

On a state model for the SO(2*n*) Kauffman polynomial Carmen Caprau, David Heywood and Dionne Ibarra

On a state model for the SO(2n) Kauffman polynomial

Carmen Caprau, David Heywood and Dionne Ibarra

(Communicated by Colin Adams)

François Jaeger presented the two-variable Kauffman polynomial of an unoriented link *L* as a weighted sum of HOMFLY-PT polynomials of oriented links associated with *L*. Murakami, Ohtsuki and Yamada (MOY) used planar graphs and a recursive evaluation of these graphs to construct a state model for the sl(n)link invariant (a one-variable specialization of the HOMFLY-PT polynomial). We apply the MOY framework to Jaeger's work, and construct a state summation model for the SO(2*n*) Kauffman polynomial.

1. Introduction

The SO(2n) Kauffman polynomial $\llbracket L \rrbracket$ of an unoriented link L is a Laurent polynomial in q, uniquely determined by the following axioms:

(1) $\llbracket L_1 \rrbracket = \llbracket L_2 \rrbracket$, whenever L_1 and L_2 are regular isotopic links.

(2)
$$\left[\begin{array}{c} & \\ \end{array} \right] - \left[\begin{array}{c} \\ \end{array} \right] = (q - q^{-1}) \left(\left[\begin{array}{c} \\ \end{array} \right] - \left[\begin{array}{c} \\ \end{array} \right] \right).$$
(3)
$$\left[\begin{array}{c} \\ \end{array} \right] = \frac{q^{2n-1} - q^{1-2n}}{q - q^{-1}} + 1.$$
(4)
$$\left[\begin{array}{c} \\ \end{array} \right] = q^{2n-1} \left[\begin{array}{c} \\ \end{array} \right], \quad \left[\begin{array}{c} \\ \end{array} \right] = q^{1-2n} \left[\begin{array}{c} \\ \end{array} \right].$$

The diagrams in both sides of the second or fourth equations represent parts of larger link diagrams that are identical except near a point where they look as indicated. For more details about this polynomial (and its two-variable extension, namely the Dubrovnik version of the two-variable Kauffman polynomial) we refer the reader to [Kauffman 1990; 2001].

MSC2010: primary 57M27; secondary 57M27, 57M15.

Keywords: graphs, invariants for knots and links, Kauffman polynomial.

Kauffman and Vogel [1992] extended the two-variable Dubrovnik polynomial to a three-variable rational function for knotted 4-valent graphs (4-valent graphs embedded in \mathbb{R}^3) with rigid vertices. For the case of the SO(2*n*) Kauffman polynomial, this extension is obtained by defining

$$\begin{bmatrix} & & \\ &$$

That is, the invariant for knotted 4-valent graphs with rigid vertices is defined in terms of the SO(2n) Kauffman polynomial. In [Kauffman and Vogel 1992], it was also shown that the resulting polynomial of a knotted 4-valent graph satisfies certain graphical relations, which determine values for each unoriented planar 4-valent graph by recursive formulas defined entirely in the category of planar graphs.

The results in [Kauffman and Vogel 1992] imply that there is a state model for the Kauffman polynomial of an unoriented link via planar 4-valent graphs. This model can also be deduced from Carpentier's work [2000] on the Kauffman– Vogel polynomial by changing one's perspective (the focus of Carpentier's paper is on invariants for graphs rather than on the Kauffman polynomial for links). A somewhat similar approach was used in [Caprau and Tipton 2011] to construct a rational function in three variables which is an invariant of regular isotopy of unoriented links, and provides a state summation model for the Dubrovnik version of the two-variable Kauffman polynomial. The corresponding state model makes use of a special type of planar trivalent graphs.

François Jaeger found a relationship between the two-variable Kauffman polynomial and the regular isotopy version of the HOMFLY-PT polynomial. He showed that the Kauffman polynomial of an unoriented link L can be obtained as a weighted sum of HOMFLY-PT polynomials of oriented links associated with L. For a brief description of Jaeger's construction we refer the reader to [Kauffman 2001]. Murakami, Ohtsuki and Yamada [1998] (MOY) used planar trivalent graphs to construct in a beautiful graphical calculus for the sl(n)-link polynomial (a one-variable specialization of the HOMFLY-PT polynomial).

The motivation for this paper has its source in the following, natural, questions: Is there a way to apply the MOY model to Jaeger's formula and derive a state summation model for the SO(2n) Kauffman polynomial? And if so, how is the resulting state model for the SO(2n) Kauffman polynomial related to the one implicitly given in [Kauffman and Vogel 1992]?

We slightly alter the MOY model for the sl(n)-link polynomial by working with (planar, cross-like oriented) 4-valent graphs instead of trivalent graphs. Implementing the MOY model into Jaeger's construction, we show that in order to construct a

state model for the Kauffman polynomial it is not sufficient to allow only cross-like oriented 4-valent graphs but also alternating oriented vertices. The skein formalism that we obtain is as follows:

$$\begin{bmatrix} \swarrow \\ \end{bmatrix} = q \begin{bmatrix} \swarrow \\ \end{bmatrix} + q^{-1} \begin{bmatrix} \bigcirc \\ \end{bmatrix} - \begin{bmatrix} \swarrow \\ \end{bmatrix},$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = [2n-1]+1,$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = ([2n-2]+[2]) \llbracket \frown \end{bmatrix},$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = ([2n-3]+1) \llbracket \leftthreetimes \\ \end{bmatrix} + [2] \llbracket \leftthreetimes \\ \end{bmatrix},$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} + \llbracket \leftthreetimes \\ \end{bmatrix} - \llbracket \leftthreetimes \\ \end{bmatrix} - \llbracket \leftthreetimes \\ \end{bmatrix} - [2n-4] \llbracket \leftthreetimes \\ \end{bmatrix} - [2n-4] \llbracket \leftthreetimes \\ \end{bmatrix} - [2n-4] \llbracket \leftthreetimes \\ \end{bmatrix},$$
ubbre

where

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}},$$

and $n \in \mathbb{Z}$ with $n \geq 2$.

Comparing the graph skein relations above with the graphical relations derived by Kauffman and Vogel in [1992], it is not hard to see that the state model for the SO(2n) Kauffman polynomial that we arrive at is essentially the same as that implied by the work in [Kauffman and Vogel 1992] (up to a negative sign for the weight received by the "flat resolution" of a crossing), and that given in [Caprau and Tipton 2011, Subsection 5.1] (up to a change of variables). We would like to point out that Hao Wu [2012] used a different approach to write the Kauffman–Vogel graph polynomial as a state sum of the MOY graph polynomial.

The paper is organized as follows: In Section 2 we provide a version of the MOY state model for the sl(n)-link polynomial, and in Section 3 we review Jaeger's formula for the Kauffman polynomial. The heart of the paper is Section 4, in which we derive the state model for the SO(2n) Kauffman polynomial.

2. The MOY state model for the sl(n) polynomial

In this section, we give the [Murakami et al. 1998] state model for the regular isotopy version of the sl(n) polynomial of an oriented link *L*. The sl(n) polynomial is a one-variable specialization of the well-known HOMFLY-PT polynomial (see [Freyd et al. 1985; Przytycki and Traczyk 1988]). Let *D* be a generic diagram of

Figure 1. Web skein relations.

L containing c crossings. We resolve each crossing of D in the two ways shown below:

 $\Big)\Big(\longleftrightarrow \bigvee, \quad \bigvee \to \bigvee .$

This process yields 2^c resolutions (states) corresponding to the link diagram *D*. A resolution Γ of *D* is a 4-valent oriented planar graph in \mathbb{R}^2 , possibly with loops with no vertices, such that each vertex is crossing-type oriented: X. There is a well-defined Laurent polynomial $R(\Gamma) \in \mathbb{Z}[q, q^{-1}]$ associated to a resolution Γ , such that it satisfies the skein relations depicted in Figure 1, where

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \quad \text{and} \quad n \in \mathbb{Z}, \quad \text{with } n \ge 2$$

(the symbol *R* is omitted in the graph skein relations to avoid clutter). We will refer to $R(\Gamma)$ as the *MOY graph polynomial* (see [Murakami et al. 1998]).

Decompose each crossing in *D* as explained in Figure 2, and form the following linear combination of the MOY evaluations of all 2^c resolutions Γ of *D*:

$$R(D) = \sum_{\Gamma} a_{\Gamma} R(\Gamma),$$

where the coefficients $a_{\Gamma} \in \mathbb{Z}[q, q^{-1}]$ are given by the rules depicted in Figure 2.

It is an enjoyable exercise to verify that $R(D_1) = R(D_2)$, whenever diagrams D_1 and D_2 differ by a Reidemeister II or III move. Excluding rightmost terms from

Figure 2. Decomposition of crossings.

the decomposition rules of crossings, we obtain Conway's skein relation:

$$R\left(\swarrow\right) - R\left(\swarrow\right) = (q - q^{-1})R\left(\bigcirc\right).$$

We note that R(L) := R(D) is the regular isotopy version of the sl(n) polynomial of the link *L*, and that it satisfies the following:

$$R\left(\searrow\right) = q^n R\left(\searrow\right)$$
 and $R\left(\bigcirc\swarrow\right) = q^{-n} R\left(\bigcirc\right)$.

3. Jaeger's model for the Kauffman polynomial

In the late 80s, François Jaeger found a relationship between the two-variable Kauffman polynomial and the regular isotopy version of the HOMFLY-PT polynomial. He showed that the Kauffman polynomial of an unoriented link L can be obtained as a weighted sum of HOMFLY-PT polynomials of oriented links associated with L. Since this construction is only briefly described in [Kauffman 2001], we provide here a thorough exposition of it, which is necessary in order to understand our main Section 4. Moreover, we describe Jaeger's model for the SO(2n) Kauffman polynomial by considering the sl(n)-link invariant instead of the HOMFLY-PT polynomial.

Given an unoriented link diagram L, splice some of the crossings of L and orient the resulting link. This results in a *state* for the expansion [[L]]. Each state receives a certain weight, according to the following skein relation:

$$\begin{bmatrix} \swarrow \end{bmatrix}$$

= $(q - q^{-1}) \left(\begin{bmatrix} \backsim \end{bmatrix} - \begin{bmatrix} \supset \zeta \end{bmatrix} \right) + \begin{bmatrix} \leftthreetimes \end{bmatrix} . \quad (*)$

It is important to remark that the formula (*) requires states that are oriented in a globally compatible way as oriented link diagrams. Moreover, observe that the orientation and the weight of a state are determined by how the crossings are spliced. When approaching a crossing by traveling along the understrand, a splicing is obtained by either turning right or left at that crossing. In both cases, the strands of the splicing are oriented according to the direction of the traveling. If the crossing is spliced by turning right, then it receives the weight $q - q^{-1}$, and if it is spliced by turning left, it receives the weight $-(q - q^{-1})$. If a crossing is left unspliced, its weight (in the total weight of the state) is equal to 1.

The weight b_{σ} of a state σ is obtained by taking the product of the weights $\pm (q - q^{-1})$ or 1 according to the skein relation (*). Define the *evaluation* of a state σ by the formula

$$[\sigma] = (q^{1-n})^{\operatorname{rot}(\sigma)} R(\sigma)$$

where $rot(\sigma)$ is the *rotation number* of the oriented link diagram σ , and $R(\sigma)$ is the regular isotopy version of the sl(n) polynomial of σ .

The rotation number (also called the Whitney degree) of an oriented link diagram is obtained by splicing every crossing according to its orientation, and then adding the rotation numbers of all of the resulting Seifert circles, where a counterclockwise oriented circle contributes a +1, and a clockwise oriented circle contributes a -1. It is well-known that the rotation number is a regular isotopy invariant for oriented links.

Equipped with the above definitions and conventions, we are ready to state Jaeger's theorem.

Theorem 1 (Jaeger). The Kauffman polynomial $\llbracket L \rrbracket$ of an unoriented link diagram *L* can be obtained as follows:

$$\llbracket L \rrbracket = \sum_{\sigma} b_{\sigma}[\sigma],$$

where the sum is over all states σ associated with *L* that have globally compatible orientations.

Proof. First note that the Conway identity holds for $[\cdot]$:

$$\begin{bmatrix} \searrow \end{bmatrix} - \begin{bmatrix} \searrow \end{bmatrix} = q^{(1-n)\operatorname{rot}(\bigotimes)} R\left(\swarrow \right) - q^{(1-n)\operatorname{rot}(\bigotimes)} R\left(\swarrow \right)$$
$$= q^{(1-n)\operatorname{rot}(\bigotimes)} \left(R\left(\swarrow \right) - R\left(\swarrow \right) \right)$$
$$= (q - q^{-1})q^{(1-n)\operatorname{rot}(\bigotimes)} R\left(\bigtriangledown \right)$$
$$= (q - q^{-1}) \begin{bmatrix} \swarrow \end{bmatrix}.$$

Then,

$$\begin{bmatrix} \searrow \\ \end{bmatrix} - \begin{bmatrix} \searrow \\ \end{bmatrix}$$
$$= (q - q^{-1}) \left(\begin{bmatrix} \searrow \\ \end{bmatrix} - \begin{bmatrix} \bigcirc \\ \end{bmatrix} \right) + \begin{bmatrix} \searrow \\ \end{bmatrix} + \begin{bmatrix} \swarrow \\ \end{bmatrix}$$
$$-(q - q^{-1}) \left(\begin{bmatrix} \bigcirc \\ \end{bmatrix} - \begin{bmatrix} \leftthreetimes \\ \end{bmatrix} \right) - \begin{bmatrix} \leftthreetimes \\ \end{bmatrix} + \begin{bmatrix} \swarrow \\ \end{bmatrix}$$

and by the Conway identity, we obtain

Observe that

$$\begin{bmatrix} \bigcirc \end{bmatrix} = q^{(1-n)\operatorname{rot}} R \begin{pmatrix} \bigcirc \end{pmatrix} R \begin{pmatrix} \bigcirc \end{pmatrix} = q^{1-n}[n],$$
$$\begin{bmatrix} \bigcirc \end{bmatrix} = q^{(1-n)\operatorname{rot}} R \begin{pmatrix} \bigcirc \end{pmatrix} R \begin{pmatrix} \bigcirc \end{pmatrix} = q^{n-1}[n],$$

and, therefore we have

$$\left[\!\left[\bigcirc\right]\!\right] = \left[\bigcirc\right] + \left[\bigcirc\right] = (q^{1-n} + q^{n-1})[n] = \frac{q^{2n-1} - q^{1-2n}}{q - q^{-1}} + 1.$$

Moreover,

$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = q^{(1-n)\operatorname{rot}(\bigcirc)} R(\bigcirc) = q^{(1-n)\left(1+\operatorname{rot}(\frown)\right)} q^n R(\frown)$$
$$= q \begin{bmatrix} \frown \\ \end{bmatrix},$$
$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = q^{(1-n)\operatorname{rot}(\bigcirc)} R(\bigcirc) = q^{(1-n)\left(-1+\operatorname{rot}(\frown)\right)} q^n R(\frown)$$
$$= q^{2n-1} \begin{bmatrix} \frown \\ \end{bmatrix}.$$

Therefore,

$$\begin{bmatrix} \bigcirc \\ \end{bmatrix} = (q - q^{-1}) \left(\begin{bmatrix} \bigcirc \\ \\ \end{bmatrix} - \begin{bmatrix} \land \\ \\ \end{bmatrix} \right) + \begin{bmatrix} \bigcirc \\ \end{bmatrix} + \begin{bmatrix} \bigcirc \\ \end{bmatrix} + \begin{bmatrix} \bigcirc \\ \end{bmatrix} \\ = (q - q^{-1}) \left(q^{n-1}[n][\frown] - [\frown] \right) \\ + q[\frown] + q^{2n-1}[\frown] \\ = q^{2n-1}[\frown] + q^{2n-1}[\frown] = q^{2n-1}[\frown].$$

Similarly, one can show that

$$\left[\!\left[\begin{array}{c} \\ \end{array}\right]\!\right] = q^{1-2n} \left[\!\left[\begin{array}{c} \\ \end{array}\right]\!\right].$$

It remains to show that $\llbracket \cdot \rrbracket$ is a regular isotopy invariant for unoriented links.

by the Conway identity for $[\cdot]$.

The invariance of $\llbracket \cdot \rrbracket$ under the Reidemeister III move is verified in a similar fashion, and we leave the details to the reader.

4. The SO(2n) Kauffman polynomial via planar 4-valent graphs

We seek to construct a state summation model for the SO(2n) Kauffman polynomial, that works in much the same way as the MOY model works for the sl(n) polynomial. Moreover, we want to derive such a state model by implementing the MOY construction into Jaeger's theorem. Therefore, the states corresponding to an unoriented link diagram *L* will be unoriented 4-valent graphs obtained by resolving a crossing of *L* in one of the following ways:

and we want to find some $A, B, C \in \mathbb{Z}[q, q^{-1}]$, such that

$$\left[\left[\begin{array}{c} \\ \end{array} \right] = A \left[\begin{array}{c} \\ \end{array} \right] + B \left[\begin{array}{c} \\ \end{array} \right] + C \left[\begin{array}{c} \\ \end{array} \right].$$
(4-1)

The state model that we wish to construct requires a consistent method to evaluate closed, unoriented 4-valent graphs (the states associated with L).

To this end, we note that implementing the MOY state summation into Jaeger's model requires the bracket evaluation [Γ], where Γ is an oriented 4-valent planar graph whose vertices are crossing-type oriented. We define

$$[\Gamma] := \left(q^{1-n}\right)^{\operatorname{rot}(\Gamma)} R(\Gamma), \qquad (4-2)$$

where $rot(\Gamma)$, the *rotation number* of such a graph Γ , is the sum of the rotation numbers of the disjoint oriented circles obtained by splicing each vertex of Γ according to the orientation of its edges:

We will regard the Equation (4-2) as a skein relation, as explained below:

$$\left[\swarrow \right] = (q^{1-n})^{\operatorname{rot}} \left[\swarrow \right] R \left(\swarrow \right) = (q^{1-n})^{\operatorname{rot}} \left[\bigcirc \right] R \left(\swarrow \right).$$
(4-3)

Jaeger's theorem implies that

$$\left[\!\!\left[\begin{array}{c} \smile \\ \frown \end{array}\right]\!\!\right] = \left[\begin{array}{c} \smile \\ \frown \end{array}\right] + \left[\begin{array}{c} \smile \\ \frown \end{array}\right] + \left[\begin{array}{c} \smile \\ \frown \end{array}\right] + \left[\begin{array}{c} \smile \\ \frown \end{array}\right],$$

and to have a consistent construction, the evaluation

will contain the bracket evaluations

for all such orientations of the vertex.

To determine what the coefficients A, B, and C must be, we compute

via Jaeger's model, and throughout the process, we evaluate the resulting oriented link diagrams using the MOY construction for the sl(n) polynomial, R.

Employing the skein relations in Figure 2, we have

$$\begin{split} \left[\left[\swarrow \right] \right] &= (q - q^{-1}) \left(\left[\swarrow \right] - \left[\circlearrowright \zeta \right] \right) \\ &+ (q^{1-n})^{\operatorname{rot}} \left(\bigtriangledown \left(qR \left(\swarrow \right) - R \left(\leftthreetimes \right) \right) \right) \\ &+ (q^{1-n})^{\operatorname{rot}} \left(\circlearrowright \zeta \right) - R \left(\leftthreetimes \right) \right) \\ &+ (q^{1-n})^{\operatorname{rot}} \left(\bigtriangledown \left(qR \left(\leftthreetimes \right) - R \left(\leftthreetimes \right) \right) \right) \\ &+ (q^{1-n})^{\operatorname{rot}} \left(\bigtriangledown \left(qR \left(\leftthreetimes \right) - R \left(\leftthreetimes \right) \right) \right) \\ &+ (q^{1-n})^{\operatorname{rot}} \left(\circlearrowright \zeta \right) \left(q^{-1}R \left(\circlearrowright \zeta \right) - R \left(\leftthreetimes \right) \right) . \end{split}$$

Making use of the skein relation (4-3), we obtain

$$\begin{split} \left[\left[\swarrow \right] &= (q - q^{-1}) \left(\left[\swarrow \right] - \left[\bigcirc \zeta \right] \right) + q \left[\swarrow \right] - \left[\swarrow \right] + q^{-1} \left[\bigcirc \zeta \right] - \left[\swarrow \right] \\ &+ q \left[\swarrow \right] - \left[\leftthreetimes \right] + q^{-1} \left[\bigcirc \zeta \right] - \left[\leftthreetimes \right] \\ &= q \left(\left[\swarrow \right] + \left[\leftthreetimes \right] + \left[\leftthreetimes \right] + \left[\leftthreetimes \right] \right) \\ &+ q^{-1} \left(\left[\bigcirc \zeta \right] + \left[\bigcirc \zeta \right] + \left[\bigcirc \zeta \right] + \left[\bigcirc \zeta \right] \right] \right) \end{split}$$

556

Therefore, we have

Comparing the last equality with (4-1), we see that in order to work with a certain evaluation

for an unoriented vertex, we must also take in consideration *alternating orientations* for edges meeting at a vertex, and define the *bracket* of an *alternating oriented vertex* as follows:

$$\left[\swarrow^{}\right] := q \left[\bigcirc^{}\right] + q^{-1} \left[\bigcirc^{}\right]. \tag{4-4}$$

The above computations also imply the need of the following definition:

$$\left[\left[\times\right]\right] := \left[\times\right] + \left[\times\right] +$$

Implementing the above definitions into our previous computations, we obtain

$$\llbracket \searrow \rrbracket = q \llbracket \searrow \rrbracket + q^{-1} \llbracket \bigcirc \bigcirc \rrbracket - \llbracket \searrow \rrbracket.$$
(4-5)

Therefore, A = q, $B = q^{-1}$, and C = -1.

We have seen that the implementation of the MOY state model into Jaeger's state summation requires *balanced* oriented 4-valent graphs (in the sense that the total degree of a vertex is zero), with vertices being either crossing-type oriented or alternating oriented.

Proposition 1. The following identity holds:

$$\left[\bigcirc \right] = [2n-1]+1.$$

Proof. This identity holds by Jaeger's theorem.

Proposition 2. *The following graph skein relation holds:*

$$\llbracket \bigcirc \rrbracket = ([2n-2]+[2])\llbracket \frown \rrbracket.$$

Proof.

$$\llbracket \bigcirc \rrbracket = \llbracket \bigcirc \rrbracket + \llbracket \bigcirc \rrbracket + \llbracket \bigcirc \rrbracket + \llbracket \bigcirc \rrbracket + \llbracket \bigcirc \rrbracket.$$

Now, for the first oriented diagram, we have

$$\left[\bigcirc\right] = q^{(1-n)\operatorname{rot}(\bigcirc)} R\left(\bigcirc\right) = q^{(1-n)\operatorname{rot}(\bigcirc)} [n-1]R(\bigcirc)$$
$$= q^{1-n}[n-1]q^{(1-n)\operatorname{rot}(\bigcirc)} R(\bigcirc) = q^{1-n}[n-1][\bigcirc],$$

and for the third oriented diagram, we have

$$\begin{bmatrix} \bigcirc \\ & \end{bmatrix} = q \begin{bmatrix} \bigcirc \\ & \end{bmatrix} + q^{-1} \begin{bmatrix} & \\ & \end{bmatrix}$$
$$= q \cdot q^{(1-n) \operatorname{rot}} \begin{pmatrix} \bigcirc \\ & \end{pmatrix} R \begin{pmatrix} \bigcirc \\ & \end{pmatrix} + q^{-1} \begin{bmatrix} & \\ & \end{bmatrix}$$
$$= q \cdot q^{1-n} \cdot q^{(1-n) \operatorname{rot}} (\frown) [n] R \begin{pmatrix} & \end{pmatrix} + q^{-1} \begin{bmatrix} & \\ & \end{bmatrix}$$
$$= q^{2-n} [n] \begin{bmatrix} & \\ & \end{bmatrix} + q^{-1} \begin{bmatrix} & \\ & \end{bmatrix} = (q^{2-n} [n] + q^{-1}) \begin{bmatrix} & \\ & \end{bmatrix}.$$

Similarly, we obtain

$$\left[\swarrow\right] = q^{n-1}[n-1]\left[\checkmark\right] \quad \text{and} \quad \left[\bigtriangledown\right] = (q^{n-2}[n]+q)\left[\frown\right].$$

Using these evaluations for each of the oriented states, we arrive at

$$\left[\left[\bigcirc\right]\right] = \left(\left[2n-2\right]+\left[2\right]\right)\left(\left[\bigcirc\right]+\left[\frown\right]\right) = \left(\left[2n-2\right]+\left[2\right]\right)\left[\frown\right]. \quad \Box$$

Proposition 3. *The following skein relation holds:*

$$\llbracket \bigcirc \rrbracket = ([2n-3]+1) \llbracket \bigcirc \rrbracket + [2] \llbracket \bigcirc \rrbracket.$$

Proof. We know that

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{x} \\$$

Now,

$$\left[\swarrow\right] = (q^{1-n})^{\operatorname{rot}}(\curvearrowleft) R\left(\diamondsuit\right) = (q^{1-n})^{\operatorname{rot}}(\bigcirc) [2]R\left(\checkmark\right) = [2]\left[\checkmark\right],$$

and

$$\begin{bmatrix} \swarrow \end{bmatrix} = (q^{1-n})^{\operatorname{rot}(\curvearrowleft)} R(\swarrow) = (q^{1-n})^{\operatorname{rot}(\bigcirc)} \left(R(\bigcirc) + [n-2]R(\smile) \right)$$
$$= \begin{bmatrix} \bigcirc \bigcirc \end{bmatrix} + q^{n-1}[n-2] \begin{bmatrix} \smile \\ \frown \end{bmatrix},$$

where we used the fact that

$$\operatorname{rot}() \subset = \operatorname{rot}() - 1.$$

We also have that

$$\begin{bmatrix} \searrow \\ \end{bmatrix} = q \begin{bmatrix} \checkmark \\ \end{bmatrix} + q^{-1} \begin{bmatrix} \swarrow \\ \end{bmatrix} = q \begin{bmatrix} \checkmark \\ \end{bmatrix} + q^{-1} (q^{1-n})^{\operatorname{rot}} (\overset{\smile}{\frown}^{-1}) R (\overset{\smile}{\frown})$$
$$= q \begin{bmatrix} \checkmark \\ \end{bmatrix} + q^{-1} \dot{q}^{n-1} (q^{1-n})^{\operatorname{rot}} (\overset{\smile}{\frown}) [n-1] R (\overset{\smile}{\frown})$$
$$= q \begin{bmatrix} \checkmark \\ \end{bmatrix} + q^{n-2} [n-1] \begin{bmatrix} \checkmark \\ \end{bmatrix}.$$

Similarly, for the bigon with alternating oriented vertices, we have

$$\begin{bmatrix} \checkmark \end{bmatrix} = q^{-1} \begin{bmatrix} \checkmark \end{bmatrix} + q \begin{bmatrix} \checkmark \\ \checkmark \end{bmatrix} \\ = q^{-1} \left(q \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} + q^{-1} \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} \right) + q \left(q \begin{bmatrix} \land \\ \frown \end{bmatrix} + q^{-1} \begin{bmatrix} \backsim \\ \frown \end{bmatrix} \right) \\ = \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} + q^{-2} \cdot q^{n-1} [n] \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} + q^{2} \begin{bmatrix} \land \\ \end{bmatrix} + \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} \\ = q^{2} \begin{bmatrix} \land \\ \end{bmatrix} + (q^{n-3}[n] + 2) \begin{bmatrix} \checkmark \\ \frown \end{bmatrix} \end{bmatrix}.$$

The remaining diagrams can be evaluated similarly. Thus, we have

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \end{bmatrix} + \begin{bmatrix} \mathbf{x} \end{bmatrix}$$

and using the above computations yields

$$\begin{split} \left[\left[\bigcup\right] \right] &= \left[2 \right] \left[\left[\bigcup\right] \right] + \left(\left[\bigcup\right] \right] + q^{n-1} \left[n-2 \right] \left[\left[\bigcup\right] \right] \right) \\ &+ \left[2 \right] \left[\left[\bigcup\right] \right] + \left(\left[\bigcup\right] \right] + q^{1-n} \left[n-2 \right] \left[\left[\bigcup\right] \right] \right) \\ &+ \left(q \left[\left[\bigcup\right] \right] + q^{n-2} \left[n-1 \right] \left[\left[\bigcup\right] \right] \right) + \left(q \left[\left[\bigcup\right] \right] + q^{n-2} \left[n-1 \right] \left[\left[\bigcup\right] \right] \right) \\ &+ \left(q^{-1} \left[\left[\bigcup\right] \right] + q^{2-n} \left[n-1 \right] \left[\left[\bigcup\right] \right] \right) + \left(q^{-1} \left[\left[\bigcup\right] \right] + q^{2-n} \left[n-1 \right] \left[\left[\bigcup\right] \right] \right) \\ &+ \left(q^{-2} \left[\left[\bigcup\right] \right] + \left(q^{3-n} \left[n \right] + 2 \right) \left[\left[\bigcup\right] \right] \right) + \left(q^{2} \left[\left[\bigcup\right] \right] + \left(q^{n-3} \left[n \right] + 2 \right) \left[\left[\bigcup\right] \right] \right). \end{split}$$

Combining like terms, we have

which completes the proof.

Proposition 4. The following graph skein relation holds:

$$\begin{bmatrix} \swarrow \\ \end{bmatrix} + \begin{bmatrix} \swarrow \\ \end{bmatrix} - \begin{bmatrix} \swarrow \\ \end{bmatrix} - \begin{bmatrix} \swarrow \\ \end{bmatrix} - \begin{bmatrix} 2n-4 \end{bmatrix} \begin{bmatrix} \searrow \\ \end{bmatrix} = \begin{bmatrix} \swarrow \\ \end{bmatrix} + \begin{bmatrix} \bigcirc \\ \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \bigcirc \\ \end{bmatrix} \end{bmatrix} - \begin{bmatrix} \bigcirc \\ \end{bmatrix} - \begin{bmatrix} \bigcirc \\ \end{bmatrix} - \begin{bmatrix} 2n-4 \end{bmatrix} \begin{bmatrix} \bigcirc \\ \end{bmatrix} - [2n-4] \begin{bmatrix} \bigcirc \\ \end{bmatrix} \end{bmatrix} .$$

Proof. To prove the statement, one can use the same approach as in the previous propositions, namely evaluating

$$\left[\begin{array}{c} & \\ \end{array} \right] \quad \text{and} \quad \left[\begin{array}{c} & \\ \end{array} \right]$$

by summing over all bracket evaluations for all the associated oriented diagrams. To avoid cumbersome computations, we use instead the fact that $[\cdot]$ is invariant under the Reidemeister III move. That is,

$$\left[\begin{array}{c} \\ \end{array} \right] = \left[\begin{array}{c} \\ \end{array} \right].$$

Using the skein relation (4-5), we have

$$\begin{bmatrix} & & \\ &$$

Since [[.]] is invariant under the Reidemeister II move, we have

$$\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \right) \end{array} \right] = \left[\begin{array}{c} \begin{array}{c} \end{array} \right) \\ \end{array} \right],$$

and we obtain that

$$\left[\begin{array}{c} \begin{array}{c} \end{array} \right] = \left[\begin{array}{c} \end{array} \right].$$

Using again the skein relation (4-5), we have

Applying Proposition 2 and canceling terms, we arrive at

$$0 = \left[\left| \begin{array}{c} \swarrow \\ \end{array} \right] - \left[\left| \begin{array}{c} \swarrow \\ \end{array} \right] \right]$$
$$= q^{2} \left[\left| \begin{array}{c} \swarrow \\ \end{array} \right] + \left(\left[2n - 2 \right] + \left[2 \right] \right) \left[\left| \begin{array}{c} \smile \\ \end{array} \right] \right] - \left(\left[2n - 2 \right] + \left[2 \right] \right) \left[\begin{array}{c} \smile \\ \end{array} \right] \right] \right]$$
$$- q \left[\left| \begin{array}{c} \smile \\ \end{array} \right] + \left[\left[\begin{array}{c} \checkmark \\ \end{array} \right] \right] + q^{-2} \left[\left| \begin{array}{c} \smile \\ \end{array} \right] - q^{-1} \left[\begin{array}{c} \smile \\ \end{array} \right] + \left[\left| \begin{array}{c} \checkmark \\ \end{array} \right] - q^{2} \left[\left| \begin{array}{c} \smile \\ \end{array} \right] \right] \right]$$
$$- \left[\left| \begin{array}{c} \checkmark \\ \end{array} \right] - q^{-2} \left[\left| \begin{array}{c} \smile \\ \end{array} \right] + q^{-1} \left[\left| \begin{array}{c} \smile \\ \end{array} \right] + q \left[\left| \begin{array}{c} \smile \\ \end{array} \right] - \left[\left| \begin{array}{c} \checkmark \\ \end{array} \right] \right].$$

Now, from Proposition 3, we have

$$\begin{bmatrix} \bigcirc & & \\ & & \end{bmatrix} = [2] \begin{bmatrix} \bigcirc & & \\ & & \end{bmatrix} + ([2n-3]+1) \begin{bmatrix} \bigcirc & \\ & & \end{bmatrix},$$
$$\begin{bmatrix} & & & \\ & & \end{bmatrix} = [2] \begin{bmatrix} & & & \\ & & \end{bmatrix} + ([2n-3]+1) \begin{bmatrix} & & & \\ & & & \end{bmatrix},$$
$$\begin{bmatrix} & & & \\ & & & \end{bmatrix} = [2] \begin{bmatrix} & & & \\ & & & \end{bmatrix} + ([2n-3]+1) \begin{bmatrix} & & & \\ & & & \end{bmatrix},$$

Making the above replacements and combining like terms gives us

the statement follows.

Propositions 1-4 provide consistent and sufficient skein relations to evaluate any planar unoriented 4-valent graph. In addition, the skein relation (4-5) together with these propositions yield a state summation model for the SO(2n) Kauffman polynomial.

Acknowledgements

Caprau would like to thank Lorenzo Traldi for his useful comment and question via e-mail after the paper [Caprau and Tipton 2011] appeared on the arXiv, which motivated this work. Heywood's contribution was partially supported by an Undergraduate Research Grant from the California State University, Fresno.

References

[Caprau and Tipton 2011] C. Caprau and J. Tipton, "The Kauffman polynomial and trivalent graphs", 2011. To appear in Kyungpook Mathematical Journal. arXiv math.GT/1107.1210

- [Carpentier 2000] R. P. Carpentier, "From planar graphs to embedded graphs—a new approach to Kauffman and Vogel's polynomial", *J. Knot Theory Ramifications* **9**:8 (2000), 975–986. MR 2011m: 57006
- [Freyd et al. 1985] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, "A new polynomial invariant of knots and links", *Bull. Amer. Math. Soc.* (*N.S.*) 12:2 (1985), 239–246. MR 86e:57007
- [Kauffman 1990] L. H. Kauffman, "An invariant of regular isotopy", *Trans. Amer. Math. Soc.* **318**:2 (1990), 417–471. MR 90g:57007
- [Kauffman 2001] L. H. Kauffman, *Knots and physics*, 3rd ed., Series on Knots and Everything 1, World Scientific Publishing Co., River Edge, NJ, 2001. MR 2002h:57012
- [Kauffman and Vogel 1992] L. H. Kauffman and P. Vogel, "Link polynomials and a graphical calculus", *J. Knot Theory Ramifications* **1**:1 (1992), 59–104. MR 92m:57012
- [Murakami et al. 1998] H. Murakami, T. Ohtsuki, and S. Yamada, "Homfly polynomial via an invariant of colored plane graphs", *Enseign. Math.* (2) **44**:3-4 (1998), 325–360. MR 2000a:57023
- [Przytycki and Traczyk 1988] J. H. Przytycki and P. Traczyk, "Invariants of links of Conway type", *Kobe J. Math.* **4**:2 (1988), 115–139. MR 89h:57006
- [Wu 2012] H. Wu, "On the Kauffman–Vogel and the Murakami–Ohtsuki–Yamada graph polynomials", *J. Knot Theory Ramifications* **21**:10 (2012), 1250098, 40. MR 2949230

Received: 2013-04-10	Revised: 2013-10-24 Accepted: 2013-10-27
ccaprau@csufresno.edu	Department of Mathematics, California State University, Fresno, 5245 N. Backer Avenue M/S PB108, Fresno, CA 93740-8001, United States
davaudoo@gmail.com	Department of Mathematics, California State University, Fresno, 5245 N. Backer Avenue M/S PB108, Fresno, CA 93740-8001, United States
luxchasehidknd@yahoo.cor	Department of Mathematics, California State University, Fresno, 5245 N. Backer Avenue M/S PB108, Fresno. CA 93740-8001. United States

EDITORS

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	BOARD O	FEDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US \$120/year for the electronic version, and \$165/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/ © 2014 Mathematical Sciences Publishers

2014 vol. 7 no. 4

Whitehead graphs and separability in rank two		
MATT CLAY, JOHN CONANT AND NIVETHA		
RAMASUBRAMANIAN		
Perimeter-minimizing pentagonal tilings		
Ping Ngai Chung, Miguel A. Fernandez, Niralee		
Shah, Luis Sordo Vieira and Elena Wikner		
Discrete time optimal control applied to pest control problems		
Wandi Ding, Raymond Hendon, Brandon Cathey,		
EVAN LANCASTER AND ROBERT GERMICK		
Distribution of genome rearrangement distance under double cut and	491	
join		
JACKIE CHRISTY, JOSH MCHUGH, MANDA RIEHL AND		
NOAH WILLIAMS		
Mathematical modeling of integrin dynamics in initial formation of	509	
focal adhesions		
Aurora Blucher, Michelle Salas, Nicholas		
WILLIAMS AND HANNAH L. CALLENDER		
Investigating root multiplicities in the indefinite Kac–Moody algebra		
E_{10}		
VICKY KLIMA, TIMOTHY SHATLEY, KYLE THOMAS AND		
ANDREW WILSON		
On a state model for the $SO(2n)$ Kauffman polynomial	547	
CARMEN CAPRAU, DAVID HEYWOOD AND DIONNE IBARRA		
Invariant measures for hybrid stochastic systems		
XAVIER GARCIA, JENNIFER KUNZE, THOMAS RUDELIUS,		
Anthony Sanchez, Sijing Shao, Emily Speranza and		
Chad Vidden		