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Four infinite families of 2-groups are presented, all of whose members possess
an outer automorphism that preserves conjugacy classes. The groups in these
families are central extensions of their predecessors by a cyclic group of order 2.
For each integer r > 1, there is precisely one 2-group of nilpotency class r in
each of the four families. All other known families of 2-groups possessing a class-
preserving outer automorphism consist entirely of groups of nilpotency class 2.

1. Introduction

Let G be a group, Aut(G) the automorphism group of G, and Inn(G) the subgroup
of inner automorphisms. Then Aut(G) acts naturally on the set of conjugacy classes
of G, and we denote the kernel of this action by Autc(G). We refer to the elements
of Autc(G) as class-preserving automorphisms. Evidently Inn(G)EAutc(G), and
the elements of Outc(G)=Autc(G)/Inn(G) will be referred to as class-preserving
outer automorphisms.

Over a century ago, William Burnside [1911, Note B, p. 463] asked the question:
Are there groups G such that Outc(G) 6= 1? He himself settled the question soon
thereafter [Burnside 1913]: for each prime p ≡±3 (mod 8), there is a group G p of
order p6 and nilpotency class 2 with Outc(G p) 6= 1.

Since Burnside’s initial discovery, the problem has been revisited on many
occasions, and new families of groups G with Outc(G) 6= 1 have been found. Until
fairly recently, however, most of those families consisted of p-groups of nilpotency
class 2. The object of this paper is to prove the following result.

Theorem 1.1. There are four distinct infinite families H= {H j }
∞

j=1, where H j is a
4-generator 2-group of order 25+ j and nilpotency class j+1 such that Outc(H j ) 6=1.
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It is evident from the statement of Theorem 1.1 that the nilpotency class of the
groups H j in each family grows in an elementary way as a function of the group
orders. This is because H j+1 is built as a central extension of H j by Z/2. Indeed,
each H may be constructed algorithmically using the p-group generation algorithm
[O’Brien 1990]; this is precisely how the families were discovered and studied.
Furthermore, the groups in all four families have coclass 4, so we have shown
that they are all “mainline groups” in the coclass graph G(2, 4) (see [Eick and
Leedham-Green 2008]).

Readers interested in the history and applications of Burnside’s problem are
referred to the recent comprehensive survey of Yadav [2011]; we restrict ourselves
here to a brief summary of those results pertaining directly to Theorem 1.1.

Wall [1947] showed that, for each integer m divisible by 8, the general linear
group GL(1,Z/m) (i.e., the group of linear permutations x 7→ σ x + τ on integers
modulo m with σ, τ integral) has a class-preserving automorphism that is not
inner. This family includes the smallest group G such that Outc(G) 6= 1, namely
GL(1,Z/8) of order 32 (there, in fact, are two nonisomorphic groups of order 32
having this property). The 2-groups in Wall’s family, namely GL(1,Z/2k), have
nilpotency class 2.

Heineken [1979] constructed, for each odd prime p, an infinite family of p-
groups of nilpotency class 2, all of whose automorphisms are class-preserving. As
far as we are aware, these are the only known infinite families of groups G for
which Autc(G)= Aut(G).

Hertweck [2001] constructed a family of Frobenius groups as subgroups of affine
semilinear groups A0(F), where F is a finite field, which possess class-preserving
automorphisms that are not inner.

Malinowska [1992] exhibited, for each prime p > 5 and each r > 2, a p-group
G of nilpotency class r such that Outc(G) 6= 1 . Unlike the groups in our families,
however, it is not clear how the order of G relates to r .

We remark that the absence of simple groups in the above summary is explained
by Feit and Seitz [1989, Section C]: if G is a finite simple group then Outc(G)= 1.

Briefly, the paper is organized as follows. In Section 2 we summarize the
necessary background on p-groups. The families H in Theorem 1.1 are introduced
in Section 3; they are naturally parametrized by vectors ε ∈ {0, 1}4, but there only
four distinct families. The proof of Theorem 1.1 is given in Section 4.

2. Preliminaries

Our notation and terminology is standard. For elements x, y of a group, we write
x y
= y−1xy and [x, y] = x−1x y . For subsets X and Y of a group, we denote by

[X, Y ] the subgroup generated by all commutators [x, y], where x ∈ X and y ∈ Y .
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The lower central series of a group G is the series

G = γ1(G)> γ2(G)> · · · , (1)

where γi+1(G)= [G, γi (G)]. A group G is nilpotent if γi (G)= 1 for some i > 1,
in which case the smallest r such that γr+1(G)= 1 is called the nilpotency class
(or simply class) of G. A finite group G is a p-group if |G| = pn for some prime
p. All p-groups are nilpotent, and if G has class r , then G has coclass n− r . A
p-group minimally generated by d elements is called a d-generator group.

Each nilpotent group (more generally, each soluble group) possesses a polycyclic
generating sequence [Holt et al. 2005, Chapter 8]. This in turn gives rise to a power-
conjugate presentation (or simply pc-presentation), an extremely efficient model
for computing with soluble groups. We describe these presentations specifically for
p-groups.

Fix a p-group G. Let X = [x1, . . . , xn] ⊂ G be such that if Pi = 〈xi , . . . , xn〉

(i = 1, . . . , n), then Pi/Pi+1 has order p, and G = P1 > P2 > · · · > Pn > 1
refines the lower central series in (1). If G has nilpotency class r , we define a
weighting, w : X→{1, . . . , r}, where w(xi )= k if xi ∈ γk−1(G)\γk(G). Evidently,
w(xi ) > w(x j ) whenever i > j . Any such sequence X satisfies the conditions
needed to serve as the generating sequence of a weighted pc-presentation of G. The
relations, R, in such a presentation all have the form

x p
i =

n∏
k=i+1

xb(i,k)
k , where 06 b(i, k) < p, 16 i 6 n,

or

x xi
j = x j

n∏
k= j+1

xb(i, j,k)
k , where 06 b(i, j, k) < p, 16 i < j 6 n.

(2)

We write 〈X | R〉 to denote the p-group defined by such a presentation. We adopt
the usual convention that an omitted relation x p

i implies that x p
i = 1, and an omitted

relation x xi
j implies that xi and x j commute. We will often find it convenient to

write a conjugate relation x xi
j = x jw as a commutator relation [x j , xi ] = w.

Remark 2.1. In general, one requires that G = P1 > · · ·> Pn > 1 refines a related
series called the exponent p-central series [Holt et al. 2005, p. 355]. For the families
of p-groups we consider here, however, the two series coincide.

A critical feature of a pc-presentation for a p-group is that elements of the group
inherit a normal form xa1

1 xa2
2 · · · x

an
n , where 06 ai < p. Given g ∈ G as a word in

x1, . . . , xn , a normal form may be obtained by repeatedly applying the relations in
(2) in a process known as collection. If each element of G has a unique normal
form, the pc-presentation is said to be consistent. Clearly if G has a consistent
pc-presentation on X = [x1, . . . , xn], then |G| = pn .
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We conclude this section with a useful test for consistency. We state it just for
2-groups — since this is all we need — and refer the reader to [Holt et al. 2005,
Theorem 9.22] for the more general version.

Proposition 2.2. A weighted pc-presentation of a d-generator 2-group of class r
on [x1, . . . , xn] is consistent if the following pairs of words in the generators have
the same normal form (the products in parentheses are collected first):

(xk x j )xi and xk(x j xi ), 16 i < j < k6n and i 6d, w(xi )+w(x j )+w(xk)6 r;

(x j x j )xi and x j (x j xi ), 16 i < j 6n and i 6d, w(xi )+w(x j )< r;

(x j xi )xi and x j (xi xi ), 16 i < j 6n, w(xi )+w(x j )< r;

(xi xi )xi and xi (xi xi ), 16 i 6n, 2w(xi )< r.

3. The families Hε

In this section we introduce four infinite families of 4-generator 2-groups of fixed
coclass 4. In the next section we will show that each family consists of groups that
have a class-preserving outer automorphism, thus proving Theorem 1.1.

We will define the groups in each family by giving consistent pc-presentations.
It is convenient to denote the ordered list of pc-generators of the n-th group in each
family by Xn = {x1, x2, x3, x4, z, y1, . . . , yn}, with the group minimally generated
by {x1, x2, x3, x4}. The commutator relations for each family are identical, namely

Cn =
{
[x2, x1] = [x3, x2] = [x4, x1] = z, [x3, x1] = y1,

[x1, yi ] = [x3, yi ] = yi+1 (i = 1, . . . , n− 1)
}
. (3)

For each ε = (ε1, ε2, ε3, ε4) ∈ {0, 1}4, define

P ε
n =

{
x2

j = zε j ( j = 1, . . . , 4), z2
= 1,

y2
n = 1, y2

i = yi+1 yi+2 (i = 1, . . . , n− 2), y2
n−1 = yn.

}
. (4)

Let R ε
n = Cn ∪ P ε

n , define H ε
n = 〈Xn | R ε

n 〉, and put Hε
= {H ε

n }
∞

n=1. Note that the
pc-presentations for the n-th group in each family differ only in the power relations
of the generators xi .

Proposition 3.1. Let n be a positive integer, and ε ∈ {0, 1}4. Then H ε
n = 〈Xn | Rεn〉

has order 2n+5 and class n+ 1 (hence coclass 4).

Proof. To confirm the order of H ε
n , it suffices to check that their defining pc-

presentations are consistent, for which we use Proposition 2.2. Although there
are O(n3) computations involved in that test, the lion’s share of these may be
treated uniformly for the groups H ε

n . The following table lists all of the triples
that must be checked, together with their normal forms. Triples involving z are
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omitted (since z is central), as are triples involving two or more ys generators (since
〈ys : s = 1, . . . , n〉 is abelian).

Triple (a, b, c) Conditions Normal form of a(bc) and (ab)c

(x3, x2, x1) x1x2x3 y1

(x4, x2, x1) x1x2x4

(x4, x3, x1) x1x3x4zy1

(x4, x3, x2) x2x3x4z

(ys, x2, x1) s 6 n− 2 x1x2zys ys+1

(ys, x3, x1) s 6 n− 2 x1x3 y1 ys

(ys, x4, x1) s 6 n− 2 x1x4zys ys+1

(ys, x3, x2) s 6 n− 2 x2x3zys ys+1

(ys, x4, x2) s 6 n− 2 x2x4 ys

(ys, x4, x3) s 6 n− 2 x3x4 ys ys+1

(x j , x j , xi ) 16 i < j 6 4 xi ze j

(ys, ys, xi ) s 6 n− 2, i = 1, 3 xi ys+1

(x j , xi , xi ) 16 i < j 6 4 x j zei

(ys, xi , xi ) s 6 n− 2, i 6 4 zei ys

(xi , xi , xi ) i 6 4 xi zei

Routine calculations using the pc-relations are all that is needed to verify the normal
forms listed in the table. It remains to compute the lower central series of H ε

n :

γ1(H ε
n )= H ε

n ,

γ2(H ε
n )= 〈z, yi : 16 i 6 n〉,

γ j (H ε
n )= 〈yi : j − 16 i 6 n〉 for j = 3, . . . , n+ 1,

γn+2(H ε
n )= 1.

This shows that H ε
n has class n+ 1, as stated. �

Proposition 3.1 suggests that there are 16 families Hε , but the following result
shows that there is some duplication.

Proposition 3.2. For each positive integer n, there are four isomorphism classes
among the groups {H ε

n : ε ∈ {0, 1}4}.

Proof. Each group H = H ε
n determines a quadratic map q = qε (independent of

n) as follows. Let V denote the largest elementary abelian quotient of H , namely
V =H/A∼= (Z/2)4, where A=〈z, y1, . . . , yn〉. Let W denote the largest elementary
abelian quotient of A, namely W = A/B∼= (Z/2)2, where B=〈y2, . . . , yn〉. Define
maps q : V → W and b : V × V → W , where q(x A) = x2 B and b(x A, y A) =
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[x, y]B for all x, y ∈ H . Using additive notation in V and W , one easily checks
that

b(u, v)= q(u+ v)+ q(u)+ q(v) for all u, v ∈ V, (5)

so b is the symmetric bilinear map associated to q in the familiar sense.
If H ε

n and H δ
n are isomorphic groups, and α : H ε

n → H δ
n is any isomorphism, then

α induces isomorphisms β : V ε
→V δ and γ : W ε

→W δ such that qδ(vβ)= qε(v)γ
for all v ∈ V ε . Thus α induces a pseudo-isometry between qε and qδ.

Fixing a basis {vi } for V , one can represent a quadratic map q as a 4× 4 matrix
Q = [[qi j ]] with entries in W , where qi i = q(vi ), qi j = b(vi , v j ) if i < j , and
qi j = 0 of i > j . Given v ∈ V , write v =

∑
λivi with λi ∈ Z/2. Using (5) and a

finite induction, we see that q(v)=
∑

i
∑

j>i λiλ j qi j . An easy matrix calculation
then shows that q(v)= vQvtr for all v ∈ V .

Using the basis {xi A} for V , and identifying A/B on basis {zB, y1 B} with
the additive group of the ring (Z/2)[t]/(t2) on the usual basis {1, t}, the matrix
representing q = qε , where ε = (ε1, ε2, ε3, ε4), is

Q =


ε1 1 t 1
0 ε2 1 0
0 0 ε3 0
0 0 0 ε4

 ,
and the matrix representing the associated bilinear map b is B = Q+ Qtr.

Given maps qε and qδ representing groups H ε and H δ (ε, δ ∈ {0, 1}4), one can
easily test for pseudo-isometry as follows. Let Qε and Qδ be matrices representing
qε and qδ. If g ∈ GL(4, 2) represents an isomorphism H ε/Aε→ H δ/Aδ induced
by an isomorphism H ε

→ H δ , then the induced isomorphism Aε/Bε→ Aδ/Bδ is
uniquely determined by g, and its matrix h ∈ GL(2, 2) is easily computed. Extend
h entry-wise to a map M4(W ε)→M4(W δ), and denote the image of X ∈M4(W ε)

by Xh . Then qε and qδ are pseudo-isometric if and only if there exists g ∈GL(4, 2)
such that

g Bδgtr
= (Bε)h and vi (g Qδgtr)vtr

i = vi (Qε)hvtr
i ,

as vi runs over a basis for (Z/2)4.
Thus, the determination of the pseudo-isometry classes of the quadratic maps

associated to the families Hε is an elementary matrix calculation in GL(4, 2), which
is easily carried out using a computer algebra system such as MAGMA [Bosma
et al. 1997]. Those classes are represented by

Qε for ε ∈ {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)}.

Finally, it is not difficult to verify that any pseudo-isometry Qε
→ Qδ lifts to an
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isomorphism H ε
→ H δ. Thus, for each n, there are precisely four isomorphism

classes of group H ε
n , as claimed. �

4. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by exhibiting a class-preserving
automorphism of each group H ε

n that is not inner.

Proof of Theorem 1.1. Fix n > 1, ε ∈ {0, 1}4, and put H = H ε
n . Define θ : H→ H

on generators, sending

x 7→
{

x4z if x = x4,

x if x ∈ Xn \ {x4}.
(6)

One easily verifies (by replacing x4 with x4z in each pc-relation involving x4 and
evaluating) that θ ∈ Aut(H).

First, suppose that θ is an inner automorphism. Then there exists h ∈ H com-
muting with x1 and x3, but not with x4. Writing

h =
4∏

i=1
xai

i · z
b
·

n∏
j=1

yc j
j (ai , b, c j ∈ {0, 1}) (7)

and using the defining commutator relations of H , we see that

hx1 = x1h ·
(

za2+a4 ya3
1

n∏
j=2

yc j−1
j

)
.

Hence h ∈ CH (x1) if and only if a2 = a4 and 0= a3 = c1 = · · · = cn−1. Also,

x3h = xa1
1 xa2

2 x1+a3
3 xa4

4 za2+b ya1+c1
1

n∏
j=2

yc j
j ,

while

hx3 = xa1
1 xa2

2 x1+a3
3 xa4

4 zb yc1
1

n∏
j=2

yc j
j

n∏
j=2

yc j−1
j ,

so that h ∈ CH (x3) if and only if 0 = a1 = a2 = c1 = · · · = cn−1. It follows that
CH (x1)∩CH (x3)= 〈z, yn〉 = Z(H). Hence θ is not inner.

We next show that θ is class-preserving. To that end, we must show that, for
each h ∈ H , there exists t = t (h) ∈ H with ht

= hθ . Fix h ∈ H , and write

h =
4∏

i=1
xai

i · z
b
·

n∏
j=1

yc j
j ,

as in (7). If a4 = 0, then hθ = h and t (h)= 1 works. Thus, we may assume that
a4 = 1, and hence that hθ = hz.

Claim. If hθ = hz, then either hx2 = hz or hx1x3 = hz.
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It is clear from the pc-relations that x2 commutes with every y j . This is true
also of x1x3. For, if j < n− 1, then yx1x3

j = (y j y j+1)
x3 = y j y2

j+1 y j+2. Using the
relations (and a finite induction) one sees that y2

j+1 y j+2 = y2
n−1 yn = y2

n = 1. It is
easy to see that yx1x3

n−1 = yn−1 and that yx1x3
n = yn .

Next, observe that x2 commutes with x4, while x x1x3
4 = (x4z)x3 = x4z. Thus,

it suffices to show that, if h = xa1
1 xa2

2 xa3
3 with (a1, a2, a3) ∈ {0, 1}3, then either

hx2 = hz, or hx1x3 = h. First,

hx2 = (xa1
1 xa2

2 xa3
3 )

x2 = xa1
1 xa2

2 xa3
3 za1+a3 = hza1+a3 .

Hence, if a1 6=a3, then hx2 = hz, as required. It remains to show that x1x3 commutes
with h whenever a1 = a3. If a1 = a3 = 0, then either h = 1 or h = x2; clearly
x1x3 commutes with 1, and x x1x3

2 = x2z2
= x2. Finally, if a1 = a3 = 1, then either

h = x1x3 or h = x1x2x3; clearly x1x3 commutes with itself, and

(x1x2x3)
x1x3 = (x1(x2z)(x3 y1))

x3

= (x1 y−1
1 )(x2z)zx3(y1 y2)

= x1x2 y−1
1 x3 y1 y2

= x1x2x3 y−1
2 y−1

1 y1 y2 = x1x2x3.

This establishes our claim, and completes the proof of Theorem 1.1. �
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