential for modeling complex aspects involved in malaria
transmission.

The major objectives of the study include directing the focus of malaria modeling
to agent-based approaches as in [MacDonald et al. 1968] in light of continuing
computational advances and describing this approach in the language of current
literature as in [Grimm et al. 2006]. The ABM presented in this study is very
simplistic in order to establish a basic framework but still allow for easy incor-
poration of the many complex factors that affect the spread of malaria. A simple
ODE system of malaria transmission based on the Ross–MacDonald model is used
for comparison since ODE models are often used to model malaria. Because a
simplistic ABM approach is considered, the ABM results are compared to output
from the very basic and well established Ross–MacDonald ODE model. Two
examples of how the ABM can be adapted to incorporate complexity are presented.
These examples will investigate the effect of ITNs and acquired immunity on the
spread of malaria.

2. Modeling malaria transmission

Most mathematical models representing the spread of malaria involve systems of
differential equations [Aneke 2002; Chiyaka et al. 2009; 2007; 2008; Dembele
et al. 2009; Koella 1991; Koella and Antia 2003; MacDonald 1957; Ngwa 2006;
Tumwiine et al. 2007], and some have involved stochastic processes [Gu et al. 2003;
Gurarie and McKenzie 2007; MacDonald et al. 1968; Maire et al. 2006; Smith
et al. 2006]. The equations used in differential equation models describe the rates
of change of the mosquito and human populations, most using standard SIR or
related models. Because most malaria modeling involves deterministic differential
equations, a basic ODE model is used for comparison purposes.

In addition to establishing a basic ODE model of malaria transmission, an ABM is
created to describe the spread of the disease through simulated random interactions
of population agents. The deterministic ODE and the ABM are compared in
order to investigate how similar the modeling approaches are at a basic level.
While models can be created involving both differential equations and stochastic
processes, the current study investigates simplistic models that do not combine the
two. Additionally, the ABM is modified for investigations related to preventative
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methods and immunity. All ABM simulations and ODE solutions in this study were
computed using Mathematica (versions 6.0, 7.0, and 8.0).

2.1. Differential equation model. The ODE model used in this study is based on
the deterministic Ross–MacDonald model [MacDonald 1957] and other quantitative
models of malaria transmission [Daley and Gani 1999] with the addition of latency.
This ODE model describes the population flow between three subgroups of humans
and mosquitoes: those that are susceptible (without malaria), those that are latent
(harboring the parasite but not yet able to transmit) and those that are infectious
(infected and able to transmit).

In order to more accurately model the spread of malaria, a latency state for both
humans and mosquitoes is added to the ODE system as in [Aneke 2002; Aron
and May 1982]. Latency can be interpreted as the time between when a mosquito
obtains a blood meal from a human and when the newly infected host can transmit
the parasite. The incorporation of latency assists in accounting for hosts that carry
the disease but cannot yet transmit the parasite. The time that it takes for a host to
leave the latent state is referred to as the incubation time.

The population subgroups will be considered as percentages or proportions rather
than in absolute numbers. The notation of lowercase h indicates a proportion of the
human population with a subscript denoting which population (infected or latent)
the proportion represents. The same notation with m in place of h will be used
for the mosquito populations. Since the overall populations will be assumed to be
constant, the susceptible population can be represented as the remainder of the total
population (hs = 1−hl−hi , ms = 1−ml−mi ). Hence, four differential equations
are needed to describe the total population of humans and mosquitoes when latency
is incorporated. The following equations (based on the system presented in [Daley
and Gani 1999] with the addition of latency) represent the rates of change of the
percentages of each population:

dhl
dt
= γmhβNmi (1− hl − hi )−

1
λh

hl, (1)

dhi
dt
=

1
λh

hl −
1
µh

hi , (2)

dml
dt
= γhmβ hi (1−ml −mi )−

1
λm

ml −
1
µm

ml, (3)

dmi
dt
=

1
λm

ml −
1
µm

mi . (4)

Each of the terms in the equations describes how individuals (proportionally) are
entering into or exiting out of the particular population subgroup. The first term
in (1) involves the interaction of infectious mosquitoes and susceptible humans.
Susceptible humans become infected and enter the latent state based upon the ratio
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of mosquitoes to humans (N =Mn/Hn , where Mn is the total number of mosquitoes
and Hn is the total number of humans), the rate mosquitoes bite humans β, and
the transmission probability from mosquito to human γmh . These parameters are
multiplied by the proportion of susceptible humans 1− hl − hi and the proportion
of infectious mosquitoes mi . The second term in (1) represents the loss of latent
humans to the infectious state based upon the human incubation time λh and also
represents the same proportion as those moving into infectivity in (2). The human
incubation time λh is the number of days in the latency period. The second term
in (2) describes humans’ recovering from malaria and returning to the susceptible
population, and µh is the average number of days for human recovery. Equations (3)
and (4) describe changes in the mosquito population using the same notation and
structure as (1) and (2).

The following assumptions are used with both the ODE model and the ABM
discussed in Section 2.2:

• Constant population sizes are assumed for both human and mosquito popula-
tions.

• Constant parameters are used and assumed to be sufficient for this modeling
investigation.

• No individual experiences superinfection (the contraction of more than one
strain of the parasite at a time).

• Climate and geography have no effect on the interactions of the populations.

• Only human and mosquito populations are considered, although mosquitoes
do bite other mammals.

The parameters used in both the ODE model and ABM simulation (as described
in Section 2.2) are presented in Table 1. The transmission rate from human to
mosquito γhm is based on a probability-of-transfer parameter used in the original
Ross–MacDonald model [MacDonald 1957]. The mosquito bite rate is based upon
an assumption that mosquitoes breed on average once a week. The associated
parameter β can be thought of as the overall bite rate times the proportion of human
bites as in [Smith et al. 2007]. All simulations in this study used initial conditions
reflecting the idea that 10% of infected humans encountered a currently uninfected
mosquito population (initial proportion infected humans h0 = 0.1; initial proportion
infected mosquitoes m0 = 0). The simulations produced for the ODE model are
presented as a comparison for the ABM simulation output in Figures 1, 3, and 5.

A stability analysis was conducted on the model in (1)–(4) in order to further
understand model behavior around equilibria. When evaluating the subpopulations
using the parameters in Table 1, two equilibrium solutions are obtained. One of
these equilibrium solutions is when all the populations are zero (the disease-free
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Parameter Definition Value Source

β mosquito bite rate 1
7 bite/day assumption

γmh transmission probability m→h 0.6 Spielman and D’Antonio 2001
γhm transmission probability h→m 1.0 MacDonald 1957
µm mosquito life span 21 days World Book 2008
µh recovery time for humans 14 days CDC 2012a
N mosquito/human ratio 5 Shililu et al. 1998
λm mosquito incubation time 7 days CDC 2012b
λh human incubation time 10 days CDC 2012a

Table 1. Parameter values used in the ODE model and the ABM.

equilibrium, or DFE) and the other is hi = 0.478142, mi = 0.441919, hl = 0.34153,
ml = 0.147306, hs = 0.180328, and ms = 0.410774 (the endemic equilibrium).
The Jacobian matrix J for the ODE system is shown below:

J =
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=


−Nβγmhmi−λh −Nβγmhmi 0 Nβγmh(1−hi−hl)

λh −γh 0 0
0 βγhm(1−mi−ml) −βγhmhi−λm−γm −βγhmhi

0 0 λm −γm

 .
When evaluating the matrix J at the DFE, the eigenvalues consist of two real roots
of opposite sign and two complex roots with negative real parts; hence, the DFE is
a saddle point (hyperbolic fixed point). At the endemic equilibrium, the eigenvalues
consist of two negative real roots and two complex roots with negative real parts,
indicating stability and attraction. If the dynamics of malaria can be controlled in
such a way that the nonzero equilibrium point is closer to the origin, then the total
number of overall cases of infection will most likely decrease.

2.2. Agent-based model (ABM). Although an ODE model of malaria spread may
reasonably model the spread of infection, the incorporation of some specific bio-
logical and environmental features of the disease (such as immunity) may result in
very complex, nonlinear models. ABMs allow research to be performed by looking
at the interaction of individuals in the simulated populations to model large-scale
occurrences. The idea behind the ABM is that the simulation stores information
about each individual mosquito and human and randomly simulates the interactions
of these agents. Unless otherwise stated, the parameters used in the ABM will
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be denoted as they were in the ODE model discussed in Section 2.1 with values
from Table 1. The ABM is conceptually similar to the work in [MacDonald et al.
1968], which uses a decision-based computer simulation to model the transmission
of malaria. The study in [MacDonald et al. 1968] does use random numbers to
simulate transmission of malaria in a finite population, but latency is not incorporated.
The current ABM differs from [MacDonald et al. 1968] by incorporating latency,
defining mosquitoes as individual agents, and not modeling seasonal effects.

An array of mosquitoes and an array of humans were created in the computer
simulations and are referred to as agents. These agents have attributes regarding
malarial infection and each are stored through advancements in the simulation
representing the passage of time. Much of the ABM simulation involves random
selection of two agents (one mosquito and one human) to interact and produce an
infected mosquito, infected human, both, or neither (if neither is infected). Each
agent has qualities stored in the code. The infective status and latent status of the
agent is stored within the array (infectious, latent) with a 1 indicating yes and 0
indicating no. Hence, (1, 0) describes an agent that is infectious, (0, 1) describes
an agent that is in the latent stage, and (0, 0) describes an agent with no infection.

The simulation begins by tracking the mosquitoes that take a blood meal. A
human is then randomly selected as the target of the mosquito taking the blood
meal. The simulation checks if either or both the selected agents are infectious and
if transmission of the parasite occurs based on model probabilities. Whether an
agent moves from the susceptible state to the latent stage through infection, moves
to the infectious state from the latent state, or returns to the susceptible state from
the infectious state is determined stochastically. The probabilities used in the ABM
are based on the parameters from the ODE model, and how they are used is more
specifically outlined in the Appendix.

Various methods have been used with ABMs and protocol to standardize de-
scriptions has been suggested [Grimm et al. 2006]. A description following the
overview, design concepts, and details (ODD) protocol [Grimm et al. 2006] of the
basic ABM for malaria transmission is presented in the Appendix. The description
in the Appendix includes flow charts and details for the basic simulation (Figures 6
and 7) and for the simulations involving preventative measures and immunity as
presented in Section 3 (Figures 8 and 9). The primary method of investigation of
the models in this study was through simulation, although alternate methods of
analysis exist using other frameworks [Hinkelmann et al. 2011].

The ABM was simulated over a 6 month interval and the output proportions for
the infectious mosquitoes are plotted versus the proportions of infectious humans
in Figure 1. The corresponding output of the ODE model is also presented in
Figure 1 for comparison. Noise and variation are apparent in the ABM simulation
as is expected because of the stochastic nature of the model. The ODE solution



22 YOKLEY, LEE, BROWN, MINOR AND MADER

Figure 1. Plot of output from the ABM simulation, shown by
the open gray shapes. The solid black shapes represent output
from the ODE model with latency as described in Section 2.1.
The simulations were generated over approximately six months
(180 days). The horizontal axis represents proportions of infectious
humans in the simulated population, and the vertical axis represents
proportions of infectious mosquitoes in the simulated population.
The symbols change from one shape to another at the end of each
30 day period.

moves toward an equilibrium point (which we know is stable based on analysis
presented in Section 2.1). The ABM output also settles around a relatively similar
point. Figure 1 illustrates that although the ABM and the ODE model do not have
identical output, the two models make very similar predictions in value of output,
shape of the output curve, and a nonzero settling point. Figure 1 presents the
ABM output of one simulation in order to show the randomness of the approach.
MacDonald et al. [1968] presented graphical representations of single simulations
of their results but stated that several replicates were needed to describe the overall
picture. Overall trends of the ABM using the parameters in Table 1 are presented
in the black graphs in Figure 2.

3. ABM model investigations

3.1. ABM model sensitivity. The local sensitivity of the ABM was investigated
visually by varying all the parameters in Table 1. Graphs were generated with
ellipses surrounding each point representing potential deviation from equilibrium



AN AGENT-BASED MODEL OF MALARIA TRANSMISSION 23

due to randomness of the simulation for three values of each parameter: 25% below
the value in Table 1, the value in Table 1, and 25% above the value in Table 1. The
two exceptions to this are for γhm and N . The transmission probability from humans
to mosquitoes γhm is already at a maximum reasonable value of 1, and therefore
the visual sensitivity analysis was performed with only the value from Table 1 and
a value 25% below. Since the ABM uses virtual mosquitoes and humans, the value
of N was kept as a whole number and sensitivity simulations were performed for
two different sets of values of N (4,5,6 and 3,5,7). For each individual parameter
investigation, all other parameter values were set to the values listed in Table 1.

Some parameters showed little change in the resulting ABM simulations. Neither
set of simulations for varying N produced significant changes in model output.
Only small changes in model output were seen when varying γmh . Slightly greater
model output changes were seen with variation in γhm . The model output followed
the same basic path when the values of β and λm were varied, but the settling
points varied somewhat. The greatest sensitivity was observed when varying µm ,
µh , and λh , and graphs with these results are presented in Figure 2. Multiple
simulations were run and averaged in order to obtain a more accurate representation
of the trend of the simulations, and Figure 2 contains average model output over
500 simulations that were run for a six month time period. Each ellipse in Figure 2
is centered on the average value found for that point after 500 runs of the simulation
plus one standard deviation in the direction of the major and minor axes.

3.2. Insecticide-treated bed nets. The ABM was modified to investigate the effects
of the use of ITNs. In the ABM, the major assumptions made regarding the use of
bed nets are as follows:

• A strict proportion of humans will receive bed nets in the initialization of the
simulation and will continue use of bed nets until the model is run completely.

• Once a bed net is hung, it is assumed to stay intact and be used every night.

• A six month time frame (one season) is used unless otherwise indicated.

• ITNs are assumed to be 96% effective, meaning a mosquito has a 4% chance
of continued interaction with the human when attempting to take a blood meal
from an individual using an ITN. The level of effectiveness of ITNs is expected
to be somewhere from 95% to 99%, taking into account efficacy as well as
potential wear [Curtis et al. 1992; N’Guessan et al. 2001].

A more formal description of the ABM process incorporating the use of bed nets is
presented in Appendix A.3.2.

Trends of infection were compared between populations with proportions of
humans using bed nets ranging from 10% to 70%. The plots in Figure 3 show
examples of simulations using a six month period where the given proportion of
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Figure 2. Plots of output from the ABM simulation for varying
values of µm (top left), µh (top right), and λh (bottom). The
simulations are based on a time span of six months and used
averages from 500 runs of the simulation. The ellipses surrounding
each point represent potential deviation from equilibrium due to
randomness of the simulation. The black graph uses the value of
the investigated parameter from Table 1, the light gray graph uses
75% of this value, and the dark gray graph uses 125% of this value.
Parameters other than the investigated parameter were defined as
in Table 1. The horizontal axis represents proportions of infectious
humans in the simulated population, and the vertical axis represents
proportions of infectious mosquitoes in the simulated population.
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humans had bed nets. The corresponding output for the ODE model is also presented
in the plots in Figure 3 to show the decreasing proportion of infected individuals
with increasing ITN usage. The ABM predictions in Figure 3 are for individual runs
of the simulation and have not been averaged since they are intended as examples
of simulation output.

In order to demonstrate the overall trend of infection with increasing ITN usage
in the current study, the average equilibrium points (hi ,mi ) for the ABM simulation
were calculated for each proportion of bed net use by humans, from 1 to 100 percent.
Again, several replicates should be simulated in order to describe the overall system
[MacDonald et al. 1968]. The ABM was run 500 times to allow for variation with
random numbers used in the simulation. A time period of two years was used in
order to allow for more settling to the equilibrium points. The average equilibrium
points were calculated using the ABM output for hi and mi in the last 500 days
of each two-year simulation run, and the equilibrium points were averaged across
various simulations. The simulation appears to settle after six months; hence, the
output in the last 500 days of the two-year run represents output after the simulation
has localized. Successive equilibrium points from 1 percent to 100 percent bed net
usage are displayed in Figure 4 along with ellipses representing the error due to
variability. The rightmost point on the plot represents the average equilibrium point
with 1 percent of humans using bed nets, and this percentage increases moving
right to left on the plot. The ellipses are centered around the mean equilibrium
coordinates for humans and mosquitoes using major and minor axes with lengths
of two standard deviations. The ellipses are presented to illustrate the variability in
the individual simulation runs.

3.3. Acquired immunity. Acquired immunity is gained through repeated exposure
to the malaria parasite, and the effects of acquired immunity have been previously
modeled [Aron 1983; Chiyaka et al. 2007; Gu et al. 2003; Gurarie and McKenzie
2007; Milligan and Downham 1996; Tumwiine et al. 2007]. Previous models have
considered acquired immunity as leading to milder forms of the disease [Tumwiine
et al. 2007] and have defined acquired immunity in a host as protection against
severe illness [Chiyaka et al. 2007]. Chiyaka et al. [2007] also asserted that while
this immunity may be beneficial to the individual, these immune individuals disrupt
the control strategies for the disease. When infection is mild the infected person
may not seek medical attention which allows susceptible mosquitoes to become
infected and spread the disease to other susceptible human hosts.

In modeling the spread of acquired immunity in the current ABM, human agents
were assumed to gain immunity after a certain number of infections as in [Milligan
and Downham 1996]. Once a host has reached a certain level of infections, the
host was assumed to lose immunity at a particular rate (if not reinfected) [Aron
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10% ITN usage 30% ITN usage

70% ITN usage

Figure 3. Plot of output from the ABM simulation incorporating
ITN usage, shown by the open gray shapes. The solid black shapes
represent output from the ODE model with latency as described
in Section 2.1, shown for comparison. The simulations were gen-
erated over approximately 6 months (180 days). The horizontal
axis represents proportions of infectious humans in the simulated
population, and the vertical axis represents proportions of infectious
mosquitoes in the simulated population. The symbols change from
one shape to another at the end of each 30 day period.
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Figure 4. For each proportion of humans using ITNs, a settling
point of the ABM was calculated based on an average of 500
simulation runs over a 2 year period. The equilibrium point for
1% ITN use is found on the top right with nearly 50% infectivity.
As ITN usage increases, the equilibrium points trend toward (0, 0)
or no infection. The ellipses surrounding each point represent
potential deviation from equilibrium due to randomness of the
simulation. The ellipses surrounding each point represent potential
deviation from equilibrium due to randomness of the simulation.

1983; Milligan and Downham 1996]. Gu et al. [2003] investigated an ABM with
acquired immunity, but their model did not incorporate latency and did allow for
superinfection. Although acquired immunity could be described using only the
number of infections a person has experienced as in [Gu et al. 2003], the ABM in
the current study was constructed to model immunity as time-dependent.

A third characteristic is added to the array for humans in the ABM that represents
a quantitative measure of acquired immunity. Each exposure to the disease is
expected to add to this quantitative measure; once a certain level of exposure to
malaria is reached, acquired immunity begins. In the ABM for acquired immunity a
person is assumed to resist infection to malaria after roughly three infections. Each
time the characteristic array of the human is changing from susceptible to latent,
Iex (which was set to 30) arbitrary units are added to the immunity characteristic.
The quantity of this characteristic at which a person is expected to be immune Ic
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is set to 70. Hence, the simulations allow for a person to be immune after three
infections in a short time period.

Once a person has acquired immunity, the immunity is assumed to decrease with
time. Once the human has returned to the susceptible state, one unit of immunity
is lost as each iterate (or day) passes without another infection. Resistance to the
disease is treated discretely; a person will not become latent if immunity is 70
or above and a person is equally susceptible to infection if immunity is anything
between 0 and 69. Although acquired immunity may lead to milder forms of disease,
the ABM was designed (in this initial investigation) to model immunity very simply.
Individuals are also assumed to have a limit to the amount of immunity they can
acquire, and the maximum quantity of immunity, Imax is set to 100. A more detailed
description of the process of the ABM with acquired immunity is presented in
Appendix A.3.2.

ABM simulation results incorporating acquired immunity are presented in
Figure 5, and the numerical solution to the ODE model described in Section 2.1
is plotted for comparison. The ABM simulation does not appear to settle into an
equilibrium point in the first six months, and ABM simulations were produced
over two-year time periods to allow for more settling to potentially identify an
equilibrium. As with the sensitivity analysis and the investigation into ITN usage,
an overall trend was desired in line with suggestions from [MacDonald et al. 1968].
Figure 5 contains average model output over 500 simulations that were run for a
two-year time period. Each ellipse in Figure 5 represents the average value found
for that point after 500 runs of the simulation plus one standard deviation in the
direction of the major and minor axes.

4. Discussion

The ABM of malaria transmission makes very similar predictions to the ODE
model based on the work of Ross and MacDonald [1957] altered to account for
latency. The ABM in the current study is similar in concept to the computational
framework described in [MacDonald et al. 1968] with the addition of latency and
without seasonal effects. The ABM is intended to be simple and straightforward
and provides a convenient way to add complexity in modeling malaria transmission,
such as incorporating the effects of bed nets and immunity. Since the output of
the ODE model and the ABM are similar, the ABM simulations likely also have
asymptotic behavior around the nonzero equilibrium point or endemic equilibrium.
Strategies of reducing the spread of malaria could be determined by investigating
changes that move the settling point of the ABM closer to the origin. The basic ODE
model had an asymptotically stable endemic equilibrium, and all simulations of the
ABM became localized after some length of time. By describing the populations in
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Figure 5. Plot of output from the ABM simulation incorporating
acquired immunity based on a time span of 2 years and using
averages from 500 runs of the simulation. The averages of model
output of the two year period are shown by the gray dots and
surrounding lighter gray ellipses. The ellipses change from one
gray shade to another at the end of each 30 day period. The
black dots represent output from the ODE model with latency as
described in Section 2.1, shown for reference. The ellipses sur-
rounding each point represent potential deviation from equilibrium
due to randomness of the simulation. The horizontal axis represents
proportions of infectious humans in the simulated population, and
the vertical axis represents proportions of infectious mosquitoes in
the simulated population.

terms of individual agents, the ABM may be better constructed to deal with disease
eradication [MacDonald et al. 1968].

The addition of bed nets into the ABM demonstrated a clear decrease in infection
compared with the base model. More specifically, increasing the amount of bed net
usage resulted in a reduction in infection prevalence in both human and mosquito
populations. Furthermore, infection is nearly eliminated from both human and
mosquito populations if only 70% of the human population is protected with bed
nets. This leads to the conclusion that bed nets, when used among the majority of a
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population, have the power of protecting more than just the individuals sleeping
directly under them. Hence, the results suggest that protecting a given threshold
of individuals within a population extends disease protection to everyone in that
population. The ABM simulation did assume that once an ITN was put in place,
the individual using it would continue to use the bed net, which may need to be
more fully considered.

Additionally, the ABM is intended as a base framework for miscellaneous inves-
tigations; and through modification of the ABM, one could easily study the effects
of bed nets combined with other considerations (seasonality, etc.). As described in
Appendix A.3.2, the ABM simulation was modified by the addition of an element
to the individual’s characteristic array which indicates the presence of a bed net and
a step to check if the ITN prevents a mosquito from biting a human. The use of
ITNs can be incorporated into an ODE model, but the purpose of this investigation
is not only to find specific results but also to illustrate an example of how the ABM
can be easily adapted.

As also discussed in Appendix A.3.2, acquired immunity was modeled in the
ABM through an element in the agent’s characteristic array, and this element was
affected only by infection history and time. Hence, the ABM did not require
computational solving of a nonlinear system. A reduction in the proportion of
infectious individuals was expected due to acquired immunity, and the ABM of
malaria transmission was relatively easy to alter to incorporate this complicated
issue of malaria transmission. As with the ABM investigation involving ITNs, the
investigation incorporating acquired immunity is intended as an example of how
the ABM can be easily modified for issues surrounding malaria or other diseases.

The ABM simulations incorporating acquired immunity show spiraling behavior
as time increases as shown in Figure 5, and this model behavior may be worth
investigating further. The description of acquired immunity may require additional
sophistication in the ABM as the results presented in this study were based on the
idea that an individual was either completely immune or completely susceptible,
which is oversimplified and was warned against in [Gurarie and McKenzie 2007].
A probabilistic approach could be used to describe an agent as less likely (but not
completely immune) to contract the disease after repeated exposures. The structure
of the ABM is not currently constructed to investigate questions such as how mildly
affected individuals’ not seeking treatment would change transmission dynamics
(as mentioned in [Chiyaka et al. 2007]), but the ABM could be modified to do so
through larger arrays describing the agents. Additionally, combining the dynamics
of ITN usage and acquired immunity in the ABM may provide even greater insight
into the effect of preventative measures in the population. The results of a model
combining these issues may suggest an even lower percentage of ITN usage is
needed for a significant reduction in infection.
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The ABM for malaria transmission does not currently incorporate spatial con-
siderations. The interactions are all treated randomly, and the agents are assumed
to be distributed in such a way that random interaction is reasonable. However,
where humans and mosquitoes are located in an area likely does affect which
humans are selected as blood-meal targets if the distributions of either group are
not uniform. The ABM could be adapted to describe smaller populations within
the larger community in order to account for this in some way. An additional
characteristic could easily be added to represent a finite number of locations that
have different parameters and interaction details associated with them.

Although the predictions from the ABM and the ODE model are similar in shape,
they do differ somewhat with time. The predictions are not equal at each time point
with the ABM simulations moving toward the settling point more quickly than the
numerical solution of the ODE system. The reason for the time difference has not
yet been identified and may be a focus for future work. This is an important issue
since the time difference could have implications on what public health professionals
should expect from real-world dynamics.

Many aspects of malaria transmission have not been incorporated into the ODE
model or the ABM. Seasonality, climate, emigration, and other environmental
factors are assumed to not have an impact on the model, but these factors do all
affect the spread of the disease. Some of the simulations are computed over two
years, which does involve seasonal changes; therefore, assuming climate has no
affect is an oversimplification. However, the ABM uses a structure that is easily
adaptable to different situations, and many of these aspects should be relatively
straightforward to include in the ABM. In order to establish the ABM as a reasonable
vehicle to describe malaria transmission, a basic ABM was created to compare to a
fairly simple ODE model. The similarity of the two models has been established,
and future work will incorporate greater complexity. Additional studies may also
consider the comparison between more complicated models of both structures.

Appendix: ODD protocol

Various techniques and methods have been used in simulation models involving
ABMs, and [Grimm et al. 2006] presents the overview, design concepts, and details
(ODD) protocol for describing ABMs. The following is a description of the malaria
transmission ABM used in this study based on the ODD protocol.

A.1. ODD protocol: overview.

A.1.1. Purpose. The purpose of the ABM malaria model in this study is to describe
malaria infection on a population level in order to better understand transmission
of the disease. Additionally, the framework of this ABM allows for fairly easy
additions of very complicated factors of malaria spread.
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Figure 6. Flow chart showing the ABM rules of malaria transmis-
sion during a blood meal. This chart describes how agents move
from the susceptible stage to the latent stage, but does not account
for the modeling of an agent’s move from the latent stage to the
infectious stage. The continued process of the ABM is shown
in Figure 7. The notation used for parameters is the same as in
Section 2.1 and the parameter values used are presented in Table 1.

A.1.2. State variables. The agents in the basic ABM are mosquitoes and humans
in closed populations. Each agent has two characteristics, whether the individual
is latent and whether the individual is infectious. The characteristics are indicated
using 0 and 1; 0 indicates the individual does not have the particular characteristic
(latent or infectious), and 1 indicates the individual does have the characteristic.

When modeling ITN usage, a third characteristic is added to the human individ-
uals indicating whether or not the individual was given a bed net at the beginning
of the simulation. The third number in the individual’s characteristic array would
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Figure 7. Flow chart showing the ABM rules defining transitions
from latency to the infectious state and returning from the infectious
state to the susceptible state. The details involved in the oval for
blood meals is expanded in Figure 6. The subscript j is either m or
h depending on whether the agent is a mosquito or a human. The
notation used for parameters is the same as in Section 2.1 and the
parameter values used are presented in Table 1.

then be 1 if the individual was using an ITN and 0 if not. In investigations with
immunity, an third characteristic is also added to the human individuals indicating a
level of acquired immunity which will be described more fully in Appendix A.3.2.

A.1.3. Process overview. The primary interaction modeled in the ABM for malaria
transmission is the contact between a mosquito taking a blood meal and the indi-
vidual human being bitten. Time is treated discretely, using steps of days. The
beginning process of the ABM is outlined in Figure 6 showing how the individual
biting events are modeled. The process of agents’ moving to latency is presented in
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Figure 7. The process in Figure 7 applies to both mosquito and human populations,
with the rules based on appropriate parameters. The subscript j in the diagram
indicates m or h depending on whether the agent is a mosquito or a human. Although
the process is the same for both types of agents, the left side of the diagram (step 1)
has different meaning depending on the type of agent. Since the population of
mosquitoes is assumed to remain constant, if a mosquito is selected to “die” (the
selected random number is less than 1/µm), then a new mosquito essentially takes
its place by changing the characteristic array to describe a susceptible mosquito.
The parameter µh indicates the recovery time of humans, so the change of the char-
acteristic array to indicate susceptibility is assumed to (most likely) be describing
the same human individual who has now recovered from the disease. The notation
used for parameters is the same as in Section 2.1 and the parameter values used are
presented in Table 1. All random numbers are selected from a uniform distribution
between 0 and 1.

A.2. ODD protocol: design concepts. The interaction between mosquitoes and
humans is modeled explicitly, and all rules of the ABM are based on probabilities.
Mosquitoes and humans from the list or array of agents were chosen randomly and
proximity or location was not incorporated.

A.3. ODD protocol: details.

A.3.1. Initialization. The parameters in Table 1 were initialized and kept fixed
throughout the simulations of the ABM. The total number of humans simulated was
500 except in a few simulations investigating sensitivity as described in Section 3.1.
(Note that since the ratio of mosquitoes to humans is a fixed parameter in the model,
defining the number of humans also defines the total number of mosquitoes.) The
initial proportion of infectious humans was set to be 10%, and the initial proportion
of infectious mosquitoes was set to be 0%. No agents were initialized in the latent
stage. All simulations used the same initial proportions.

The individual simulations involving ITNs and acquired immunity did involve
more initialized values. The details of those simulations are presented in Appen-
dix A.3.2.

A.3.2. Submodels.

Insecticide-treated bed nets. The ABM for malaria transmission was adapted to
predict the spread of the disease when insecticide-treated bed nets are used. The
process of simulated malaria transmission when bed nets are used is shown in
Figure 8. In the initialization of the simulations with ITN usage, the percentage
of how many humans would be using bed nets was set and fixed for the rest of
that simulation. To ascertain the effect of ITNs on the spread of malaria, different
simulations were varied using percentages of ITN usage. The parameter δ was not
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Figure 8. Flow chart showing the ABM rules defining malaria
transmission when bed nets are used by the human population.
The notation used for parameters is the same as in Section 2.1 and
the parameter values used are presented in Table 1 except for the
parameter δ indicating the probability that a mosquito will survive
once it tries to bite a human using a bed net.

in either original model and represents the probability that a mosquito will survive
once it tries to take a blood meal from a human using a bed net. Since bed net
usage was expected to be 96% effective (see Section 3.2), δ was set to be 0.04 for
all simulations. After the simulation checks if the mosquito dies while trying to
take a blood meal, the simulation proceeds as described in Section A.1.3. As in the
basic simulation, if an agent “dies,” its characteristic array is changed to represent
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Figure 9. Flow chart showing the ABM rules defining malaria
transmission when human agents may be able to acquire immunity
to the disease. The parameter Ic indicates the numerical immunity
that is necessary to avoid infection, Iex indicates the addition to the
immunity characteristic when the human is successfully infected,
and Imax is the largest allowable value for the immunity character-
istic. Otherwise, the notation used for parameters is the same as in
Section 2.1 and the parameter values used are presented in Table 1.
This flow chart does not include the entire ABM simulation for
malaria transmission with acquired immunity as it does not show
steps modeling the move from latency to being infectious, modeling
recovery or death, or modeling how individual immunity decreases.

a newly born, susceptible agent. The oval in Figure 8 contains all steps shown in
Figure 6 and Figure 7.

Acquired immunity. In order to model malaria transmission, a third element was
added to the agent characteristic array. This third characteristic quantifies the immu-
nity of the individual human agent. A flow chart describing the ABM with malaria
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transmission when acquired immunity is incorporated is presented in Figure 9. Each
time a human is successfully infected (which means that the human moves to the
latent stage) an immunity exposure value Iex is added to the immunity characteristic
of that human. Human agents are expected to have a maximum to the immunity they
can obtain; therefore, the human immunity characteristic is limited by a maximum
value Imax. Once a human has immunity above a critical value Ic, that individual
will be protected from transmission from an infectious mosquito. The flow chart in
Figure 9 only shows the portion of the simulation through the blood-meal process,
similar to the basic simulation flow shown in Figure 6. The simulations for the
ABM with acquired immunity also proceed through the steps outlined in Figure 7.
Additionally, each iteration of the simulation represents one day, and the immunity
characteristic (if nonzero) of susceptible humans decreases by 1 with each iteration.
In all simulations, we use Ic = 70, Iex = 30, and Imax = 90 as is described more
fully in Section 3.3.
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