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Evolutionary graph theory combines evolutionary games with population struc-
ture, induced by the graph. The games used are limited to pairwise games
occurring on the edges of the graph. Multiplayer games can be important in
biological modelling, however, and so recently a new framework for modelling
games in structured populations allowing games with arbitrary numbers of players
was introduced. In this paper we develop the model to investigate the effect of
population structure on the level of aggression, as opposed to a well-mixed
population for two specific types of graph, using a multiplayer hawk-dove game.
We find that the graph structure can have a significant effect on the level of
aggression, and that a key factor is the variability of the group sizes formed to
play the games; the more variable the group size, the lower the level of aggression,
in general.

1. Introduction

Evolutionary graph theory has been developed to more realistically model evolution
in populations [Lieberman et al. 2005; Antal and Scheuring 2006; Nowak 2006;
Broom and Rychtář 2008]. These models use standard games like the Prisoner’s
Dilemma and the hawk-dove game, and embed them within a graph structure [Oht-
suki et al. 2006; Santos and Pacheo 2006; Hadjichrysanthou et al. 2011] representing
a finite inhomogeneous population, as opposed to traditional evolutionary game
theory models which generally consider infinite well-mixed populations. Earlier
work also considered similar models which depart from the infinite well-mixed case,
in particular [Schaffer 1988] considered a hawk-dove game in a finite population,
and [Killingback and Doebeli 1996] considered a hawk-dove game on a lattice. A
limitation of the evolutionary graph theory approach is that games can only involve
two players, which interact through the graph edges. However, many real animal
interactions can involve many players, e.g., in African wild dogs [Ginsberg and
Macdonald 1990] or roadrunners [Kelley et al. 2011]. In addition useful theoretical
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models which we might want to utilise also describe such multiplayer interactions.
In some cases many groups can interact at significant food sources, and often food
loss to neighbours can be considerable [Jetz et al. 2004].

In [Broom and Rychtář 2012] we developed a new framework of territorial
behaviour modelling how a structured population involved the interaction of different
sized groups of individuals at different times. As well as developing the general
framework, they also introduced some specific models of interaction. One such
was the territorial raider model, where individuals each owned a territory and could
either stay in their own territory or move to a neighbouring territory at each time
point. Whenever a group of individuals met on a territory, they interacted by means
of playing a (potentially) multiplayer game. In the same paper we considered an
example of a multiplayer hawk-dove game on a star. One important conclusion was
that the level of aggressiveness was less on the star graph than on the equivalent
well-mixed graph, i.e., an unstructured population. Thus it is possible that the
population structure can have a significant effect on how the population behaves,
and it may be that in real structured populations aggression is lower than that
predicted by models which do not take the structure into account.

In this paper we follow [Broom and Rychtář 2012] and model the same interaction
using different example graphs, again comparing these structured populations
with their equivalent well-mixed population model. We show that in different
circumstances the level of aggression can be noticeably higher or lower than would
be expected in the equivalent well-mixed population, and that even graphs with
superficially similar structures can lead to either a significant increase or decrease in
the level of aggression. Indeed a particular graph structure can lead to either more
or less aggression than the well-mixed population, depending upon other parameter
values. Thus to model group interactions properly, it may be important to develop
a strong understanding of the nature of interactions and the population structure.

We consider N individuals I1, . . . , IN living in their own respective territories
P1, . . . , PN . The individuals can also move to one of the territories neighbouring
theirs. This situation is modelled by a graph (V, E) where the vertices represent the
individuals and the territories that they occupy, and an edge between two vertices
means that they are neighbours, and so one individual can raid the territory of the
other.

2. A territorial raider model on the circle

A circle is a connected graph with every vertex having degree 2. In this model,
each individual can go from its territory to one next to its own with a probability λ
and stays on its territory with a probability 1− 2λ. The circle model is shown in
Figure 1.
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Figure 1. The circle representation. In this model, each individual
starts on one of the vertices which represent their territories. From
this vertex they can either “stay at home” with a probability 1−2λ
or explore a neighbouring territory connected to it through an edge
with a probability λ to go to each neighbour (every individual has
two neighbours in this model).

2.1. Group sizes. For any population of size N ≥ 3 in the circle model, we have
the following probabilities that a given individual is in a group of size i , denoted
by P(|G| = i):

P(|G| = 1)= (1− 2λ)(1− λ)2+ 2λ(2λ)(1− λ)

= 1− 4λ+ 9λ2
− 6λ3,

P(|G| = 2)= 2(1− 2λ)(1− λ)λ+ 2λ((1− 2λ)(1− λ)+ 2λ2)

= 4λ(1− 3λ+ 3λ2),

P(|G| = 3)= 3λ2(1− 2λ),

P(|G| = k)= 0, k > 3.

Note that these probabilities do not depend on N . From here, we find that the
mean group size is

E[|G|] = 1+ 4λ− 6λ2. (1)

2.2. A multiplayer hawk-dove game. We suppose that the individuals on the circle
structure play a multiplayer hawk-dove game as in [Broom and Rychtář 2012]; i.e.,
if several individuals are on the same territory then they compete for a reward of
value V . If all individuals are doves, they split the reward equitably and if there are
hawks all the doves give up and get nothing, while the hawks fight for the reward
so that one hawk receives the reward V and all the other hawks get a cost C (see
[Broom and Rychtář 2012] for more details on the calculations). If all individuals
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play hawk with a probability α, except our focal individual, we find that the average
payoff for a dove player will be

Ed(α)= V
{
1− 2λ+ 4λ2

− 2λ3
+α(4λ2

− 2λ− 2λ3)+α2(λ2
− 2λ3)

}
and the average payoff for a hawk player will be

Eh(α)= V
{
1+α(3λ2

−2λ)+α2(λ2
−2λ3)

}
+C

{
−2αλ+3αλ2

+α2λ2
−2α2λ3}.

Then the difference of payoff between a hawk player and a dove player, will be
given by the incentive function

hC(α)= Eh(α)−Ed(α)

= V {2λ−4λ2
−αλ2

+2λ3
+2αλ3

}−C{2αλ+3αλ2
+α2λ2

−2α2λ3
}. (2)

In [Broom and Rychtář 2012] we considered examples involving V = 1 and
C = 2, and here we shall also use these values. In this case

hC(α)= 2λ− 4λ2
+ 2λ3

+α(−4λ+ 5λ2
+ 2λ3)+α2(2λ2

− 4λ3).

To find mixed evolutionarily stable strategies, i.e., with 0< α < 1, we need to set
hC(α)= 0. We then have the discriminant for α given by

1= 36λ6
− 60λ5

+ 73λ4
− 56λ3

+ 16λ2

and obtain the roots

α1 =
−5λ2

+ 4λ− 2λ3
+
√
1

2(2λ2− 4λ3)
and α2 =

−5λ2
+ 4λ− 2λ3

−
√
1

2(2λ2− 4λ3)
.

We now have to see if those values are in (0, 1) or not to find possible ESSs.

Example 1. For any population size N , if we take λ= 1
3 , we find that the roots of

hC(α)= 0 are α1 = 9.0584 and α2 = 0.4416. The first root is outside of [0, 1] and
it is easy to show that the other is stable, whilst the two pure strategies 0 and 1 are
unstable, so that 0.4416 is the unique ESS of this case.

More generally the value of α2 is shown for the full range of values of λ in
Figure 2. α2 is low for intermediate values of λ when the variability of group size
is the largest, and high for the extreme values when group size variability is lower.

2.3. The equivalent well-mixed population model. As described in [Broom and
Rychtář 2012], to find an equivalent well-mixed population, we want to identify a
p so that we have a Binomial(N − 1, p) distribution with equal mean group size to
that of the circle. Here we have the equation E[|G|] = 1+ (N − 1)p, which is to
say,

p =
λ(4− 6λ)

N − 1
. (3)
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Figure 2. The values of the biological meaningful root α2 for the
multiplayer hawk-dove game with V = 1 and C = 2 on the circle,
representing the probability of playing hawk in the mixed ESS.
The values of α2 for all allowable λ are shown.

Following [Broom and Rychtář 2012], the same hawk-dove game as played above
leads to

Eh(α)= V
1− (1− pα)N

N pα
+C

(
−1+

1− (1− pα)N

N pα

)
and

Ed(α)= V
(
(1− pα)N

− (1− p)N

N p(1−α)

)
;

i.e., the incentive function is

hW (α)

= V
1− (1− pα)N

N pα
+C

(
−1+

1− (1− pα)N

N pα

)
− V

(
(1− pα)N

− (1− p)N

N p(1−α)

)
,

or again

hW (α)=
1

N pα(1−α)

{
(1−α)(V +C)− (V +C)(1− pα)N

+Cα(1− pα)N
−C N pα(1−α)+αV (1− p)N}. (4)

In [Broom and Rychtář 2012] it was stated that there is at most one root of (4)
in the interval [0, 1]. A proof of this statement is given in Appendix A, where it is
shown that there is a root between 0 and 1 for p 6= 0 and C > 0 if and only if

V
C
<

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 . (5)
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Example 2. We again take λ= 1
3 , and find the ESS value αN for the well-mixed

population of size N , for various N .

a) We consider N = 3, corresponding to the smallest possible circle. We find the
same result as in the circle case: αcircle = α3 = 0.4416. This is as we would
expect as for N = 3 the circle and the well-mixed population are identical for
λ= 1

3 .

b) For N = 5, we find α5 = 0.4208< αcircle.

c) For N = 50 we find α50 = 0.4046< α5 < αcircle.

Thus for the well-mixed population the ESS hawk probability declines with the
population size. In particular, except for N = 3, the ESS hawk proportion is higher
for the circle than for the well-mixed population. This is in contrast to the star
form from [Broom and Rychtář 2012]. These results are consistent because in
the circle case, the hawk cannot be in a territory with more than two other hawks
whereas the equivalent well-mixed population allows bigger groups which disfavour
hawk players. The star in turn allowed such bigger groups to form with greater
probability.

3. A territorial raider model on a complete bipartite graph

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U
and V , with n and m elements respectively, such that every edge connects a vertex
in U to one in V . A complete bipartite graph is a special kind of bipartite graph
where every vertex of the first set is connected to every vertex of the second set. We
shall assume that each individual in U has a probability λ of going to each territory
in V and a probability 1−mλ of staying in its own territory, and similarly each
individual in V has probability µ of going to each territory in U and a probability
1− nµ of staying in its own territory. The general bipartite model is illustrated in
Figure 3.

We shall again find the distribution of group sizes, and compare these to the
equivalent well-mixed population.

3.1. Group size. Without loss of generality we assume that m≤n. For an individual
in a territory on the right side (in the smaller side, with m individuals), we find:

For any 1≤ k ≤ min(n+ 1,m+ 1)= m+ 1:

P(|G| = k)=( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+ nµ(1−mλ)
(m−1

k−2

)
µk−2(1−µ)m−k+1

+ nmλµ
(m−1

k−1

)
µk−1(1−µ)m−k .
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n m

Figure 3. The n-m complete bipartite graph representation. The
vertices represent territories. The edges represent the possible
moves from one territory to another. Here we assume that each
individual on the left has a probability λ to go to each of the right
territories and a probability 1−mλ to stay in its own territory, and
similarly each individual on the right has a probability µ to go to
each territory on the left and a probability 1−nµ to stay in its own
territory.

For any m+ 2≤ k ≤max(n+ 1,m+ 1)= n+ 1 we have

P(|G| = k)=
( n

k−1

)
(1− nµ)λk−1(1− λ)n−k+1.

Similarly for an individual in a territory on the left, we find:

For any 1≤ k ≤ m+ 1:

P(|G| = k)=( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1

+mλ(1− nµ)
(n−1

k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k .

For any m+ 2≤ k ≤ n+ 1, we find:

P(|G| = k)=

mλ(1− nµ)
(n−1

k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k .

Finally we find the average probability for an individual on this structure:
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For any 1≤ k ≤ m+ 1:

P(|G| = k)=
n

n+m

( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1

+
n

n+m

(n−1
k−2

)
mλ(1− nµ)λk−2(1− λ)n−k+1

+
n

n+m

(n−1
k−1

)
nmλµλk−1(1− λ)n−k

+
m

n+m

( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+
m

n+m
nµ(1−mλ)

(m−1
k−2

)
µk−2(1−µ)m−k+1

+
m

n+m
nmλµ

(m−1
k−1

)
µk−1(1−µ)m−k .

For any m+ 2≤ k ≤ n+ 1:

P(|G| = k)=

n
n+m

(
mλ(1− nµ)

(n−1
k−2

)
λk−2(1− λ)n−k+1

+ nmλµ
(n−1

k−1

)
λk−1(1− λ)n−k

)
+

m
n+m

(
(1− nµ)

( n
k−1

)
λk−1(1− λ)n−k+1

)
.

Now we can use these results (see Appendix B) to show that the mean group
size is given by

E(|G|)=

1+
2nmµ−2nm2λµ+2nmλ−2n2mλµ+n2mλ2

−nmλ2
+nµ2m2

−nmµ2

n+m
. (6)

3.2. The equivalent well-mixed population. In the equivalent well-mixed popu-
lation with N = n +m individuals, with the number of individuals in the same
patch as a focal individual following a Binomial(N − 1, p) distribution, we want
the same mean group size as before. For a well-mixed population equivalent to the
n-m structure, we will have

1+ p(n+m− 1)= E(|G|).

This leads directly from the previous calculation to

p =
2nmµ− 2nm2λµ+ 2nmλ− 2n2mλµ+ n2mλ2

− nmλ2
+ nµ2m2

− nmµ2

(n+m)(n+m− 1)
.

(7)
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Example 3. If we take n = m and λ = µ = 1/(n + 1), clearly the probability
distribution of the group size of an individual from the left is identical to that of an
individual from the right. For any 1≤ k ≤ n+ 1,

P(|G| = k)=
( n

k−1

)(
1− n

n+1

)( 1
n+1

)k−1(
1− 1

n+1

)n−k+1

+
n

(n+1)2
(n−1

k−2

)( 1
n+1

)k−2(
1− 1

n+1

)n−k+1

+
n2

(n+1)2
(n−1

k−1

)( 1
n+1

)k−1(
1− 1

n+1

)n−k

=
nn−k+1

(n+1)n+1

( n!
(k−1)! (n−k+1)!

+
n!

(k−2)! (n−k+1)!
+

n!
(k−1)! (n−k)!

)
=

( 1
n+1

)k−1(
1− 1

n+1

)n−(k−1)( n
k−1

)
.

Thus this bipartite graph with equally sized parts has a binomially distributed
group size, and this is equivalent to a well-mixed population with n+ 1 individuals
and mean group size (2n+ 1)/(n+ 1). For large n this is approximately a Poisson
distribution which is also a good approximation for the well-mixed population with
2n individuals and mean group size (2n+ 1)/(n+ 1). Thus for large n this graph
is approximately the same as its equivalent well-mixed population.

3.3. A complete bipartite graph with n = 3 and m = 2. We now consider a com-
plete bipartite graph with n = 3 and m = 2. There is a representation of this model
in Figure 4.

The group size probabilities are as follows. For an individual on the right,

P(|G| = 1)= (1− 3µ)(1− λ)3+ 3µ(2λ)(1−µ),

P(|G| = 2)= 3(1− 3µ)λ(1− λ)2+ 3µ(1− 2λ)(1−µ)+ 3µ2(2λ),

P(|G| = 3)= 3(1− 3µ)λ2(1− λ)+ 3µ2(1− 2λ),

P(|G| = 4)= (1− 3µ)λ3,

and for an individual on the left,

P(|G| = 1)= (1− 2λ)(1−µ)2+ 2λ(3µ)(1− λ)2,

P(|G| = 2)= 2(1− 2λ)µ(1−µ)+ 2λ((1− 3µ)(1− λ)2+ 6λµ(1− λ)),

P(|G| = 3)= (1− 2λ)µ2
+ 2λ(2(1− 3µ)λ(1− λ)+ 3λ2µ),

P(|G| = 4)= 2(1− 3µ)λ3.

Thus we find the mean group size as
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Figure 4. The complete bipartite graph with n = 3 and m = 2
representation. The vertices represent territories and the edges
represent the possible moves from one territory to another. Here λ
is the probability for an individual on the left to move to each of its
neighbours on the right; it stays in its own territory with probability
1− 2λ. µ is the equivalent probability for an individual on the
right.

E[|G|] = 1+ 12
5 λ+

12
5 µ− 12µλ+ 6

5µ
2
+

12
5 λ

2. (8)

As for the circle we consider the multiplayer hawk-dove game. We find then for
a hawk-dove game, with probability α of playing hawk, the following payoffs:
For a hawk player the payoff is

Eh(α)= C
{
(− 6

5µ−
3
5µ

2
+ 6µλ− 6

5λ−
6
5λ

2)

+α2( 3
5µ

2
−

6
5µ

2λ− 18
5 µλ

2
+

6
5λ

2
+

2
5λ

3)+α3(− 2
5λ

3
+

6
5µλ

3)
}

+ V
{
1+α(−6

5µ−
3
5µ

2
−

6
5λ+ 6λµ− 6

5λ
2)

+α2( 3
5µ

2
−

6
5µ

2λ+ 6
5λ

2
−

18
5 µλ

2
+

2
5λ

3)+α3(− 2
5λ

3
+

6
5µλ

3)
}
.

For a dove player the payoff is

Ed(α)= V
{
1− 6

5µ−
6
5λ+ 6λµ− 6

5µ
2λ− 18

5 µλ
2
+

6
5µλ

3

+α(−6
5µ−

6
5λ+ 6λµ− 6

5µ
2λ− 18

5 µλ
2
+

6
5µλ

3)

+α2( 3
5µ

2
−

6
5µ

2λ+ 6
5λ

2
−

18
5 µλ

2
+

6
5µλ

3)+α3(−2
5λ

3
+

6
5µλ

3)
}
.

Example 4. We consider the case when C = 2, V = 1, µ= 0.2 and λ= 1
3 . Here

there is an ESS on the graph with hawk probability α = 0.4086.
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Figure 5. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 3 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

3 and µ varies
from 0 to 1

3 .

For the well-mixed population we obtain

p = 3
5λ+

3
5µ−

15
5 µλ+

3
10µ

2
+

3
5λ

2
=

79
375 .

We find for µ = 0.2, that in the well-mixed population there is an ESS with
hawk probability α = 0.4066< 0.4077. Thus it appears that the hawk probability is
somewhat bigger in this 3-2 model than the corresponding well-mixed population.

However, if we vary the parameter µ as in Figure 5, we see that for small µ
the level of aggression is higher in the well-mixed population, and for large µ it is
bigger on the graph.

3.4. A complete bipartite graph with n = 5 and m = 2. Let us now study another
concrete example of this n-m bipartite graph model. Taking n = 5 and m = 2, we
find that the corresponding probabilities are as follows, where we denote P(|G|= k)
by Pk :

P1 =
1
7

(
7− 20µ+ 5µ2

− 20λ+ 20λ2
− 20λ3

+ 10λ4
− 2λ5

+ 140λµ
− 30µ2λ− 300µλ2

+ 400µλ3
− 250µλ4

+ 60µλ5),
P2 =

1
7

(
20µ− 20µ2

− 140µλ+ 20λ− 80λ2
+ 120λ3

− 80λ4
+ 20λ5

+ 60µ2λ+ 600µλ2
− 1200µλ3

+ 1000µλ4
− 300µλ5),

P3 =
1
7

(
15µ2

+ 60λ2
− 180λ3

+ 180λ4
− 60λ5

− 30µ2λ− 300µλ2

+ 1200µλ3
− 1500µλ4

+ 600µλ5),
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P4 =
1
7

(
80λ3
− 160λ4

+ 80λ5
− 400µλ3

+ 1000µλ4
− 600µλ5),

P5 =
1
7

(
50λ4
− 50λ5

− 250µλ4
+ 300µλ5),

P6 =
1
7

(
12λ5
− 60µλ5).

We can calculate the payoff for a dove player as

Ed(α)= P1+
P2
2
+

P3
3
+

P4
4
+

P5
5
+

P6
6
−α

( P2
2
+ 2 P3

3
+ 3 P4

4
+ 4 P5

5
+

P6
6

)
+α2

( P3
3
+ 3 P4

4
+ 6 P5

5
+ 10 P6

6

)
−α3

( P4
4
+ 4 P5

5
+ 10 P6

6

)
+α4

( P5
5
+ 5 P6

6

)
−

P6
6
α5.

The payoff for a hawk player is similarly

Eh(α)= V −α(V +C)
( P2

2
+ P3+

3P4
2
+ 2P5+

5P6
2

)
+α2(V +C)

( P3
3
+ P4+ 2P5+

10P6
3

)
−α3(V +C)

( P4
4
+ P5+

5P6
2

)
+α4(V +C)

( P5
5
+ P6

)
+α5

(41V P6
6
−

C P6
6

)
.

Example 5. For λ= 1
3 and µ= 1

6 we obtain

P1 =
289
756 , P2 =

590
1701 , P3 =

1255
6804 , P4 =

40
567 , P5 =

25
1701 and P6 =

2
1701 .

Using the payoffs V = 1 and C = 2 we find that the ESS occurs when α= 0.3603.
For the equivalent well-mixed population, we find that for the same values of λ

and µ as above, we have

E[|G|] = P1+ 2P2+ 3P3+ 4P4+ 5P5+ 6P6 = 1.9921.

So according to [Broom and Rychtář 2012] we have 1+ 6p = 1.9921, or

p = 0.1653.

We then find α = 0.3785 as the unique ESS in this equivalent well-mixed
population. We notice that α5-2 = 0.3603< 0.3785= α7. Thus in this case hawks
prefer the equivalent well-mixed population to the corresponding 5-2 model.

However, again, if we vary the parameter µ as we did in Figure 5, we see that
for small µ the level of aggression is much higher in the well-mixed population,
and for large µ this advantage is reduced (see Figure 6). There is nevertheless a
higher level of aggression for the well-mixed population in all cases. As we see in
Figure 7, this is not the case for the alternative value of λ= 1

4 .

Thus different bipartite graphs can inhibit or encourage aggression, in compari-
sion to the baseline well-mixed populations. In the multiplayer hawk-dove game,
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Figure 6. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 5 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

3 and µ varies
from 0 to 0.2.
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Figure 7. The evolutionarily stable proportion of hawks on a
complete bipartite graph with n = 5 and m = 2 (thin line) and
a well-mixed population (thick line), where λ = 1

4 and µ varies
from 0 to 0.2.

hawks do particularly badly in large groups. Thus when there is a significant risk
of a large group forming, selection will favour lower aggression. This is the case in
more asymmetric bipartite graphs like the 5-2 model when the parameter λ is large
(and the star which is an (N−1)-1 bipartite graph), where vertices on the smaller
side can play host to such large groups.
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4. Discussion

Evolutionary graph theory has made a valuable contribution to the understanding
of evolution in structured populations [Lieberman et al. 2005; Nowak 2006; Broom
and Rychtář 2008]. However it has certain limitations; in particular the interactions
between individuals, usually modelled by evolutionary games, are limited to pairwise
ones. Hence a new framework was introduced in [Broom and Rychtář 2012] for
modelling structured populations which allows interactions between an arbitrarily
large number of individuals. The main purpose of the paper was to introduce the
framework, and a secondary purpose was to give examples of different models of
interaction, one of which was the territorial raider model. However, no single model
was considered in any great detail. In this paper we applied results from [Broom
and Rychtář 2012] to several different examples of graphs for the territorial raider
model and compared the multiplayer hawk-dove game played on these graphs to
equivalent well-mixed populations.

We studied two main graphs: the circle and the n-m complete bipartite graph.
The observation of the different cases leads to interesting results. First we notice that
for the same mean group size, hawks favour the model in which it is less likely to
meet many other individuals, i.e., be a member of a large group; comparing different
populations with identical means, it seems that small variance is preferred by hawks.
In the circle case, since the maximal number of individuals in one territory is three
no matter the number of individual considered, and since the equivalent well-mixed
population will allow N individuals in one territory, hawks prefer the circle model for
any N larger than three. In the n-m bipartite model the results observed are different.
For the 3-2 bipartite graph hawks prefer the 3-2 graph to the equivalent well-mixed
population except for small values of µ but for the 5-2 graph, hawks generally prefer
the equvalent well-mixed population. In [Broom and Rychtář 2012] we considered
the star, the n-1 bipartite graph, and in particular the 4-1 model, where hawks also
prefer the equivalent well-mixed population. Here for large numbers of individuals,
hawks favour the well-mixed population. From these observations, we understand
that the structure of a model has a major influence on the strategy of the individuals.

One of the key components of our population model is the evolutionary game
used. We considered a multiplayer hawk-dove game, but there are a number of
alternatives that could have been applied. Multiplayer matrix games [Broom et al.
1997] provide a more general class of games, and it is possible to have games
which involve coalitionary behaviour, so that perhaps forming large groups can
be beneficial, in contrast to the hawk-dove game example. The results will be
game-specific, in general. For instance we demonstrated the fact that there is at
most one mixed ESS in the well-mixed population model, however for arbitrary
multiplayer games there can be many ESSs.
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Potential future work will thus include investigating different example games
and structures as mentioned above. An important future direction of this research
is the incorporation of evolutionary dynamics in the new structure, as at present
the theory has concentrated on the development of the framework and key static
properties. The type of dynamics used in evolutionary graph theory, such as the
invasion process where a random individual gives birth with probability proportional
to its fitness and then replaces one of its neighbours at random, will be applicable
to our system with suitable redefinition of the term neighbour to more properly
interpret the interactions between individuals, though there may be other potential
dynamics as well. The combination of dynamics, game and structure will provide a
flexible framework for analysing population interactions.

Appendix A: A proof that Equation (4) has at most one root, and conditions
for such a root to occur

Set v = V/C . Then

hW (α)=
C

N pα(1−α)
(
(1−α)(v+ 1)− (v+ 1)(1− pα)N

+α(1− pα)N
− N pα(1−α)+αv(1− p)N ).

Denoting 1−α by β, we then have

hW (α)=

C
N pα(1−α)

(
β(v+1)−(v+β)(1− p+ pβ)N

−N pβ(1−β)+(1−β)v(1− p)N ).
We now define

f (β)= β(v+ 1)− (v+β)(1− p+ pβ)N
− N pβ(1−β)+ (1−β)v(1− p)N .

This function is differentiable as many times as we want and its third derivative is

f ′′′(β)=

−3p2 N (N−1)(1− p+ pβ)N−2
−(v+β)N (N−1)(N−2)p3(1− p+ pβ)N−3.

It is clear that f ′′′(β)<0. Moreover, we have f (0)=−v(1−p)N
+v(1−p)N

=0,
and f (1)= (v+ 1)− (v+ 1)= 0.

Thus f ′ is concave, increasing and then decreasing, and therefore f ′ can’t have
more than two roots. From there we can say that f has at most three roots. Since
we know that f (0)= f (1)= 0, there is at most one other root in R so at most one
root in (0, 1).

Since we have
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C
N pβ(1−β)

> 0 for all β ∈ (0, 1),

(i.e., there is no root in (0, 1)), we can say that f (β) has at most one root in this
interval. From here, we can also conclude that hW (α) has at most one root in this
interval. That concludes the proof.

We now investigate what are the conditions on V and C to give a root in (0, 1).
First, let us calculate hW (α) when α = 0 and α = 1. We have, for p 6= 0

hW (0)= V
(

1−
1

N p
+
(1− p)N

N p

)
> 0

and

hW (1)= (V +C)
1− (1− p)N

N p
−C − V (1− p)N−1.

So hW is positive if p 6= 0 when α = 0 and hW has at most one root in (0, 1).
Thus we can say that either hW is nonnegative for any α if hW (1)≥ 0 or there is
one α in (0, 1) such as hW (α)= 0 (and then we have hW (1)≤ 0).

Let us now study the sign of hW (1) for p 6= 0. We have

(V +C)
1− (1− p)N

N p
−C − V (1− p)N−1

≥ 0

⇐⇒
(
1− (1− p)N

− N p(1− p)N−1)V ≥ (N p+ (1− p)N
− 1

)
C

⇐⇒
V
C
≥

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 .

So there is a root between 0 and 1 for p 6= 0 and C > 0 if and only if

V
C
<

N p+ (1− p)N
− 1

1− (1− p)N − N p(1− p)N−1 . (9)

Appendix B: Mean group size for the complete bipartite graph

The mean group size can be expressed as the sum

E(|G|)=
n+1∑
k=1

P(|G| = k)k.

This is divided into nine distinct terms from the calculations from Section 3.1, six
for group sizes less than or equal to m+ 1 and three for larger groups. These nine
terms are simplified below, and the final expression for the mean group size from
Equation (6) is found by summing them.

m+1∑
k=1

nk
n+m

( m
k−1

)
(1−mλ)µk−1(1−µ)m−k+1
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=

m∑
k=0

n(k+1)
n+m

(m
k

)
(1−mλ)µk(1−µ)m−k

=
n(1−mλ)

n+m

(
1+

m∑
k=0

k
(

m
k

)
µk(1−µ)m−k

)

=
n(1−mλ)

n+m

(
1+

m∑
k=1

m!
(k−1)! (m−k)!

µk(1−µ)m−k
)

=
n(1−mλ)

n+m

(
1+mµ

m−1∑
k=0

(m−1)!
(k)! (m−1−k)!

µk(1−µ)m−k−1
)

=
n(1−mλ)

n+m
+

nmµ(1−mλ)
n+m

.

m+1∑
k=1

nk
n+m

(n−1
k−2

)
mλ(1− nµ)λk−2(1− λ)n−k+1

+

n+1∑
k=m+2

nmk
n+m

(1− nµ)
(n−1

k−2

)
λk−1(1− λ)n−k+1

=

m∑
k=0

n(k+1)
n+m

(n−1
k−1

)
mλ(1− nµ)λk−1(1− λ)n−k

+

n∑
k=m+1

nm(k+1)
n+m

(1− nµ)
(n−1

k−1

)
λk(1− λ)n−k

=
nmλ(1−nµ)

n+m

n∑
k=0

(n−1
k−1

)
(1+ k)λk−1(1− λ)n−k

=
nmλ(1−nµ)

n+m

n∑
k=1

(n−1
k−1

)
(1+ k)λk−1(1− λ)n−k

=
nmλ(1−nµ)

n+m

n−1∑
k=0

(n−1
k

)
(2+ k)λk(1− λ)n−k−1

= 2nmλ(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

n−1∑
k=0

(n−1
k

)
kλk(1− λ)n−k−1

= 2nmλ(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

n−1∑
k=1

(n−1)!
(k−1)! (n−k−1)!

λk(1− λ)n−k−1
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= 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m

n−2∑
k=0

(n−2
k

)
λk(1− λ)n−k−2

= 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m
.

m+1∑
k=1

nk
n+m

(n−1
k−1

)
nmµλk(1− λ)n−k

+

n+1∑
k=m+2

nmkλµ
n+m

(n−1
k−1

)
nλk−1(1− λ)n−k

=

m∑
k=0

n(k+1)
n+m

(n−1
k

)
nmµλk+1(1− λ)n−k−1

+

n∑
k=m+1

nm(k+1)λµ
n+m

(n−1
k

)
nλk(1− λ)n−k−1

=

n∑
k=0

n(k+1)
n+m

(n−1
k

)
nmµλk+1(1− λ)n−k−1

=
n2mλµ
n+m

n∑
k=0

(k+ 1)
(n−1

k

)
λk(1− λ)n−k−1

=
n2mλµ
n+m

n−1∑
k=0

(k+ 1)
(n−1

k

)
λk(1− λ)n−k−1

=
n2mλµ
n+m

(
1+

n−1∑
k=1

k
(n−1

k

)
λk(1− λ)n−k−1

)

=
n2mλµ
n+m

(
1+

n−2∑
k=0

(n−1)!
(k)! (n−2−k)

λk+1(1− λ)n−k−2
)

=
n2mλµ
n+m

(
1+ (n− 1)λ

n−2∑
k=0

(n−2
k

)
λk(1− λ)n−k−2

)
=

n2mλµ
n+m

+
n2m(n−1)λ2µ

n+m
.

m+1∑
k=1

mk
n+m

( n
k−1

)
(1− nµ)λk−1(1− λ)n−k+1

+

n+1∑
k=m+2

mk
n+m

(1− nµ)
( n

k−1

)
λk−1(1− λ)n−k+1
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=

m∑
k=0

m(k+1)
n+m

(n
k

)
(1− nµ)λk(1− λ)n−k

+

n∑
k=m+1

m(k+1)
n+m

(1− nµ)
(n

k

)
λk(1− λ)n−k

=
m(1−nµ)

n+m

n∑
k=0

(k+ 1)
(n

k

)
λk(1− λ)n−k

=
m(1−nµ)

n+m

(
1+

n∑
k=1

k
(n

k

)
λk(1− λ)n−k

)

=
m(1−nµ)

n+m
+

m(1−nµ)
n+m

nλ
n−1∑
k=0

(n−1)!
k! (n−k−1)!

λk(1− λ)n−k−1

=
m(1−nµ)

n+m
+

nmλ(1−nµ)
n+m

.

m+1∑
k=1

nmkµ
n+m

(1−mλ)
(m−1

k−2

)
µk−2(1−µ)m−k+1

=

m∑
k=0

nm(k+1)µ
n+m

(1−mλ)
(m−1

k−1

)
µk−1(1−µ)m−k

=
nm(1−mλ)µ

n+m

m∑
k=1

(k+ 1)
(m−1

k−1

)
µk−1(1−µ)m−k

=
nm(1−mλ)µ

n+m

·

(m−1∑
k=0

(m−1
k

)
µk(1−µ)m−1−k

+

(m−1
k

)
(k+ 1)µk(1−µ)m−1−k

)
=

2nm(1−mλ)µ
n+m

+
nm(m−1)(1−mλ)µ

n+m

m−1∑
k=1

(m−2)!
(k−1)! (m−1−k)!

µk(1−µ)m−1−k

=
2nm(1−mλ)µ

n+m

+
nm(m−1)(1−mλ)µ2

n+m

m−2∑
k=0

(m−2)!
(k)! (m−2−k)!

µk(1−µ)m−2−k

=
2nm(1−mλ)µ

n+m
+

nm(m−1)(1−mλ)µ2

n+m
.



148 MARIE BRUNI, MARK BROOM AND JAN RYCHTÁŘ

m+1∑
k=1

nm2kλµ
n+m

(m−1
k−1

)
µk−1(1−µ)m−k

=

m∑
k=0

nm2(k+1)λµ
n+m

(m−1
k

)
µk(1−µ)m−1−k

=
nm2λµ

n+m

m∑
k=0

(m−1
k

)
(k+ 1)µk(1−µ)m−1−k

=
nm2λµ

n+m

(m−∑
k=0

(m−1
k

)
µk(1−µ)m−1−k

+

m−1∑
k=1

(m−1
k

)
kµk(1−µ)m−1−k

)

=
nm2λµ

n+m
(1+µ(m− 1)

m−2∑
k=0

(m−2)!
k! (m−2−k)!

µk(1−µ)m−2−k)

=
nm2λµ

n+m
+

nm2(m−1)µ2λ

n+m
.

So we have

E(|G|)

=
n(1−mλ)

n+m
+

nmµ(1−mλ)
n+m

+ 2nmλ(1−nµ)
n+m

+
nmλ2(n−1)(1−nµ)

n+m

+
n2mλµ
n+m

+
n2m(n−1)λ2µ

n+m
+

m(1−nµ)
n+m

+
nmλ(1−nµ)

n+m

+
2nm(1−mλ)µ

n+m
+

nm(m−1)(1−mλ)µ2

n+m
+

nm2λµ

n+m
+

nm2(m−1)µ2λ

n+m

=1+2nmµ−2nm2λµ+2nmλ−2n2mλµ+n2mλ2
−nmλ2

+nµ2m2
−nmµ2

n+m
.

References

[Antal and Scheuring 2006] T. Antal and I. Scheuring, “Fixation of strategies for an evolutionary
game in finite populations”, Bull. Math. Biol. 68:8 (2006), 1923–1944. MR 2293829
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