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Sudoku is a popular game of logic, and there are many variations of the standard
puzzle. We investigate a variation of Sudoku that uses inequalities between cells
rather than numerical clues. We begin with an overview of the rules and strategies
of the game. We then examine the solvability of an individual m× n block with
the use of partially ordered sets, and combine 2× 2 blocks to form 4× 4 puzzles.

1. Introduction

The basic concepts behind the popular Sudoku number puzzles may be familiar
from the newspaper, the internet, or any variety of puzzle books. A Sudoku board
is a 9× 9 grid in which the entries 1 through 9 appear exactly once in each row,
column, and 3× 3 block. A Sudoku puzzle is created from a board by strategically
removing some of the entries, leaving only select clues from which the player must
try to reconstruct the original board. In order to be a valid puzzle, the clues must
lead to a unique solution. In this paper, we will refer to this game as standard
Sudoku (see Figure 1, left).

One variation on the basic puzzle is Greater Than Sudoku. A Greater Than
Sudoku board (Figure 1, right) meets the same criteria as the standard board, but
has an additional condition: within each block, every pair of adjacent entries, both
horizontal and vertical, must satisfy the inequality which separates them. While
the standard puzzle begins with some entries filled in, providing the player with
numerical clues which will lead to a unique solution, a Greater Than Sudoku puzzle
gives the player only the inequalities on an empty grid. Furthermore, the inequalities
must be arranged in such a way that a unique solution exists.

The primary focus of this paper is a smaller version called Greater Than Shidoku
(Figure 2, left) consisting of a 4× 4 grid partitioned into four 2× 2 blocks, which
is played with the entries 1 through 4. Many results are also extended to blocks of
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Figure 1. Left: standard Sudoku puzzle [Mepham 2011]; right:
Greater Than Sudoku puzzle [Sudoku 2006].

larger variations, including Greater Than Rokudoku (Figure 2, right), which has six
2× 3 blocks, and Greater Than Sudoku.

2. Playing the game

Solving a Greater Than puzzle of any size requires a slightly different approach
than that used to play standard Sudoku, and this approach will also prove to be
instrumental in the analysis of Greater Than puzzles of any size. In particular, the
player identifies the minimal and maximal cells as well as using the conditions
placed on rows, columns, and blocks. A minimal cell of a block is any unfilled
cell whose inequalities all point inward from adjacent unfilled cells. Similarly, a
maximal cell is any unfilled cell with all inequalities pointing outward into adjacent
unfilled cells. Since these properties depend upon the cells that have not yet been
filled, the maximal and minimal cells will change as the game is played. In Figure 3,
the unfilled Greater Than Shidoku block contains one minimal cell, identified by •,
and one maximal cell, identified by©.

Our first step in solving the Greater Than Shidoku puzzle in Figure 2 is to identify
where to place the 1 entries. (The solutions to the other puzzles are at the end of

Figure 2. Smaller puzzles. Left: Greater Than Shidoku; right:
Greater Than Rokudoku.
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Figure 3. Minimal and maximal cells.

this article.) Since 1 is the smallest element we use, each 1 must be placed in a
minimal cell in an unfilled block. For example, in Figure 4, the top two blocks each
contain only one (shaded) minimal cell, so we know those cells must contain 1.
The bottom two blocks, however, each contain two cells that are minimal. In such
cases where the inequalities do not determine unique placement of each 1 entry, the
next step is to consider any information provided by the rows and columns. Thus,
while there are two possible placements of 1 entries in each block of the lower half
of the board, by using the columns it is possible to uniquely determine their proper
placement.

Next we will determine where to place the 2 entries by considering the minimal
cells among those that remain unfilled. If necessary, the rows and columns may
again be used to determine the correct placements. Similarly, a 3 entry must have
inequalities pointing inward from each adjacent cell not containing a 1 or a 2,
and so on. The player may also begin with the largest entry and work backwards
by looking for maximal cells. A 4 must be placed in a maximal cell, where the
inequalities all point outward. A 3 would have inequalities pointing out into any
cell not containing a 4, and so on.
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Figure 4. Playing Greater Than Shidoku.
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3. Inequality blocks and cycles

A Greater Than puzzle contains inequalities that compare adjacent entries; however,
only entries within the same block are considered. The player must begin by
examining the ways in which individual blocks can be filled before moving on
to the puzzle as a whole. Similarly, we begin our investigation of Greater Than
puzzles by considering individual blocks.

Definition 1. An inequality block is an m × n grid, with m, n ∈ N, in which an
inequality separates each pair of horizontally or vertically adjacent cells.

In one block of Greater Than Shidoku there are four inequalities, and each can be
oriented in one of two directions. Thus there are 24

= 16 possible 2× 2 inequality
blocks. There are four cells in each block, so without considering the inequalities
there are 4! = 24 ways of permuting the entries. Similarly, we can count the number
of inequality blocks and permutations of any size block. Greater Than Rokudoku
blocks have 27

= 128 ways of arranging the inequalities and 6! = 720 permutations
of entries. For Greater Than Sudoku, we have 212

= 4096 inequality blocks and
9! = 362,880 ways of permuting the entries.

Definition 2. An inequality block is solvable if there exists at least one permutation
of entries satisfying all inequalities in that block. A block is unsolvable if no such
permutation exists.

Note that for each size block, there are many more ways to permute the entries
than there are ways to arrange the inequalities. Each permutation of entries corre-
sponds to one arrangement of the inequalities because, given any filled block, we
can insert the inequalities accordingly. However, since there are significantly fewer
inequality arrangements than permutations, some inequality arrangements must
correspond to more than one permutation. In other words, without considering the
other blocks in a puzzle, many inequality blocks have more than one solution. This
leads to two natural questions: are all inequality blocks solvable, and for those that
are, how many solutions exist? We can only use solvable blocks to create Greater
Than puzzles, so our first goal is to determine criteria for deciding which blocks
are solvable.

A path in an inequality block is a sequence of adjacent cells where the inequalities
are always increasing or always decreasing. If a path includes any cell more than
once, that path contains a cycle. A cycle of cells is impossible to fill with entries
without contradicting at least one of the inequalities; thus any inequality block
containing a cycle is unsolvable. In a 2×2 inequality block, there are two inequality
arrangements that produce a cycle of the four cells, shown in Figure 5. These two
cycles correspond to two unsolvable inequality blocks, leaving us with 14 that are
acyclic.
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Figure 5. Unsolvable 2× 2 blocks.

In Greater Than Rokudoku, the 2× 3 inequality blocks may also contain cycles,
but more than two unsolvable blocks result from such arrangements. There are six
different cycles that may appear in a 2× 3 block, shown in Figure 6.

A block that contains a cycle is unsolvable, but some inequality arrangements
may contain more than one cycle, so to count the number of blocks with cycles, we
use the principle of inclusion-exclusion. Let Ci be the set of all blocks containing
cycle i for 1≤ i ≤ 6. Blocks from sets C1 through C4 each have three inequalities
that are not involved in the given cycle, so |Ci | = 23 for 1 ≤ i ≤ 4. Sets C5

and C6 consist of blocks with only one inequality not involved in the cycle, thus
|C5| = |C6| = 2, and consequently

∑6
i=1 |Ci | = 36. However, some blocks will be

counted in two sets; for example, if the remaining inequality in a block from set C5

is pointing down, that block also contains cycle 1, thus that block is included in set
C1. If the inequality is pointing up, that block is included in set C3. Similarly, one
block in C6 is also contained in set C2, while the other is contained in set C4. There
is one block containing both cycles 1 and 4, and another containing cycles 2 and
3. There are no 2× 3 blocks that contain 3 different cycles. Thus we have double
counted 6 blocks that are in two sets, and so we subtract this from our previous tally,
resulting in a total of 30 2× 3 inequality blocks with at least one cycle. These 30
blocks are unsolvable, so we eliminate them from the number of inequality blocks
we need to consider. This leaves us with 98 acyclic 2× 3 inequality blocks.

cycle 1 cycle 2 cycle 3

cycle 4 cycle 5 cycle 6

Figure 6. Cycles in 2× 3 blocks.
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We employ the same strategy with 3×3 Sudoku blocks, but now we have twenty-
six possible cycles that can be formed among the inequalities (see if you can find
them all!). Many inequality arrangements contain multiple cycles. To count the
number of blocks that contain at least one cycle, we again use inclusion-exclusion.
There are 1698 such puzzle blocks that are impossible to fill in, so of the 4096 3×3
inequality blocks, 2398 are acyclic. The results of this section are summarized in
the following theorem.

Theorem 1. There are 14 acyclic 2×2 inequality blocks, 98 acyclic 2×3 inequality
blocks, and 2398 acyclic 3× 3 inequality blocks.

4. Posets and solvable blocks

We have shown that every inequality block containing a cycle is unsolvable; however,
it remains to be seen that every acyclic inequality block is solvable. While playing
the game, we compared cells using the inequalities and identified minimal cells, but
we found that minimal cells were not always unique. This suggests considering an
acyclic block as a partially ordered set and leads us to another way of describing
solutions of the block.

Definition 3. A partial order � on a set A is a binary relation that is reflexive,
antisymmetric, and transitive. A partially ordered set, or poset, is a pair (A,�),
where � is a partial order on the set A.

We now define a relation on inequality blocks of arbitrary size and show that it
satisfies the above definition:

Definition 4. Let A = {a1, a2, . . . , amn} be the set of cells of an m × n acyclic
inequality block. For all ai , a j ∈ A, we define a relation � on A such that ai � a j

if ai = a j or if ai precedes a j in an increasing path.

Theorem 2. With A and � as defined above, (A,�) is a partially ordered set.

Proof. Let ai ∈ A. Since ai = ai , then ai � ai and consequently � is reflexive.
Now let ai , a j ∈ A, where ai � a j and a j � ai , and assume that ai 6= a j . Then ai

precedes a j in an increasing path, and a j precedes ai in an increasing path. The
concatenation of these two increasing paths will contain a cycle, which contradicts
our assumption that the block is acyclic. Thus ai = a j , and � is antisymmetric.
Finally, let ai , a j , ak ∈ A, where ai � a j and a j � ak . If ai = a j or a j = ak , it is
clear that ai � ak , so let us consider the case where ai 6= a j and a j 6= ak . This means
that ai precedes a j in an increasing path, and a j precedes ak in an increasing path.
The concatenation of these paths forms an increasing path in which ai precedes ak .
Thus ai � ak , and � is transitive. Therefore, � is a partial order on A, and (A,�)

is a poset. �
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Figure 7. Inequality block (left) and Hasse diagram (right) of
poset of cells.

We may visualize a poset by creating a Hasse diagram of the set. In a Hasse
diagram, the vertices represent the elements of the set. If x � y, then the vertex for
x is placed below the vertex for y. If x 6= y, x � y, and there is no intermediate
element z 6= x, y such that x � z � y, then we say that y covers x , and an edge
is drawn connecting the two elements. However, if there is such an element z, an
edge from x to z, and one from z to y, then x � y by transitivity. Figure 7 shows
an acyclic 3× 3 inequality block as well as the corresponding Hasse diagram.

This type of relation is called a partial order because it may not be possible to
use the relation to compare all of the elements in the set.

Definition 5. Let � be a partial order on a set A. Elements a and b are called
comparable if and only if either a�b or b�a. Otherwise, a and b are incomparable.

Even though cells c and h are not adjacent in the above inequality block, there
is an increasing path c, b, e, h; therefore c � h and we know any solution for this
block must have a smaller element in cell c than in cell h. On the other hand, there
is no such increasing path between b and g, so those two cells are incomparable
and we cannot predict which cell will contain the larger entry. A useful fact about
posets is that any finite, nonempty poset has a minimal element, and furthermore,
any subset of a poset is also a poset [Epp 2004]. This means that if we remove a
minimal element from a poset, we will always have at least one minimal element
among the remaining cells.

This brings us back to our technique for solving the Greater Than Shidoku puzzle
by identifying minimal cells in each block. When we placed the 1 entries, we
effectively removed those cells from the posets for each block, then we identified
the minimal cells in the resulting posets in order to place the 2 entries. Previously
proven results about posets give us another way to view our solution to the puzzle.

Definition 6. If � is a relation on a set A, and for any two elements a and b in A
either a � b or b � a, then � is a total order on A. A linear extension is obtained
by putting a total order on a poset (A,�) which preserves the partial order �.
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Figure 8. Creating a linear extension to solve a block.

Theorem 3. Every partial order may be extended to a total order.

This theorem was first proven by Szpilrajn in [1930], and from it we may conclude
that we can put a total order on the poset of cells of any acyclic inequality block.
Furthermore, creating a linear extension of the poset of cells is the same as finding
a solution for the block, which leads us directly to the following corollary.

Corollary 4. Every acyclic m× n inequality block is solvable.

To demonstrate, we will create a linear extension of our poset in Figure 8. First,
we pick a minimal cell g and label it with 1. Once g has been labeled and thus
removed from future comparisons, our new set of minimal cells consists of c, d,
and i . We arbitrarily choose d and label it 2. The minimal cells are now c and i ;
we choose cell i and label it 3. We continue to choose and label minimal elements
until all are labeled. Figure 8 shows one example of how the remaining entries can
be labeled, and the corresponding solution of the inequality block. However, at
each step in the process, there were often multiple minimal cells to choose from, so
the solution in the figure is only one of the many solutions we could have chosen.

Now that we can find a solution of any acyclic inequality block, the next step
is to find a method of counting the number of solutions of any such block. This
is essential because some blocks have a large number of solutions, so it is often
tedious to attack this task by hand. Many researchers have studied the question of
creating and counting linear extensions of posets; we used A Maple Package for
Posets, created by John R. Stembridge [2009] of the University of Michigan. This
package includes a command to count the number of linear extensions of any given
poset, and when we applied it to the 3×3 block in Figure 7, we found that there are
actually 261 solutions to the block. Surprising as this might seem, it is far from the
highest number of solutions of a 3× 3 block. After testing all possible inequality
combinations on a block, we find that there are 34 3×3 blocks that have over 1000
solutions. In fact, the block in Figure 9 has 4800 solutions!
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Figure 9. Block with 4800 solutions.

5. Equivalent Shidoku blocks

There are 14 acyclic, and therefore solvable, inequality blocks that we can use to
create a Greater Than Shidoku puzzle. Each 4× 4 grid is comprised of four blocks,
which means that there are 144

= 38,416 possible combinations of inequality blocks
to choose from, although we shall see that the number of Greater Than Shidoku
boards and puzzles is considerably smaller. For Greater Than Rokudoku and Sudoku,
the number of possible combinations are 986

≈ 8.9× 1011 and 23989
≈ 2.6× 1030,

respectively. For this reason, we are interested in grouping similar blocks together,
thereby reducing the number of possible combinations to a more manageable size;
thus we will define a method of grouping inequality blocks based on the positions
of minimal and maximal cells in an unfilled block.

In Greater Than Shidoku, each block has four entries, and we want to find all
combinations of maximal and minimal cells. Recall that every inequality block
must have at least one maximal and at least one minimal cell. Further note that,
given any two adjacent cells, the entry in one must be larger than that of the other,
thus it is not possible to have two adjacent minimal cells nor two adjacent maximal
cells. Finally, we recognize that if we have two maximal cells diagonal from each
other, the inequalities of the remaining two cells are determined, and those cells are
forced to be minimal. Consequently there are two cases for the number of minimal
and maximal cells: we may either have one minimal and one maximal cell, or we
may have two of each. To take all the different arrangements into account, we
define the following relation.

Definition 7. Let S2,2 be the set of all solvable 2× 2 inequality blocks. We define
a relation ∼ as follows. Let A, B ∈ S2,2. Then A ∼ B if and only if A can be
transformed into B using some sequence of reflections across the vertical, horizontal,
and diagonal axes of the block.

Theorem 5. The relation ∼ is an equivalence relation on S2,2.

Proof. To prove ∼ is an equivalence relation, we must show that it is reflexive,
symmetric, and transitive. Let A ∈ S2,2. Clearly A ∼ A because no transformation



196 ANA BURGERS, SHELLY SMITH AND KATHERINE VARGA

class I class II class III

Figure 10. Representatives of the three equivalence classes.

is necessary, and thus ∼ is reflexive. Now let A, B ∈ S2,2 such that A ∼ B. Then
A can be transformed into B by some sequence of reflections. Applying these
reflections to B in reverse order transforms B into A. Thus B ∼ A, and ∼ is
symmetric. Finally, let A, B, C ∈ S2,2, with A ∼ B and B ∼ C . Then there is a
sequence of reflections that will transform A into B, and another sequence which
will transform B into C . The concatenation of these sequences yields a sequence
of reflections that will transform A into C . Thus the relation ∼ is transitive, and ∼
is an equivalence relation. �

Using equivalence relation ∼, the set of solvable blocks can be partitioned into
equivalence classes. Blocks within a class are equivalent, and those from different
classes are said to be distinct.

Theorem 6. There are three equivalence classes of 2× 2 inequality blocks.

This is easily verified by checking the 14 blocks in S2,2. An example from each
class is shown in Figure 10. We next consider the number of solutions of each block.
For the following section, we will also find it helpful to observe that within an
equivalence class, the same entry is always placed diagonally from 1 in the block.

Consider a block from class I in Figure 11. When solving the block, we see
there is only one possible position for the 1 entry, and similarly, only one way to
place the 4 entry. The 2 and 3 entries are adjacent to one another, and so the 3
must go in the greater of these two cells. There is only one way to fill in this block,
and reflections do not change the number of solutions. In fact, blocks of class I
correspond to all blocks with unique solutions. We further note that in each block,
entries 1 and 3 will be placed diagonally in the block.

1

4

2

3

Figure 11. Class I blocks have 1 solution.
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1

4

Figure 12. Class II blocks have 2 solutions.

Figure 13. Class III blocks have 4 solutions.

Following the same procedure with blocks from class II, we can see in Figure 12
that the 1 and 4 entries are uniquely placed. However, examining the remaining
two cells, we see that the entries in each must be greater than the 1 entry and less
than the 4 entry. It is not possible from this arrangement to uniquely determine
placement of the remaining two entries. Thus, blocks from class II correspond to
blocks with two solutions, and in each solution 1 and 4 will be placed diagonally.

In class III blocks, however, we have two possible positions for the 1 entry.
Similarly, there are two possible placements of the 4 entry. Once 1 and 4 are placed
in the cells, there is only one way to place 2 and 3. Each puzzle block from this
class has four solutions as shown in Figure 13; entries 1 and 2 will be in the minimal
cells, which are placed diagonally.

6. Greater Than Shidoku puzzles

Now that we have a better understanding of the different types of inequality blocks,
we are able to examine ways in which they can be combined to form puzzles.
Recall that a Greater Than board is an mn×mn grid, where m, n ∈ N, in which
the numbers 1 through mn must satisfy the inequalities between adjacent cells and
appear exactly once in each row, column, and m× n block. If when the numerical
entries are removed there is a unique solution to the board, the unfilled board is a
Greater Than puzzle.

It is important to note that, by definition, every Greater Than board is solvable
when the entries are removed. It is not necessarily the case, however, that each
board has a unique solution and is therefore a puzzle. In this section, we will first
find a way to create Greater Than Shidoku boards, then determine whether the
unfilled boards are puzzles. Previously, we saw that each of the three equivalence
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a b

c d

Figure 14. Initial block.

classes of blocks may be identified by the entry that is diagonal from 1 when a
block is solved. This is a useful tool in proving Theorem 7, which states a rule for
combining blocks to create boards. Although the proof begins by considering only
entries without inequalities, a Greater Than board can be formed from the standard
board by inserting the appropriate inequalities between adjacent cells within each
block.

Theorem 7. Every block of a Greater Than Shidoku board must be horizontally or
vertically adjacent to another block from the same equivalence class.

Proof. Assume, to the contrary, that a block need not be adjacent to another block
from the same equivalence class. Without loss of generality, consider the filled
block in Figure 14.

To complete the top row, we place c and d in one of two ways. Once these are
placed, we then position a and b in the second row to ensure that the top two blocks
are from different classes. Although we don’t know which cell will contain the
1 entry, it is sufficient to ensure that the blocks do not contain any common diagonal.
We use similar logic on the first two columns to fill in the bottom-left block in one
of two ways, again ensuring that it is not equivalent to the first block. This gives
us the four cases shown in Figure 15. In each case we attempt to complete the
board by filling in the last block. There is only one cell where we can place the
a entry, but then we find that we are unable to place the d entry without violating
the condition that an entry may only appear once in each row and column, leading

a b

c d

c d

b a

b c

d a

a

Case 1

a b

c d

c d

b a

d a

b c a

Case 2

a b

c d

d c

a b

b c

d a

a

Case 3

a b

c d

d c

a b

d a

b c a

Case 4

Figure 15. Each case leads to a contradiction.
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II II

II II
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II II

III III

type (II, III)

III III

III III
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Figure 16. Six types of Greater Than Shidoku boards.

to our desired contradiction. Thus, every block must be adjacent to at least one
equivalent block to form a Greater Than Shidoku board. �

Corollary 8. There are six types of Greater Than Shidoku boards.

This corollary follows directly from counting the possible combinations of our
three equivalence classes, shown in Figure 16. A board of type (I, II), for example,
is comprised of two blocks from class I and two from class II. Note that boards
comprised of two different block classes may be written in four different ways,
taking rotations of 90◦, 180◦, and 270◦ into consideration. Each of these types may
be used to form Greater Than Shidoku boards, so our next goal is to determine
which of these boards have unique solutions when the entries are removed, and are
therefore Greater Than Shidoku puzzles. In the following lemmas, we will see that
4 of these 6 board types correspond to puzzles, and we will count the number of
puzzles of each type.

Lemma 9. Every board of type (I, I) has a unique solution when the entries are
removed, and therefore corresponds to a Greater Than Shidoku puzzle. There are
32 puzzles of type (I, I).

Proof. Consider any board of type (I, I) and remove all entries, leaving only
inequalities. This board consists of Greater Than blocks from class I, and each
of these blocks has a unique solution, so there is only one way to fill in entries
on the entire board. Thus every board of type (I, I) corresponds to a puzzle. To
create a board, there are eight ways to order the first block, since there are four
cells in which to place the 1 entry, two ways to place 4 adjacent to 1, and then the
cells containing 2 and 3 are uniquely determined. The second and third blocks can
each be arranged in two ways, similar to the argument in the proof of Theorem 7,
and the fourth block is uniquely determined by the first three. We then place the
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Figure 17. Type (I, II) example.

appropriate inequalities to finish the board. Consequently, there are (8)(2)(2)= 32
puzzles of type (I, I). �

Lemma 10. Each of the 64 type (I, II) boards corresponds to a puzzle.

Proof. Consider a board of type (I, II) such as that in Figure 17, and remove the
entries. Without loss of generality, suppose the top two blocks are from class I
and the lower two from class II. Since blocks from class I can only be filled in
one way and blocks from class II have uniquely determined 1 and 4 entries, the
only entries not uniquely determined by inequalities are the 2 and 3 entries on the
blocks from class II. However, these entries are placed diagonally in their block, so
each column has only one unfilled cell. Thus, by standard Shidoku rules, there is
only one possible entry that can be placed in each unfilled cell, leading to a unique
solution for the unfilled board. To count these puzzles, we will start by counting
boards with blocks placed as in Figure 17. In the top-left block, there are four ways
to place the 1 entry, then the 3 entry must be diagonal from 1. There are two ways
to place the remaining 2 and 4 entries. In both the top-right block (class I) and the
class II block on the bottom-left, we have two choices for placing 1 so that it isn’t
in the same row or column as the 1 in the first block. Once those choices are made,
the placement of the other entries in those blocks is uniquely determined. All of
the entries in the last block are uniquely determined, and once again we finish by
writing in the inequalities. Thus there are (4)(2)(2)= 16 puzzles of type (I, II) in
the form described, however, since each of these puzzles may be rotated 90◦, 180◦,
or 270◦ to create new puzzles, there are 64 puzzles of this type. �

Lemma 11. There are 64 type (I, III) puzzles.

Proof. As in the previous case, we will consider a board of type (I, III) such as
that in Figure 18 with class I blocks on top and class III below. Again, the class I
blocks have a unique solution. The blocks from class III all have the entry 2 placed
diagonally from 1, with 3 and 4 on the other diagonal. Since entries 1 and 2 must
be in different columns in the class III blocks, the two blocks from class I must be
oriented so entries 1 and 2 are also in different columns to avoid contradiction with



ANALYSIS OF A SUDOKU VARIATION 201

1

1

1

1

2

2

2

23

3

3

3

4

4

4

4

board type (I, III) puzzle type (I, III)

1

1

2

23

3

4

4

1, 2 in different columns

Figure 18. Type (I, III) example.

the class III blocks. Furthermore, we recall that each column in a class III block
contains both a maximal and minimal cell. Each column of the board contains
either a 1 or a 2 in the top two blocks; the other is placed in the minimal cell in that
column. Similarly, each column already contains either a 3 or a 4; the other must
go in the remaining cell, which is a maximal cell. Thus each cell is filled uniquely,
and the board corresponds to a puzzle of type (I, III). We count the puzzles as in
the previous lemma: four ways to fill the first block, two ways to fill blocks to right
and below, then one way to complete the last block. Including rotations, there are
64 type (I,III) puzzles. �

Lemma 12. There are 64 type (II, III) puzzles.

Proof. Suppose our board has class II blocks on top and class III blocks below, such
as in Figure 19. The entries are uniquely placed in the top blocks. As argued in
the proof of Lemma 11, there is a maximal and minimal cell in each column of the
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Figure 19. Type (II, III) example.



202 ANA BURGERS, SHELLY SMITH AND KATHERINE VARGA

1

1

1

14

4

4

4

2

32

3

3

2

2

3

board type (II, II) entries removed

1

1

1

14

4

4

4

uniquely placed entries

Figure 20. Type (II, II) example.

bottom blocks. Since the 1 entries have already been placed in two of the columns
of the puzzle, the minimal entries in each of the remaining columns on the lower
band must contain 1 entries. Similarly, the 4 entries have already been placed in
two columns; the maximal entries in each of the remaining columns on the lower
band must contain 4 entries as well. There are now two remaining cells in each
bottom block. These cells are adjacent, and thus the 2 entry is placed in the lesser
of the cells, while the 3 is placed in the greater of the two. So the bottom blocks
are uniquely filled in. Now, returning to the top blocks we see that there is only
one remaining unfilled cell in each column. Therefore, there is only one possible
entry for each cell, which completes the unique solution, so the type (II, III) board
corresponds to a puzzle.

There are four choices in placing the 1 in the top-left class II block; after that
the 4 must be placed diagonally from 1. The 1 and 2 entries cannot be in the same
column, since 1 and 2 must be in different columns in the class III block below it,
so the placement of the 2 and 3 entries in the first block is uniquely determined.
There are two choices for orienting each of the blocks adjacent to the top-left block,
and one way to complete the remaining block. Thus there are (4)(2)(2)= 16 ways
to fill in the board, and taking into consideration the 4 possible rotations there are
64 puzzles. �

Lemma 13. Boards of type (II, II) do not correspond to puzzles.

Proof. Consider a block from class II. The 1 and 4 elements are uniquely determined,
but there are two remaining cells which contain precisely the same inequality set.
Thus, given any class II block, it is not possible to identify a unique placement of
either the 2 or the 3 entries. As we see in Figure 20, even when the 1 and 4 entries
are placed in a type (II, II) board we still have two choices for placing 2 and 3, and
therefore removing the entries does not create a puzzle. �

Lemma 14. Boards of type (III, III) do not correspond to puzzles.

Proof. Class III blocks each have two minimal and two maximal cells. Regardless
of how we orient the blocks in a type (III, III) board, when we remove the entries
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Figure 21. Type (III, III) example.

the unfilled board will have two minimal cells in each row and column. As seen
in Figure 21, we have two choices for placing the 1 entry in the first block, which
then determines the placement of the remaining 1 entries as well as the 2 entries.
Similarly, having two maximal cells in each row and column will result in two
different ways to place the set of 3 and 4 entries. Thus the unfilled board has 4
solutions and is not a valid puzzle. �

Combining these six lemmas, we can now make a statement about Greater Than
Shidoku puzzles.

Theorem 15. There are 224 Greater Than Shidoku puzzles.

7. Further explorations

When creating Greater Than puzzles of any size, we must avoid the use of blocks
that contain cycles because these blocks are unsolvable. We have shown that
every acyclic inequality block is solvable, thus the acyclic Greater Than Shidoku,
Rokudoku, and Sudoku blocks that were counted in Section 3 may all potentially
be used to create Greater Than puzzles. Nevertheless, we have also seen that not
all types of solvable blocks may be used together to form a valid puzzle. The
task of combining blocks to form puzzles becomes increasingly complex as the
size of the puzzle increases, and research related to standard Sudoku is not always
directly applicable. For example, Rosenhouse and Taalman [2011] showed that
there are 288 standard Shidoku boards, but those corresponding to types (II, II) and
(III, III) do not have a unique solution when the numbers are removed and only the
inequalities remain, so there are fewer Greater Than Shidoku puzzles than boards.
The equivalence relation defined on 2×2 acyclic blocks can also be applied to other
sets of m× n acyclic blocks (excluding reflection across the diagonals if m 6= n).
This will allow us to partition the sets of acyclic blocks into equivalence classes
that may facilitate our investigation, but Felgenhauer and Jarvis’ computer-aided
calculation [2006] of 6,670,903,752,021,072,936,960 standard 9×9 Sudoku boards
hints at the challenge presented by task.
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