-
 in Olve a journal of mathematics

An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^{n} and \mathbb{R}^{2} for $n \neq 2$

Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek

An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^{n} and \mathbb{R}^{2} for $n \neq 2$

Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek (Communicated by Joel Foisy)

We show that there is no continuous bijection from \mathbb{R}^{n} onto \mathbb{R}^{2} for $n \neq 2$ by an elementary method. This proof is based on showing that for any cardinal number $\beta \leq 2^{\aleph_{0}}$, there is a partition of $R^{n}(n \geq 3)$ into β arcwise connected dense subsets.

1. Introduction

In 1877 Cantor discovered a bijection of \mathbb{R} onto \mathbb{R}^{n} for any $n \in \mathbb{N}$. Cantor's map was discontinuous, but the discovery of the Peano curve in 1890 showed that there existed continuous (although not injective) maps of \mathbb{R} onto \mathbb{R}^{n}. Between then and 1910, several mathematicians showed that there does not exist a bicontinuous bijection (homeomorphism) from \mathbb{R}^{m} onto \mathbb{R}^{n} for the cases $m=2$ and $m=3$ and $n>m$. Finally in 1911, Brouwer showed that there does not exist a homeomorphism between \mathbb{R}^{m} and \mathbb{R}^{n} for $n \neq m$ (for a modern treatment, see [Munkres 1984, p. 109]). The present paper proves the nonexistence of a continuous bijection from \mathbb{R}^{n} onto \mathbb{R}^{2} for $n \neq 2$ by an elementary method.

Rudin [1963] showed that for any countable cardinal $\alpha>2$, we cannot partition the plane into α arcwise connected dense subsets. In this paper we show that for any cardinal number $\beta \leq 2^{\aleph_{0}}$, there is a partition of $\mathbb{R}^{n}(n \geq 3)$ into β arcwise connected dense subsets; then by using this we show that there is no continuous bijection from \mathbb{R}^{n} onto \mathbb{R}^{2} for $n \neq 2$.

Lemma 1. There is a partition of \mathbb{R}^{+}into $2^{\aleph_{0}}$ dense subsets.
Proof. Consider the additive group $(\mathbb{R},+)$. The quotient group \mathbb{R} / \mathbb{Q} has $2^{\kappa_{0}}$ elements which are dense subsets of \mathbb{R}. Intersect them with \mathbb{R}^{+}.

Theorem 1. There is a partition of \mathbb{R}^{3} into $2^{\aleph_{0}}$ arcwise connected dense subsets.

[^0]Proof. Let $\left\{S_{i} \mid i \in I\right\}$ be a partition of \mathbb{R}^{+}into $2^{\aleph_{0}}$ dense subsets. The set I is just an index set, so we may suppose that $I=(01)$. Define $L_{i}=\{(t, i t, 0) \mid t>0\}$ and $M=\bigcup_{i \in I} L_{i}$ and let A_{i} be the union of all spheres with center at the origin and radius from S_{i}, that is, $A_{i}=\left\{x \in \mathbb{R}^{3} \mid\|x\| \in S_{i}\right\}$. Let $B_{i}=\left(A_{i} \backslash M\right) \cup L_{i}$. If S is a sphere centered at the origin, then $S \backslash M$ is a sphere with a small arc removed. Therefore $A_{i} \backslash M$ is the union of some arcwise connected punctured spheres. Open half-line L_{i} pastes these punctured spheres together, so B_{i} is arcwise connected. It is obvious that $\left\{B_{i} \mid i \in I\right\}$ is a partition of \mathbb{R}^{3} with size $2^{\aleph_{0}}$. Since S_{i} is dense in \mathbb{R}^{+}, A_{i} and consequently B_{i} are dense in \mathbb{R}^{3}.
Corollary 1. There is a partition of \mathbb{R}^{n} into $2^{\aleph_{0}}$ arcwise connected dense subsets for $n \geq 3$.
Proof. It is enough to set $B_{i}^{(n)}=B_{i} \times \mathbb{R}^{n-3}$, in which B_{i} is as above. The collection $\left\{B_{i}^{(n)} \mid i \in I\right\}$ is a partition of \mathbb{R}^{n} satisfying the claim.

Note that the union of any number of the sets $B_{i}^{(n)}$ is an arcwise connected dense subset of \mathbb{R}^{n}, hence:
Corollary 2. For any cardinal number $\beta \leq 2^{\aleph_{0}}$, there is a partition of $\mathbb{R}^{n}(n \geq 3)$ into β arcwise connected dense subsets.

Theorem 2. For any countable cardinal $\alpha>2$, we cannot partition the plane into α arcwise connected dense subsets.

Proof. This statement is proved in [Rudin 1963].
Lemma 2. Let X, Y be metric spaces and $T: X \rightarrow Y$ be a continuous map.
(a) If A is dense in X and T is surjective, then $T(A)$ is dense in Y.
(b) If $B \subset X$ is arcwise connected, then $T(B)$ is also arcwise connected.

Theorem 3. There is no continuous bijection from \mathbb{R} onto \mathbb{R}^{m} for $m \neq 1$.
Proof. Suppose the contrary: Let $g: \mathbb{R} \rightarrow \mathbb{R}^{m}$ be a continuous bijective map. We put $B_{n}=[-n, n]$, and so we have $\mathbb{R}^{m}=g\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\bigcup_{n=1}^{\infty} g\left(B_{n}\right)$. Since \mathbb{R}^{m} is not in the first category, at least one of the $g\left(B_{n}\right)$, for example $g\left(B_{k}\right)$, has nonempty interior in \mathbb{R}^{m}. Suppose $B(x, r) \subset g\left(B_{k}\right)$. Since B_{k} is compact, $f: B_{k} \rightarrow g\left(B_{k}\right)$ is a homeomorphism. It follows that $B(x, r)$ is homeomorphic with an interval in \mathbb{R}. This is a contradiction, because if we remove 3 points from $B(x, r)$ it remains connected, but this is not the case for the intervals in \mathbb{R}.
Theorem 4. There is no continuous bijection from \mathbb{R}^{n} onto \mathbb{R}^{2} for $n \neq 2$.
Proof. Suppose the contrary:
(a) If $n>2$, then according to Corollary 2 and Lemma 2 we can partition \mathbb{R}^{2} into 3 arcwise connected dense subsets, and this contradicts Theorem 2.
(b) If $n=1$, then this contradicts Theorem 3.

Acknowledgments

The authors are grateful to Professor Nicolas Hadjisavvas for his valuable advice and comments. The authors are also grateful to the referee for an extensive critical report including helpful hints and corrections, and extend our special thanks to Johannes Hahn for the useful point leading to the solution of the problem for case $n=1$.

References

[Munkres 1984] J. R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, CA, 1984. MR 85m:55001 Zbl 0673.55001
[Rudin 1963] M. E. Rudin, "Arcwise connected sets in the plane", Duke Math. J. 30 (1963), 363-366. MR 27 \#1923 Zbl 0131.38004
hr.daneshpajouh@ipm.ir
hdp@mehr.sharif.ir
malek@kntu.ac.ir

Received: 2012-06-03 Revised: 2012-11-27 Accepted: 2012-12-01
Revised: 2012-11-27 Accepted: 2012-12-01
School of Mathematics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5746, Tehran, Iran

Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415 Tehran, Iran

Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $\$ 120 /$ year for the electronic version, and $\$ 165 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve
 2014 vol. 7
 no. 2

An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^{n} and \mathbb{R}^{2} 125
for $n \neq 2$
Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek
Analysing territorial models on graphs 129
Marie Bruni, Mark Broom and Jan Rychtář
Binary frames, graphs and erasures 151
Bernhard G. Bodmann, Bijan Camp and Dax Mahoney
On groups with a class-preserving outer automorphism 171
Peter A. Brooksbank and Matthew S. Mizuhara
The sharp log-Sobolev inequality on a compact interval 181
Whan Ghang, Zane Martin and Steven Waruhiu
Analysis of a Sudoku variation using partially ordered sets and equivalence relations 187
Ana Burgers, Shelly Smith and Katherine Varga
Spanning tree congestion of planar graphs 205
Hiu Fai Law, Siu Lam Leung and Mikhail I. Ostrovskii
Convex and subharmonic functions on graphs 227
Matthew J. Burke and Tony L. Perkins
New results on an anti-Waring problem 239
Chris Fuller, David R. Prier and Karissa A. Vasconi

[^0]: MSC2010: primary 54-XX; secondary 54CXX.
 Keywords: arcwise connected, dense subset, homeomorphism.

