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François Jaeger presented the two-variable Kauffman polynomial of an unori-
ented link L as a weighted sum of HOMFLY-PT polynomials of oriented links
associated with L . Murakami, Ohtsuki and Yamada (MOY) used planar graphs
and a recursive evaluation of these graphs to construct a state model for the sl(n)-
link invariant (a one-variable specialization of the HOMFLY-PT polynomial). We
apply the MOY framework to Jaeger’s work, and construct a state summation
model for the SO(2n) Kauffman polynomial.

1. Introduction

The SO(2n) Kauffman polynomial [[L]] of an unoriented link L is a Laurent poly-
nomial in q, uniquely determined by the following axioms:

(1) [[L1]] = [[L2]], whenever L1 and L2 are regular isotopic links.

(2)
s {

−

s {
= (q − q−1)

(s {
−

s {)
.

(3)
s {

=
q2n−1

− q1−2n

q − q−1 + 1.

(4)
s {

= q2n−1
s {

,

s {
= q1−2n

s {
.

The diagrams in both sides of the second or fourth equations represent parts
of larger link diagrams that are identical except near a point where they look as
indicated. For more details about this polynomial (and its two-variable extension,
namely the Dubrovnik version of the two-variable Kauffman polynomial) we refer
the reader to [Kauffman 1990; 2001].
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Kauffman and Vogel [1992] extended the two-variable Dubrovnik polynomial to
a three-variable rational function for knotted 4-valent graphs (4-valent graphs em-
bedded in R3) with rigid vertices. For the case of the SO(2n) Kauffman polynomial,
this extension is obtained by defining

s {
: =

s {
− q

s {
− q−1

s {

=

s {
− q

s {
− q−1

s {
.

That is, the invariant for knotted 4-valent graphs with rigid vertices is defined in
terms of the SO(2n) Kauffman polynomial. In [Kauffman and Vogel 1992], it was
also shown that the resulting polynomial of a knotted 4-valent graph satisfies certain
graphical relations, which determine values for each unoriented planar 4-valent
graph by recursive formulas defined entirely in the category of planar graphs.

The results in [Kauffman and Vogel 1992] imply that there is a state model
for the Kauffman polynomial of an unoriented link via planar 4-valent graphs.
This model can also be deduced from Carpentier’s work [2000] on the Kauffman–
Vogel polynomial by changing one’s perspective (the focus of Carpentier’s paper
is on invariants for graphs rather than on the Kauffman polynomial for links). A
somewhat similar approach was used in [Caprau and Tipton 2011] to construct
a rational function in three variables which is an invariant of regular isotopy of
unoriented links, and provides a state summation model for the Dubrovnik version
of the two-variable Kauffman polynomial. The corresponding state model makes
use of a special type of planar trivalent graphs.

François Jaeger found a relationship between the two-variable Kauffman polyno-
mial and the regular isotopy version of the HOMFLY-PT polynomial. He showed
that the Kauffman polynomial of an unoriented link L can be obtained as a weighted
sum of HOMFLY-PT polynomials of oriented links associated with L . For a
brief description of Jaeger’s construction we refer the reader to [Kauffman 2001].
Murakami, Ohtsuki and Yamada [1998] (MOY) used planar trivalent graphs to
construct in a beautiful graphical calculus for the sl(n)-link polynomial (a one-
variable specialization of the HOMFLY-PT polynomial).

The motivation for this paper has its source in the following, natural, questions:
Is there a way to apply the MOY model to Jaeger’s formula and derive a state
summation model for the SO(2n) Kauffman polynomial? And if so, how is the
resulting state model for the SO(2n) Kauffman polynomial related to the one
implicitly given in [Kauffman and Vogel 1992]?

We slightly alter the MOY model for the sl(n)-link polynomial by working with
(planar, cross-like oriented) 4-valent graphs instead of trivalent graphs. Implement-
ing the MOY model into Jaeger’s construction, we show that in order to construct a
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state model for the Kauffman polynomial it is not sufficient to allow only cross-like
oriented 4-valent graphs but also alternating oriented vertices. The skein formalism
that we obtain is as follows:

s {
= q

s {
+ q−1

s {
−

s {
,

s {
= [2n− 1] + 1,

s {
= ([2n− 2] + [2])J K,

s {
= ([2n− 3] + 1)

s {
+ [2]

s {
,

s {
+

s {
−

s {
−

s {
− [2n− 4]

s {
=

s {
+

s {
−

s {
−

s {
− [2n− 4]

s {
,

where

[n] =
qn
− q−n

q − q−1 ,

and n ∈ Z with n ≥ 2.
Comparing the graph skein relations above with the graphical relations derived

by Kauffman and Vogel in [1992], it is not hard to see that the state model for
the SO(2n) Kauffman polynomial that we arrive at is essentially the same as that
implied by the work in [Kauffman and Vogel 1992] (up to a negative sign for the
weight received by the “flat resolution” of a crossing), and that given in [Caprau and
Tipton 2011, Subsection 5.1] (up to a change of variables). We would like to point
out that Hao Wu [2012] used a different approach to write the Kauffman–Vogel
graph polynomial as a state sum of the MOY graph polynomial.

The paper is organized as follows: In Section 2 we provide a version of the MOY
state model for the sl(n)-link polynomial, and in Section 3 we review Jaeger’s
formula for the Kauffman polynomial. The heart of the paper is Section 4, in which
we derive the state model for the SO(2n) Kauffman polynomial.

2. The MOY state model for the sl(n) polynomial

In this section, we give the [Murakami et al. 1998] state model for the regular
isotopy version of the sl(n) polynomial of an oriented link L . The sl(n) polynomial
is a one-variable specialization of the well-known HOMFLY-PT polynomial (see
[Freyd et al. 1985; Przytycki and Traczyk 1988]). Let D be a generic diagram of
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= [n] = [n− 1]

= [2]

= + [n− 2]

+ = +

+ [n− 3] = + [n− 3]

Figure 1. Web skein relations.

L containing c crossings. We resolve each crossing of D in the two ways shown
below:

←− , −→ .

This process yields 2c resolutions (states) corresponding to the link diagram D. A
resolution 0 of D is a 4-valent oriented planar graph in R2, possibly with loops
with no vertices, such that each vertex is crossing-type oriented: . There is a
well-defined Laurent polynomial R(0) ∈ Z[q, q−1

] associated to a resolution 0,
such that it satisfies the skein relations depicted in Figure 1, where

[n] =
qn
− q−n

q − q−1 and n ∈ Z, with n ≥ 2

(the symbol R is omitted in the graph skein relations to avoid clutter). We will refer
to R(0) as the MOY graph polynomial (see [Murakami et al. 1998]).

Decompose each crossing in D as explained in Figure 2, and form the following
linear combination of the MOY evaluations of all 2c resolutions 0 of D:

R(D)=
∑
0

a0R(0),

where the coefficients a0 ∈ Z[q, q−1
] are given by the rules depicted in Figure 2.

It is an enjoyable exercise to verify that R(D1)= R(D2), whenever diagrams
D1 and D2 differ by a Reidemeister II or III move. Excluding rightmost terms from
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R
( )

= q R
( )

− R
( )

R
( )

= q−1 R
( )

− R
( )

Figure 2. Decomposition of crossings.

the decomposition rules of crossings, we obtain Conway’s skein relation:

R
( )

− R
( )

= (q − q−1)R
( )

.

We note that R(L) := R(D) is the regular isotopy version of the sl(n) polynomial
of the link L , and that it satisfies the following:

R
( )

= qn R
( )

and R
( )

= q−n R
( )

.

3. Jaeger’s model for the Kauffman polynomial

In the late 80s, François Jaeger found a relationship between the two-variable Kauff-
man polynomial and the regular isotopy version of the HOMFLY-PT polynomial.
He showed that the Kauffman polynomial of an unoriented link L can be obtained
as a weighted sum of HOMFLY-PT polynomials of oriented links associated with
L . Since this construction is only briefly described in [Kauffman 2001], we provide
here a thorough exposition of it, which is necessary in order to understand our
main Section 4. Moreover, we describe Jaeger’s model for the SO(2n) Kauffman
polynomial by considering the sl(n)-link invariant instead of the HOMFLY-PT
polynomial.

Given an unoriented link diagram L , splice some of the crossings of L and orient
the resulting link. This results in a state for the expansion [[L]]. Each state receives
a certain weight, according to the following skein relation:
s {

= (q − q−1)

([ ]
−

[ ])
+

[ ]
+

[ ]
+

[ ]
+

[ ]
. (∗)

It is important to remark that the formula (∗) requires states that are oriented
in a globally compatible way as oriented link diagrams. Moreover, observe that
the orientation and the weight of a state are determined by how the crossings are
spliced. When approaching a crossing by traveling along the understrand, a splicing
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is obtained by either turning right or left at that crossing. In both cases, the strands
of the splicing are oriented according to the direction of the traveling. If the crossing
is spliced by turning right, then it receives the weight q − q−1, and if it is spliced
by turning left, it receives the weight −(q−q−1). If a crossing is left unspliced, its
weight (in the total weight of the state) is equal to 1.

The weight bσ of a state σ is obtained by taking the product of the weights
±(q−q−1) or 1 according to the skein relation (∗). Define the evaluation of a state
σ by the formula

[σ ] = (q1−n)rot(σ )R(σ ),

where rot(σ ) is the rotation number of the oriented link diagram σ , and R(σ ) is
the regular isotopy version of the sl(n) polynomial of σ .

The rotation number (also called the Whitney degree) of an oriented link diagram
is obtained by splicing every crossing according to its orientation, and then adding
the rotation numbers of all of the resulting Seifert circles, where a counterclockwise
oriented circle contributes a +1, and a clockwise oriented circle contributes a −1.
It is well-known that the rotation number is a regular isotopy invariant for oriented
links.

Equipped with the above definitions and conventions, we are ready to state
Jaeger’s theorem.

Theorem 1 (Jaeger). The Kauffman polynomial [[L]] of an unoriented link diagram
L can be obtained as follows:

[[L]] =
∑
σ

bσ [σ ],

where the sum is over all states σ associated with L that have globally compatible
orientations.

Proof. First note that the Conway identity holds for [·]:[ ]
−

[ ]
= q(1−n) rot

( )
R
( )

− q(1−n) rot
( )

R
( )

= q(1−n) rot
( )(

R
( )

− R
( ))

= (q − q−1)q(1−n) rot
( )

R
( )

= (q − q−1)

[ ]
.
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Then,
s {

−

s {

= (q − q−1)

([ ]
−

[ ])
+

[ ]
+

[ ]
+

[ ]
+

[ ]
−(q − q−1)

([ ]
−

[ ])
−

[ ]
−

[ ]
−

[ ]
−

[ ]
,

and by the Conway identity, we obtain
s {

−

s {
= (q − q−1)

([ ]
+

[ ]
+

[ ]
+

[ ])
− (q − q−1)

([ ]
+

[ ]
+

[ ]
+

[ ])
= (q − q−1)

(s {
−

s {)
.

Observe that [ ]
= q(1−n) rot

( )
R
( )

= q1−n
[n],[ ]

= q(1−n) rot
( )

R
( )

= qn−1
[n],

and, therefore we have

s {
=

[ ]
+

[ ]
= (q1−n

+ qn−1)[n] =
q2n−1

− q1−2n

q − q−1 + 1.

Moreover,[ ]
= q(1−n) rot

( )
R

( )
= q

(1−n)

(
1+rot

( ))
qn R

( )
= q

[ ]
,

[ ]
= q(1−n)rot

( )
R

( )
= q

(1−n)

(
−1+rot

( ))
qn R

( )
= q2n−1[ ]

.
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Therefore,

t |

= (q − q−1)

([ ]
−

[ ])
+

[ ]
+

[ ]
= (q − q−1)

(
qn−1
[n]
[ ]

−
[ ])

+ q
[ ]

+ q2n−1[ ]
= q2n−1[ ]

+ q2n−1[ ]
= q2n−1J K.

Similarly, one can show that

t |

= q1−2nJ K.

It remains to show that J·K is a regular isotopy invariant for unoriented links.

t |

= (q − q−1)

([ ]
−

[ ]
+

[ ]
−

[ ])

+

[ ]
+

[ ]
+

[ ]
+

[ ]

= (q − q−1)

([ ]
− q

[ ]
+ q−1

[ ]
−

[ ])
+

[ ]
+

[ ]
+

[ ]
+

[ ]

= (q − q−1)

([ ]
−

[ ]
− q

[ ]
+ q−1

[ ])
+

s {

=

s {
,

by the Conway identity for [·].
The invariance of J·K under the Reidemeister III move is verified in a similar

fashion, and we leave the details to the reader. �
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4. The SO(2n) Kauffman polynomial via planar 4-valent graphs

We seek to construct a state summation model for the SO(2n) Kauffman polyno-
mial, that works in much the same way as the MOY model works for the sl(n)
polynomial. Moreover, we want to derive such a state model by implementing the
MOY construction into Jaeger’s theorem. Therefore, the states corresponding to an
unoriented link diagram L will be unoriented 4-valent graphs obtained by resolving
a crossing of L in one of the following ways:

, ,

and we want to find some A, B,C ∈ Z[q, q−1
], such that

s {
= A

s {
+ B

s {
+C

s {
. (4-1)

The state model that we wish to construct requires a consistent method to evaluate
closed, unoriented 4-valent graphs (the states associated with L).

To this end, we note that implementing the MOY state summation into Jaeger’s
model requires the bracket evaluation [0], where 0 is an oriented 4-valent planar
graph whose vertices are crossing-type oriented. We define

[0] :=
(
q1−n)rot(0)R(0), (4-2)

where rot(0), the rotation number of such a graph 0, is the sum of the rotation
numbers of the disjoint oriented circles obtained by splicing each vertex of 0
according to the orientation of its edges:

−→ .

We will regard the Equation (4-2) as a skein relation, as explained below:[ ]
= (q1−n)

rot
( )

R
( )

= (q1−n)
rot
( )

R
( )

. (4-3)

Jaeger’s theorem implies that
s {

=

[ ]
+

[ ]
+

[ ]
+

[ ]
,

and to have a consistent construction, the evaluation
s {
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will contain the bracket evaluations [ ]
,

for all such orientations of the vertex.
To determine what the coefficients A, B, and C must be, we compute

s {

via Jaeger’s model, and throughout the process, we evaluate the resulting oriented
link diagrams using the MOY construction for the sl(n) polynomial, R.
s {

= (q − q−1)

([ ]
−

[ ])
+

[ ]
+

[ ]
+

[ ]
+

[ ]
= (q − q−1)

([ ]
−

[ ])
+(q1−n)

rot
( )

R
( )

+ (q1−n)
rot
( )

R
( )

+ (q1−n)
rot
( )

R
( )

+ (q1−n)
rot
( )

R
( )

.

Employing the skein relations in Figure 2, we have
s {

= (q − q−1)

([ ]
−

[ ])
+(q1−n)

rot
( )(

q R
( )

− R
( ))

+(q1−n)
rot
( )(

q−1 R
( )

− R
( ))

+(q1−n)
rot
( )(

q R
( )

− R
( ))

+ (q1−n)
rot
( )(

q−1 R
( )

− R
( ))

.

Making use of the skein relation (4-3), we obtain
s {

= (q−q−1)

([ ]
−

[ ])
+q

[ ]
−

[ ]
+q−1

[ ]
−

[ ]
+ q

[ ]
−

[ ]
+ q−1

[ ]
−

[ ]
= q

([ ]
+

[ ]
+

[ ]
+

[ ])
+q−1

([ ]
+

[ ]
+

[ ]
+

[ ])
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−q
[ ]

− q
[ ]

− q−1
[ ]

− q−1
[ ]

−

([ ]
+

[ ]
+

[ ]
+

[ ])
.

Therefore, we have
s {

= q
s {

+ q−1
s {

− q
[ ]

− q
[ ]

− q−1
[ ]

− q−1
[ ]

−

([ ]
+

[ ]
+

[ ]
+

[ ])
.

Comparing the last equality with (4-1), we see that in order to work with a certain
evaluation s {

for an unoriented vertex, we must also take in consideration alternating orientations
for edges meeting at a vertex, and define the bracket of an alternating oriented
vertex as follows: [ ]

:= q
[ ]

+ q−1
[ ]

. (4-4)

The above computations also imply the need of the following definition:
s {

:=

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
.

Implementing the above definitions into our previous computations, we obtain
s {

= q
s {

+ q−1
s {

−

s {
. (4-5)

Therefore, A = q , B = q−1, and C =−1.
We have seen that the implementation of the MOY state model into Jaeger’s

state summation requires balanced oriented 4-valent graphs (in the sense that the
total degree of a vertex is zero), with vertices being either crossing-type oriented or
alternating oriented.

Proposition 1. The following identity holds:
s {

= [2n− 1] + 1.

Proof. This identity holds by Jaeger’s theorem. �
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Proposition 2. The following graph skein relation holds:
s {

= ([2n− 2] + [2])J K.

Proof. s {
=

[ ]
+

[ ]
+

[ ]
+

[ ]
.

Now, for the first oriented diagram, we have[ ]
= q(1−n) rot

( )
R
( )

= q(1−n) rot
( )
[n− 1]R

( )
= q1−n

[n− 1]q(1−n) rot( )R
( )

= q1−n
[n− 1]

[ ]
,

and for the third oriented diagram, we have[ ]
= q

[ ]
+ q−1[ ]

= q · q(1−n) rot
( )

R
( )

+ q−1[ ]
= q · q1−n

· q(1−n) rot( )
[n]R

( )
+ q−1[ ]

= q2−n
[n]
[ ]

+ q−1[ ]
= (q2−n

[n] + q−1)
[ ]

.

Similarly, we obtain[ ]
= qn−1

[n− 1]
[ ]

and
[ ]

= (qn−2
[n] + q)

[ ]
.

Using these evaluations for each of the oriented states, we arrive at
s {

=
(
[2n− 2] + [2]

)([ ]
+
[ ])

=
(
[2n− 2] + [2]

)
J K. �

Proposition 3. The following skein relation holds:
s {

=
(
[2n− 3] + 1

)s {
+ [2]

s {
.

Proof. We know that
s {

=

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
.
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Now,[ ]
= (q1−n)

rot
( )

R
( )

= (q1−n)
rot
( )

[2]R
( )

= [2]
[ ]

,

and[ ]
= (q1−n)

rot
( )

R
( )

= (q1−n)
rot
( )(

R
( )

+ [n−2]R
( ))

=

[ ]
+ qn−1

[n− 2]
[ ]

,

where we used the fact that

rot
( )

= rot
( )
− 1.

We also have that[ ]
= q

[ ]
+ q−1

[ ]
= q

[ ]
+ q−1(̇q1−n)

rot
(
−1
)

R
( )

= q
[ ]

+ q−1q̇n−1(q1−n)
rot
( )
[n− 1]R

( )
= q

[ ]
+ qn−2

[n− 1]
[ ]

.

Similarly, for the bigon with alternating oriented vertices, we have[ ]
= q−1

[ ]
+ q

[ ]
= q−1

(
q
[ ]

+ q−1
[ ])

+ q
(

q
[ ]

+ q−1
[ ])

=

[ ]
+ q−2

· qn−1
[n]
[ ]

+ q2
[ ]

+

[ ]
= q2

[ ]
+ (qn−3

[n] + 2)
[ ]

.

The remaining diagrams can be evaluated similarly. Thus, we have
s {

=

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
+

[ ]
,
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and using the above computations yields
s {

= [2]
[ ]

+

([ ]
+ qn−1

[n− 2]
[ ])

+ [2]
[ ]

+

([ ]
+ q1−n

[n− 2]
[ ])

+

(
q
[ ]

+ qn−2
[n− 1]

[ ])
+

(
q
[ ]

+ qn−2
[n− 1]

[ ])
+

(
q−1

[ ]
+ q2−n

[n− 1]
[ ])

+

(
q−1

[ ]
+ q2−n

[n− 1]
[ ])

+

(
q−2

[ ]
+(q3−n

[n]+2)
[ ])

+

(
q2
[ ]

+(qn−3
[n]+2)

[ ])
.

Combining like terms, we have
s {

= (q+q−1)

[ ]
+ (q+q−1)

[ ]
+ (q+q−1)

[ ]
+ (q+q−1)

[ ]
+ [2]

[ ]
+ [2]

[ ]
+ ([2n−3] + 1)

[ ]
+ ([2n−3] + 1)

[ ]
+([2n−3] + 1)

[ ]
+ ([2n−3] + 1)

[ ]
= [2]

s {
+ ([2n−3] + 1)

s {
,

which completes the proof. �

Proposition 4. The following graph skein relation holds:
s {

+

s {
−

s {
−

s {
− [2n− 4]

s {
=

s {
+

s {
−

s {
−

s {
− [2n− 4]

s {
.

Proof. To prove the statement, one can use the same approach as in the previous
propositions, namely evaluating

s {
and

s {

by summing over all bracket evaluations for all the associated oriented diagrams.
To avoid cumbersome computations, we use instead the fact that [[·]] is invariant
under the Reidemeister III move. That is,

s {
=

s {
.
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Using the skein relation (4-5), we have

s {
= q

s {
+ q−1

s {
−

s {
,

s {
= q

s {
+ q−1

s {
−

s {
.

Since [[·]] is invariant under the Reidemeister II move, we have
s {

=

s {
,

and we obtain that
s {

=

s {
.

Using again the skein relation (4-5), we have

0=
s {

−

s {

= q
s {

+ q−1
s {

−

s {
−

(
q
s {

+ q−1
s {

−

s {)
= q

(
q
s {

+q−1
s {

−

s {)
+q−1

(
q
s {

+q−1
s {

−

s {)
−

(
q
s {

+q−1
s {

−

s {)
−q

(
q
s {

+q−1
s {

−

s {)
−q−1

(
q
s {

+q−1
s {

−

s {)
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Applying Proposition 2 and canceling terms, we arrive at

0=
s {

−

s {

= q2
s {

+ ([2n− 2] + [2])
s {

− ([2n− 2] + [2])
s {

−q
s {

+

s {
+q−2

s {
−q−1

s {
+

s {
−q2

s {

−

s {
− q−2

s {
+ q−1

s {
+ q

s {
−

s {
.

Now, from Proposition 3, we have
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s {
= [2]

s {
+ ([2n− 3] + 1)

s {
,

s {
= [2]

s {
+ ([2n− 3] + 1)

s {
,

s {
= [2]

s {
+ ([2n− 3] + 1)

s {
,

s {
= [2]

s {
+ ([2n− 3] + 1)

s {
.

Making the above replacements and combining like terms gives us

0= (q2
−q[2])

s {
+([2n−2]+[2]−q[2n−3]−q−q−1

[2n−3]−q−1)

s {

+

s {
+ (q−2

− q−1
[2])

s {
+

s {
+ (q[2] − q2)

s {

−

s {
+ (q−1

[2n− 3] + q−1
+ q[2n− 3] + q − [2n− 2] − [2])

s {

+ (q−1
[2] − q−2)

s {
−

s {

=

s {
+

s {
−

s {
−

s {
− [2n− 4]

s {

−

(s {
+

s {
−

s {
−

s {
− [2n− 4]

s {)
,

and the statement follows. �

Propositions 1–4 provide consistent and sufficient skein relations to evaluate
any planar unoriented 4-valent graph. In addition, the skein relation (4-5) together
with these propositions yield a state summation model for the SO(2n) Kauffman
polynomial.
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