\bullet
 involve

 a journal of mathematicsNew results on an anti-Waring problem
Chris Fuller, David R. Prier and Karissa A. Vasconi

New results on an anti-Waring problem

Chris Fuller, David R. Prier and Karissa A. Vasconi
(Communicated by Nigel Boston)

The number $N(k, r)$ is defined to be the first integer such that it and every subsequent integer can be written as the sum of the k-th powers of r or more distinct positive integers. For example, it is known that $N(2,1)=129$, and thus the last number that cannot be written as the sum of one or more distinct squares is 128 . We give a proof of a theorem that states if certain conditions are met, a number can be verified to be $N(k, r)$. We then use that theorem to find $N(2, r)$ for $1 \leq r \leq 50$ and $N(3, r)$ for $1 \leq r \leq 30$.

1. Introduction

In 1770, Waring conjectured that for each positive integer k there exists a $g(k)$ such that every positive integer is a sum of $g(k)$ or fewer k-th powers of positive integers. After Hilbert proved this theorem true in 1909, the challenge that became known as Waring's problem was the question that asks, for each k, what is the smallest $g(k)$ such that the statement holds. For more information on Waring's problem, see [Weisstein].

Recently, two papers have tackled the following "anti-Waring" conjecture: If k and r are positive integers, then every sufficiently large positive integer is the sum of r or more k-th powers of distinct positive integers.

The fact that there must be r or more k-th powers motivated the choice of the designation anti-Waring in [Johnson and Laughlin 2011], where the conjecture was put forth. What sets this statement apart from Waring's problem is the word "distinct". The conjecture was later proved in [Looper and Saritzky 2012]. A natural anti-Waring problem arising from this proven conjecture is to find the smallest integer $N(k, r)$ such that it and every subsequent integer can be written as the sum of r or more k-th powers of distinct positive integers. Johnson and Laughlin proved that $N(2,1)=N(2,2)=N(2,3)=129$.

The following results are restricted to the case when $k=2$ and $k=3 . N(2, r)$ is the smallest integer such that it and every subsequent integer can be written as the

[^0]sum of r or more distinct squares. $N(2, r)$ has been found for $1 \leq r \leq 50 . N(3, r)$ is the smallest integer such that it and every subsequent integer can be written as the sum of r or more distinct cubes. $N(3, r)$ has been found for $1 \leq r \leq 30$. For the purposes of this paper we use two definitions.

Definitions. An integer is (k, r)-good if it can be written as the sum of r or more k-th powers of distinct positive integers. An integer is (k, r)-bad if it cannot be written as the sum of r or more k-th powers of distinct positive integers.

To see an example of this idea, consider the case when $k=2$ and $r=4$. Since 129 can be written as $2^{2}+3^{2}+4^{2}+10^{2}, 129$ is $(2,4)$-good. However, it is a brief exercise to verify that there is no way to write 128 as the sum of four or more distinct squares, and hence 128 is $(2,4)$-bad. The fact that 129 is $(2,4)$-good also directly implies that it is $(2, r)$-good for any integer $1 \leq r \leq 4$. Using these definitions, the problem of finding $N(2, r)$ can be reworded to be the problem of finding the first $(2, r)$-good integer such that every subsequent integer is also $(2, r)$-good. In the case when $r=4$, the fact that 128 is $(2,4)$-bad implies that $N(2,4) \geq 129$.

As will be seen, an inductive argument used in the following theorems requires a consecutive list of (k, r)-good integers whose size grows as r does. Computer software was used to attain these large lists of (k, r)-good integers as well as to verify that certain key integers are in fact (k, r)-bad.

2. Results

Before stating the general result of this paper, it may be helpful to offer a less general theorem and proof that will serve as valuable context for Theorem 2.2.

Theorem 2.1.
 $$
N(2,4)=129
$$

Proof. As shown previously, $N(2,4) \geq 129$. It is also true that the consecutive integers $\left\{129, \ldots, 18^{2}\right\}$ are (2, 4)-good. Therefore, if $n \leq 18^{2}$ and n is (2, 4)-bad, then $n \leq 128$. The rest of the proof continues by induction on m with $m \geq 18$.

The induction statement: If $n \leq m^{2}$ and n is $(2,4)$-bad, then $n \leq 128$. If $m=18$, the statement is clearly true as we know the consecutive integers $\left\{129, \ldots, 18^{2}\right\}$ are $(2,4)$-good.

Now suppose $n \leq(m+1)^{2}$ and n is $(2,4)$-bad. If $n \leq m^{2}$, then by the induction hypothesis, $n \leq 128$. Thus we can say

$$
\begin{equation*}
(m+1)^{2} \geq n \geq m^{2}+1 \tag{1}
\end{equation*}
$$

Consider the integer $n-(m-4)^{2}$. From (1) and the fact that $m \geq 18$, we know that

$$
\begin{equation*}
m^{2} \geq n-(m-4)^{2} \geq m^{2}+1-(m-4)^{2} \geq 129 \tag{2}
\end{equation*}
$$

To see that $n-(m-4)^{2}$ is (2,4)-bad, suppose that it is (2,4)-good and hence

$$
n-(m-4)^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{t}^{2} \quad \text { with } t \geq 4, a_{i} \neq a_{j} \text { for all } i \text { and } j,
$$

or

$$
n=a_{1}^{2}+a_{2}^{2}+\cdots+a_{t}^{2}+(m-4)^{2} .
$$

Since n is $(2,4)$-bad, there is some $j \in\{1,2, \ldots, t\}$ such that $a_{j}=(m-4)$. Therefore

$$
n-(m-4)^{2} \geq 1^{2}+2^{2}+3^{2}+(m-4)^{2}
$$

and equivalently, $n-m^{2} \geq m^{2}-16 m+46$.
Combining this with (1), we get

$$
(m+1)^{2} \geq n \geq 2 m^{2}-16 m+46
$$

or

$$
0 \geq m^{2}-18 m+45,
$$

which is untrue when $m \geq 18$. Therefore $n-(m-4)^{2}$ must be (2,4)-bad, and by (2) and the inductive hypothesis, $n-(m-4)^{2} \leq 128$. However, this is a contradiction since by (2) it is also true that $n-(m-4)^{2} \geq 129$, and thus there are no n that are (2, 4)-bad and satisfy (1).

In Theorem 2.1, 129 was the expected result for $N(2,4)$ after using computer software to generate a long list of consecutive $(2,4)$-good integers that began with 129. The aim of Theorem 2.2 is to offer a theorem such that under given conditions, expected results for $N(k, r)$ can be proven for any positive integers k and r. To simplify the notation $S_{k}(z)$ will be used to represent $\sum_{i=1}^{z} i^{k}$.

Theorem 2.2. If the consecutive integers $\left\{\hat{N}(k, r), \ldots, b^{k}\right\}$ are all (k, r)-good, $\hat{N}(k, r)-1$ is (k, r)-bad, and if there exists an integer x such that
(i) $0<S_{k}(r-1)+2(m-x)^{k}-(m+1)^{k}$ for all $m \geq b$,
(ii) $(m+1)^{k}-(m-x)^{k} \leq m^{k}$ for all $m \geq b$,
(iii) $m^{k}+1-(m-x)^{k} \geq \hat{N}(k, r)$ for all $m \geq b$, and
(iv) $0<x<b-r$,
then $\hat{N}(k, r)=N(k, r)$.
Proof. We use induction on $m \in \mathbb{N}$ with $m \geq b$. The induction statement: If $n \leq m^{k}$ and n is (k, r)-bad, then $n \leq \hat{N}(k, r)-1$.

If $m=b$, the statement is clearly true as we know the consecutive integers $\left\{\hat{N}(k, r), \ldots, b^{k}\right\}$ are all (k, r)-good.

Now suppose $n \leq(m+1)^{k}$ and n is (k, r)-bad. If $n \leq m^{k}$, then by the induction hypothesis, $n \leq \hat{N}(k, r)-1$. Thus we can say

$$
\begin{equation*}
(m+1)^{k} \geq n \geq m^{k}+1 . \tag{3}
\end{equation*}
$$

We will show that n cannot satisfy (3), and hence all cases have been addressed.
Consider the integer $n-(m-x)^{k}$. Using (3) and condition (iii), we know that

$$
n-(m-x)^{k} \geq m^{k}+1-(m-x)^{k} \geq \hat{N}(k, r)
$$

or

$$
\begin{equation*}
n-(m-x)^{k} \geq \hat{N}(k, r) . \tag{4}
\end{equation*}
$$

To see that $n-(m-x)^{k}$ is (k, r)-bad, suppose it is (k, r)-good. Then

$$
n-(m-x)^{k}=a_{1}^{k}+a_{2}^{k}+\cdots+a_{t}^{k} \quad \text { with } t \geq r, a_{i} \neq a_{j} \text { for all } i \neq j
$$

or

$$
n=a_{1}^{k}+a_{2}^{k}+\cdots+a_{t}^{k}+(m-x)^{k} .
$$

Since n is (k, r)-bad, $a_{j}=m-x$ for some $j \in\{1,2, \ldots, t\}$. This, along with condition (iv), implies that $n-(m-x)^{k} \geq S_{k}(r-1)+(m-x)^{k}$. Combining this with (3), we get

$$
(m+1)^{k} \geq n \geq S_{k}(r-1)+2(m-x)^{k},
$$

or

$$
0 \geq S_{k}(r-1)+2(m-x)^{k}-(m+1)^{k} .
$$

This contradiction of condition (i) means $n-(m-x)^{k}$ must be (k, r)-bad.
Now from (3) and condition (ii),

$$
n-(m-x)^{k} \leq(m+1)^{k}-(m-x)^{k} \leq m^{k} .
$$

Thus by the induction hypothesis, $n-(m-x)^{k} \leq \hat{N}(k, r)-1$. This contradicts (4) and means that there are no n that are (k, r)-bad and satisfy (3).

As a result of Theorem 2.2, in order to find $N(k, r)$ one must simply find a suitable list of (k, r)-good consecutive integers $\left\{\hat{N}(k, r), \ldots, b^{k}\right\}$ such that $\hat{N}(k, r)-1$ is (k, r)-bad and an integer x that satisfies the four conditions of the theorem. It is this strategy that gives way to the tables of values in Theorems 2.3 and 2.4. Again, computer software was a valuable tool in determining whether a given number was (k, r)-good or (k, r)-bad for $k \in\{2,3\}$. For each r in the following two theorems, corresponding values for x and b are listed in Tables 1 and 2 rather than in the proof of the theorem.

Theorem 2.3. Table 1 is a list of $N(2, r)$ for integers $1 \leq r \leq 50$.

r	$N(2, r)$	x	b	r	$N(2, r)$	x	b	r	$N(2, r)$	x	b	r	$N(2, r)$	x	b
1	129	4	18	14	1398	19	47	27	7953	54	101	40	23679	100	169
2	129	4	18	15	1723	21	52	28	8677	57	105	41	25348	104	174
3	129	4	18	16	1991	24	54	29	9538	61	109	42	27208	108	180
4	129	4	18	17	2312	26	58	30	10394	63	114	43	29093	112	186
5	198	6	22	18	2673	28	62	31	11559	67	120	44	31229	116	193
6	238	6	23	19	3048	31	65	32	12603	71	125	45	33298	120	199
7	331	8	26	20	3493	34	69	33	13744	74	130	46	35290	123	205
8	383	9	27	21	4094	36	75	34	14864	78	135	47	37654	127	212
9	528	10	32	22	4614	39	79	35	16253	81	141	48	40043	132	218
10	648	12	33	23	5139	42	83	36	17529	85	146	49	42488	135	225
11	889	14	39	24	5719	44	87	37	18958	89	151	50	45024	140	231
12	989	15	41	25	6380	48	91	38	20482	92	158				
13	1178	17	44	26	7124	51	96	39	22043	96	163				

Table 1. For each r listed, $N(2, r)-1$ is $(2, r)$-bad, and the list of consecutive integers $\left\{N(2, r), \ldots, b^{2}\right\}$ is $(2, r)$-good. The three necessary conditions of Theorem 2.2 are satisfied by x.

Proof. For $1 \leq r \leq 4, N(2, r)=129$ by [Johnson and Laughlin 2011] and Theorem 2.1. For each $r, N(2, r)-1$ has been shown to be ($2, r$)-bad. There exist b and x such that the consecutive integers $\left\{N(2, r), \ldots, b^{2}\right\}$ are $(2, r)$-good, and x satisfies the four conditions of Theorem 2.2.

Theorem 2.4. Table 2 is a list of $N(3, r)$ for integers $1 \leq r \leq 30$.
Proof. For each $r, N(3, r)-1$ has been shown to be $(3, r)$-bad. There exist b and x such that the consecutive integers $\left\{N(3, r), \ldots, b^{3}\right\}$ are (3,r)-good, and x satisfies the four conditions listed in Theorem 2.2.

| r | $N(3, r)$ | x | b | r | $N(3, r)$ | x | b | r | $N(3, r)$ | x | b | r | $N(3, r)$ | x | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12759 | 5 | 32 | 9 | 16224 | 6 | 33 | 17 | 56076 | 11 | 47 | 25 | 179520 | 18 | 67 |
| 2 | 12759 | 5 | 32 | 10 | 18149 | 6 | 35 | 18 | 66534 | 12 | 50 | 26 | 201921 | 19 | 69 |
| 3 | 12759 | 5 | 32 | 11 | 22398 | 7 | 37 | 19 | 75912 | 12 | 52 | 27 | 227400 | 20 | 72 |
| 4 | 12759 | 5 | 32 | 12 | 24855 | 7 | 38 | 20 | 87567 | 13 | 54 | 28 | 256254 | 22 | 73 |
| 5 | 12759 | 5 | 32 | 13 | 28887 | 8 | 39 | 21 | 101093 | 14 | 56 | 29 | 289869 | 23 | 76 |
| 6 | 15279 | 6 | 33 | 14 | 36951 | 9 | 42 | 22 | 122064 | 15 | 60 | 30 | 325590 | 24 | 79 |
| 7 | 15279 | 6 | 33 | 15 | 39660 | 9 | 43 | 23 | 138696 | 16 | 62 | | | | |
| 8 | 15279 | 6 | 33 | 16 | 49083 | 10 | 46 | 24 | 156498 | 17 | 64 | | | | |

Table 2. For each r listed, $N(3, r)-1$ is (3, r)-bad, and the list of consecutive integers $\left\{N(3, r), \ldots, b^{3}\right\}$ is $(3, r)$-good. The three necessary conditions of Theorem 2.2 are satisfied by x.

3. Future work

The list of values of $N(k, r)$ can be extended indefinitely for any value of k. Currently we are only limited by our computing speed. A natural direction for further research would be to attempt to find an explicit formula for $N(k, r)$ for a specific k. In [Johnson and Laughlin 2011], it was noticed that $N(1, r)=r(r+1) / 2$. However, we have not found a formula for $N(2, r)$ or $N(3, r)$.

Another area that seems natural is to attempt to find $N(k, r)$ for values of k greater than 3 . We have attempted to use our current software to find $N(4,1)$ and $N(5,1)$, but our methods appear to be too inefficient. At this point, all that can be said confidently is that $N(4,1)$ is greater than 4.3 million, $N(5,1)$ is greater than 26.25 million, and perhaps they are both much larger.

It is also clear that $N(k, i) \leq N(k, j)$ when $i \leq j$, and it seems natural to conjecture that $N(x, r) \leq N(y, r)$ when $x \leq y$. Since $N(1, r)=(r(r+1)) / 2$, $N(1, r) \leq S_{k}(r) \leq N(k, r)$ for any integer $k \geq 1$. However, it is possible for an integer that it is (k, r)-bad to be (l, r)-good with $k<l$. For example, 9 is (2, 2)-bad but (3, 2)-good. Thus, a proof of this conjecture eludes us currently.
Note. After finishing this paper, it was brought to our attention that [Deering and Jamieson] had recently been submitted for publication. This paper has some of the same results as ours. In particular, our method of discovering $N(k, r)$, with proof, is very much like that of Deering and Jamieson. However, we feel that our method is sufficiently different and easier to use to merit publication.

References

[Deering and Jamieson] J. Deering and W. Jamieson, "On anti-Waring numbers", to appear in J. Combin. Math. Combin. Comput.
[Johnson and Laughlin 2011] P. Johnson and M. Laughlin, "An anti-Waring conjecture and problem", Int. J. Math. Comput. Sci. 6:1 (2011), 21-26. MR 2012f:11013 Zbl 05954412
[Looper and Saritzky 2012] N. Looper and N. Saritzky, "An anti-Waring theorem and proof", presentation at the MAA undergraduate poster seesion, Boston, January 2012.
[Weisstein] E. Weisstein, "Waring's problem", resource available at http://mathworld.wolfram.com/ WaringsProblem.html.

Received: 2013-04-24
cfuller@cumberland.edu
prier001@gannon.edu
vasconi002@gmail.com

Revised: 2013-07-10 Accepted: 2013-07-24
Department of Mathematics, Cumberland University, Lebanon, TN 37087, United States

Department of Mathematics, Gannon University, Erie, PA 16541-0001, United States

1440 Heinz Avenue, Sharon, PA 16146, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $\$ 120 /$ year for the electronic version, and $\$ 165 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve
 2014 vol. 7
 no. 2

An interesting proof of the nonexistence of a continuous bijection between \mathbb{R}^{n} and \mathbb{R}^{2} 125
for $n \neq 2$
Hamid Reza Daneshpajouh, Hamed Daneshpajouh and Fereshte Malek
Analysing territorial models on graphs 129
Marie Bruni, Mark Broom and Jan Rychtář
Binary frames, graphs and erasures 151
Bernhard G. Bodmann, Bijan Camp and Dax Mahoney
On groups with a class-preserving outer automorphism 171
Peter A. Brooksbank and Matthew S. Mizuhara
The sharp log-Sobolev inequality on a compact interval 181
Whan Ghang, Zane Martin and Steven Waruhiu
Analysis of a Sudoku variation using partially ordered sets and equivalence relations 187
Ana Burgers, Shelly Smith and Katherine Varga
Spanning tree congestion of planar graphs 205
Hiu Fai Law, Siu Lam Leung and Mikhail I. Ostrovskii
Convex and subharmonic functions on graphs 227
Matthew J. Burke and Tony L. Perkins
New results on an anti-Waring problem 239
Chris Fuller, David R. Prier and Karissa A. Vasconi

[^0]: MSC2010: 11A67.
 Keywords: number theory, Waring, anti-Waring, series.

