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The number N (k, r) is defined to be the first integer such that it and every
subsequent integer can be written as the sum of the k-th powers of r or more
distinct positive integers. For example, it is known that N (2, 1)= 129, and thus
the last number that cannot be written as the sum of one or more distinct squares
is 128. We give a proof of a theorem that states if certain conditions are met, a
number can be verified to be N (k, r). We then use that theorem to find N (2, r)

for 1≤ r ≤ 50 and N (3, r) for 1≤ r ≤ 30.

1. Introduction

In 1770, Waring conjectured that for each positive integer k there exists a g(k) such
that every positive integer is a sum of g(k) or fewer k-th powers of positive integers.
After Hilbert proved this theorem true in 1909, the challenge that became known
as Waring’s problem was the question that asks, for each k, what is the smallest
g(k) such that the statement holds. For more information on Waring’s problem, see
[Weisstein].

Recently, two papers have tackled the following “anti-Waring” conjecture: If k
and r are positive integers, then every sufficiently large positive integer is the sum
of r or more k-th powers of distinct positive integers.

The fact that there must be r or more k-th powers motivated the choice of the
designation anti-Waring in [Johnson and Laughlin 2011], where the conjecture
was put forth. What sets this statement apart from Waring’s problem is the word
“distinct”. The conjecture was later proved in [Looper and Saritzky 2012]. A natural
anti-Waring problem arising from this proven conjecture is to find the smallest
integer N (k, r) such that it and every subsequent integer can be written as the sum
of r or more k-th powers of distinct positive integers. Johnson and Laughlin proved
that N (2, 1)= N (2, 2)= N (2, 3)= 129.

The following results are restricted to the case when k = 2 and k = 3. N (2, r) is
the smallest integer such that it and every subsequent integer can be written as the
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sum of r or more distinct squares. N (2, r) has been found for 1≤ r ≤ 50. N (3, r)

is the smallest integer such that it and every subsequent integer can be written as
the sum of r or more distinct cubes. N (3, r) has been found for 1 ≤ r ≤ 30. For
the purposes of this paper we use two definitions.

Definitions. An integer is (k, r)-good if it can be written as the sum of r or more
k-th powers of distinct positive integers. An integer is (k, r)-bad if it cannot be
written as the sum of r or more k-th powers of distinct positive integers.

To see an example of this idea, consider the case when k = 2 and r = 4. Since
129 can be written as 22

+ 32
+ 42
+ 102, 129 is (2, 4)-good. However, it is a brief

exercise to verify that there is no way to write 128 as the sum of four or more distinct
squares, and hence 128 is (2, 4)-bad. The fact that 129 is (2, 4)-good also directly
implies that it is (2, r)-good for any integer 1≤ r ≤ 4. Using these definitions, the
problem of finding N (2, r) can be reworded to be the problem of finding the first
(2, r)-good integer such that every subsequent integer is also (2, r)-good. In the
case when r = 4, the fact that 128 is (2, 4)-bad implies that N (2, 4)≥ 129.

As will be seen, an inductive argument used in the following theorems requires
a consecutive list of (k, r)-good integers whose size grows as r does. Computer
software was used to attain these large lists of (k, r)-good integers as well as to
verify that certain key integers are in fact (k, r)-bad.

2. Results

Before stating the general result of this paper, it may be helpful to offer a less
general theorem and proof that will serve as valuable context for Theorem 2.2.

Theorem 2.1. N (2, 4)= 129.

Proof. As shown previously, N (2, 4) ≥ 129. It is also true that the consecutive
integers {129, . . . , 182

} are (2, 4)-good. Therefore, if n ≤ 182 and n is (2, 4)-bad,
then n ≤ 128. The rest of the proof continues by induction on m with m ≥ 18.

The induction statement: If n ≤m2 and n is (2, 4)-bad, then n ≤ 128. If m = 18,
the statement is clearly true as we know the consecutive integers {129, . . . , 182

}

are (2, 4)-good.
Now suppose n ≤ (m+ 1)2 and n is (2, 4)-bad. If n ≤m2, then by the induction

hypothesis, n ≤ 128. Thus we can say

(m+ 1)2
≥ n ≥ m2

+ 1. (1)

Consider the integer n− (m− 4)2. From (1) and the fact that m ≥ 18, we know
that

m2
≥ n− (m− 4)2

≥ m2
+ 1− (m− 4)2

≥ 129. (2)
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To see that n− (m− 4)2 is (2, 4)-bad, suppose that it is (2, 4)-good and hence

n− (m− 4)2
= a2

1 + a2
2 + · · ·+ a2

t with t ≥ 4, ai 6= a j for all i and j,

or
n = a2

1 + a2
2 + · · ·+ a2

t + (m− 4)2.

Since n is (2, 4)-bad, there is some j ∈ {1, 2, . . . , t} such that a j = (m − 4).
Therefore

n− (m− 4)2
≥ 12
+ 22
+ 32
+ (m− 4)2,

and equivalently, n−m2
≥ m2

− 16m+ 46.
Combining this with (1), we get

(m+ 1)2
≥ n ≥ 2m2

− 16m+ 46

or
0≥ m2

− 18m+ 45,

which is untrue when m ≥ 18. Therefore n−(m−4)2 must be (2, 4)-bad, and by (2)
and the inductive hypothesis, n− (m− 4)2

≤ 128. However, this is a contradiction
since by (2) it is also true that n− (m− 4)2

≥ 129, and thus there are no n that are
(2, 4)-bad and satisfy (1). �

In Theorem 2.1, 129 was the expected result for N (2, 4) after using computer
software to generate a long list of consecutive (2, 4)-good integers that began with
129. The aim of Theorem 2.2 is to offer a theorem such that under given conditions,
expected results for N (k, r) can be proven for any positive integers k and r . To
simplify the notation Sk(z) will be used to represent

∑z
i=1 ik .

Theorem 2.2. If the consecutive integers {N̂ (k, r), . . . , bk
} are all (k, r)-good,

N̂ (k, r)− 1 is (k, r)-bad, and if there exists an integer x such that

(i) 0 < Sk(r − 1)+ 2(m− x)k
− (m+ 1)k for all m ≥ b,

(ii) (m+ 1)k
− (m− x)k

≤ mk for all m ≥ b,

(iii) mk
+ 1− (m− x)k

≥ N̂ (k, r) for all m ≥ b, and

(iv) 0 < x < b− r ,

then N̂ (k, r)= N (k, r).

Proof. We use induction on m ∈N with m ≥ b. The induction statement: If n ≤mk

and n is (k, r)-bad, then n ≤ N̂ (k, r)− 1.
If m = b, the statement is clearly true as we know the consecutive integers
{N̂ (k, r), . . . , bk

} are all (k, r)-good.
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Now suppose n ≤ (m+ 1)k and n is (k, r)-bad. If n ≤mk , then by the induction
hypothesis, n ≤ N̂ (k, r)− 1. Thus we can say

(m+ 1)k
≥ n ≥ mk

+ 1. (3)

We will show that n cannot satisfy (3), and hence all cases have been addressed.
Consider the integer n− (m− x)k . Using (3) and condition (iii), we know that

n− (m− x)k
≥ mk

+ 1− (m− x)k
≥ N̂ (k, r)

or
n− (m− x)k

≥ N̂ (k, r). (4)

To see that n− (m− x)k is (k, r)-bad, suppose it is (k, r)-good. Then

n− (m− x)k
= ak

1 + ak
2 + · · ·+ ak

t with t ≥ r, ai 6= a j for all i 6= j,

or
n = ak

1 + ak
2 + · · ·+ ak

t + (m− x)k .

Since n is (k, r)-bad, a j = m − x for some j ∈ {1, 2, . . . , t}. This, along with
condition (iv), implies that n− (m− x)k

≥ Sk(r − 1)+ (m− x)k . Combining this
with (3), we get

(m+ 1)k
≥ n ≥ Sk(r − 1)+ 2(m− x)k,

or
0≥ Sk(r − 1)+ 2(m− x)k

− (m+ 1)k .

This contradiction of condition (i) means n− (m− x)k must be (k, r)-bad.
Now from (3) and condition (ii),

n− (m− x)k
≤ (m+ 1)k

− (m− x)k
≤ mk .

Thus by the induction hypothesis, n− (m− x)k
≤ N̂ (k, r)− 1. This contradicts

(4) and means that there are no n that are (k, r)-bad and satisfy (3). �

As a result of Theorem 2.2, in order to find N (k, r) one must simply find a suitable
list of (k, r)-good consecutive integers {N̂ (k, r), . . . , bk

} such that N̂ (k, r)− 1 is
(k, r)-bad and an integer x that satisfies the four conditions of the theorem. It is
this strategy that gives way to the tables of values in Theorems 2.3 and 2.4. Again,
computer software was a valuable tool in determining whether a given number was
(k, r)-good or (k, r)-bad for k ∈ {2, 3}. For each r in the following two theorems,
corresponding values for x and b are listed in Tables 1 and 2 rather than in the
proof of the theorem.

Theorem 2.3. Table 1 is a list of N (2, r) for integers 1≤ r ≤ 50.
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r N (2, r) x b r N (2, r) x b r N (2, r) x b r N (2, r) x b

1 129 4 18 14 1398 19 47 27 7953 54 101 40 23679 100 169
2 129 4 18 15 1723 21 52 28 8677 57 105 41 25348 104 174
3 129 4 18 16 1991 24 54 29 9538 61 109 42 27208 108 180
4 129 4 18 17 2312 26 58 30 10394 63 114 43 29093 112 186
5 198 6 22 18 2673 28 62 31 11559 67 120 44 31229 116 193
6 238 6 23 19 3048 31 65 32 12603 71 125 45 33298 120 199
7 331 8 26 20 3493 34 69 33 13744 74 130 46 35290 123 205
8 383 9 27 21 4094 36 75 34 14864 78 135 47 37654 127 212
9 528 10 32 22 4614 39 79 35 16253 81 141 48 40043 132 218
10 648 12 33 23 5139 42 83 36 17529 85 146 49 42488 135 225
11 889 14 39 24 5719 44 87 37 18958 89 151 50 45024 140 231
12 989 15 41 25 6380 48 91 38 20482 92 158
13 1178 17 44 26 7124 51 96 39 22043 96 163

Table 1. For each r listed, N (2, r)− 1 is (2, r)-bad, and the list
of consecutive integers {N (2, r), . . . , b2

} is (2, r)-good. The three
necessary conditions of Theorem 2.2 are satisfied by x .

Proof. For 1 ≤ r ≤ 4, N (2, r) = 129 by [Johnson and Laughlin 2011] and
Theorem 2.1. For each r , N (2, r)− 1 has been shown to be (2, r)-bad. There
exist b and x such that the consecutive integers {N (2, r), . . . , b2

} are (2, r)-good,
and x satisfies the four conditions of Theorem 2.2. �

Theorem 2.4. Table 2 is a list of N (3, r) for integers 1≤ r ≤ 30.

Proof. For each r , N (3, r)−1 has been shown to be (3, r)-bad. There exist b and x
such that the consecutive integers {N (3, r), . . . , b3

} are (3, r)-good, and x satisfies
the four conditions listed in Theorem 2.2. �

r N (3, r) x b r N (3, r) x b r N (3, r) x b r N (3, r) x b

1 12759 5 32 9 16224 6 33 17 56076 11 47 25 179520 18 67
2 12759 5 32 10 18149 6 35 18 66534 12 50 26 201921 19 69
3 12759 5 32 11 22398 7 37 19 75912 12 52 27 227400 20 72
4 12759 5 32 12 24855 7 38 20 87567 13 54 28 256254 22 73
5 12759 5 32 13 28887 8 39 21 101093 14 56 29 289869 23 76
6 15279 6 33 14 36951 9 42 22 122064 15 60 30 325590 24 79
7 15279 6 33 15 39660 9 43 23 138696 16 62
8 15279 6 33 16 49083 10 46 24 156498 17 64

Table 2. For each r listed, N (3, r)− 1 is (3, r)-bad, and the list
of consecutive integers {N (3, r), . . . , b3

} is (3, r)-good. The three
necessary conditions of Theorem 2.2 are satisfied by x .
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3. Future work

The list of values of N (k, r) can be extended indefinitely for any value of k. Cur-
rently we are only limited by our computing speed. A natural direction for further
research would be to attempt to find an explicit formula for N (k, r) for a specific k.
In [Johnson and Laughlin 2011], it was noticed that N (1, r)= r(r+1)/2. However,
we have not found a formula for N (2, r) or N (3, r).

Another area that seems natural is to attempt to find N (k, r) for values of k
greater than 3. We have attempted to use our current software to find N (4, 1) and
N (5, 1), but our methods appear to be too inefficient. At this point, all that can be
said confidently is that N (4, 1) is greater than 4.3 million, N (5, 1) is greater than
26.25 million, and perhaps they are both much larger.

It is also clear that N (k, i) ≤ N (k, j) when i ≤ j , and it seems natural to
conjecture that N (x, r) ≤ N (y, r) when x ≤ y. Since N (1, r) = (r(r + 1))/2,
N (1, r) ≤ Sk(r) ≤ N (k, r) for any integer k ≥ 1. However, it is possible for an
integer that it is (k, r)-bad to be (l, r)-good with k < l. For example, 9 is (2, 2)-bad
but (3, 2)-good. Thus, a proof of this conjecture eludes us currently.

Note. After finishing this paper, it was brought to our attention that [Deering and
Jamieson] had recently been submitted for publication. This paper has some of the
same results as ours. In particular, our method of discovering N (k, r), with proof,
is very much like that of Deering and Jamieson. However, we feel that our method
is sufficiently different and easier to use to merit publication.
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