Computing positive semidefinite minimum rank for small graphs

Steven Osborne and Nathan Warnberg

Computing positive semidefinite minimum rank for small graphs

Steven Osborne and Nathan Warnberg
(Communicated by Chi-Kwong Li)

Abstract

The positive semidefinite minimum rank of a simple graph G is defined to be the smallest possible rank over all positive semidefinite real symmetric matrices whose $i j$-th entry (for $i \neq j$) is nonzero whenever $\{i, j\}$ is an edge in G and is zero otherwise. The computation of this parameter directly is difficult. However, there are a number of known bounding parameters and techniques which can be calculated and performed on a computer. We programmed an implementation of these bounds and techniques in the open-source mathematical software Sage. The program, in conjunction with the orthogonal representation method, establishes the positive semidefinite minimum rank for all graphs of order 7 or less.

1. Introduction

Define a graph $G=(V, E)$ with vertex set $V=V(G)$ and edge set $E=E(G)$. The graphs discussed herein are simple (no loops or multiple edges) and undirected. The order of $G,|G|$, is the cardinality of $V(G)$. Two vertices v and w of a graph G are neighbors if $\{v, w\} \in E(G)$. If H is a graph with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ we call H a subgraph of $G . H$ is an induced subgraph of G if H is a subgraph of G and if for all pairs $v, w \in V(H),\{v, w\} \in E(H)$ if $\{v, w\} \in E(G)$. Given a set of vertices $S \subseteq V(G), G-S$ is the induced subgraph of G with vertices $V(G) \backslash S$.

A graph $P=(V, E)$, where $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, is called a path if the edges of the graph are exactly $\left\{v_{i}, v_{i+1}\right\}$ for $i=1,2, \ldots, n-1$. A cycle is a path that also has the edge $\left\{v_{n}, v_{1}\right\}$. A graph G is chordal if every induced cycle has length no greater than 3 . A graph is connected if for any two vertices, v_{1}, v_{2}, there exists a path with endpoints v_{1} and v_{2}. A connected graph with no cycles is a tree. An induced graph that is a tree is an induced tree. A graph with n vertices in which there is an edge between every vertex is called a complete graph and is denoted K_{n}. See Figure 1 for examples.

[^0]

Figure 1. Examples of graphs: (a) a path; (b) a cycle; (c) a tree; (d) the complete graph on 7 vertices.

Let $S_{n}(\mathbb{R})$ denote the set of real symmetric $n \times n$ matrices. For $A=\left[a_{i j}\right] \in S_{n}(\mathbb{R})$, the graph of A, denoted $\mathscr{G}(A)$, is the graph with vertices $\{1,2, \ldots, n\}$ and edges $\left\{\{i, j\}: a_{i j} \neq 0\right.$ and $\left.i \neq j\right\}$.

The positive semidefinite maximum nullity of G is

$$
\mathrm{M}_{+}(G)=\max \left\{\text { null } A: A \in S_{n}(\mathbb{R}) \text { is positive semidefinite and } \mathscr{G}(A)=G\right\}
$$

and the positive semidefinite minimum rank of G is

$$
\operatorname{mr}_{+}(G)=\min \left\{\operatorname{rank} A: A \in S_{n}(\mathbb{R}) \text { is positive semidefinite and } \mathscr{G}(A)=G\right\}
$$

Clearly $\mathrm{mr}_{+}(G)+\mathrm{M}_{+}(G)=|G|$.
The following concept was introduced in [Barioli et al. 2010]: in a graph G where all vertices in some vertex set $S \subseteq V(G)$ are colored black and the remaining vertices are colored white, the positive semidefinite color change rule is: If $W_{1}, W_{2}, \ldots, W_{k}$ are the sets of vertices of the k connected components of $G-S$ ($k=1$ is a possibility), $w \in W_{i}, u \in S$, and w is the only white neighbor of u in the subgraph of G induced by $V\left(W_{i} \cup S\right)$, then change the color of w to black, written as $u \rightarrow w$. Given an initial set B of black vertices, the final coloring of B is the set of vertices colored black as result of applying the positive semidefinite color change rule iteratively until no more vertices may be colored black. If the final coloring of B is $V(G)$, B is called a positive semidefinite zero forcing set of G. The positive semidefinite zero forcing number of a graph G, denoted $\mathrm{Z}_{+}(G)$, is the minimum of $|B|$ for all B positive semidefinite zero forcing sets of G. In [Barioli et al. 2010] it was shown that if G is a graph then $\mathrm{M}_{+}(G) \leq \mathrm{Z}_{+}(G)$.

Example 1.1. Consider the graph G in Figure 2(a) with the set $B=\left\{v_{4}\right\}$ initially colored black. When the positive semidefinite color change rule is applied, the connected component W_{1} of $G-B$ is the induced subgraph of G on the vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$. Since v_{3} is the only white neighbor of v_{4} in the subgraph of G induced by $W_{1} \cup B$ (this is actually all of G), $v_{4} \rightarrow v_{3}$ as demonstrated in Figure 2(b). For the

Figure 2. Illustrating Example 1.1.
next iteration, the set of black vertices is $B^{\prime}=\left\{v_{3}, v_{4}\right\}$. The connected components of $G-B^{\prime}$ are W_{1}^{\prime}, induced by $\left\{v_{1}\right\}$, and W_{2}^{\prime}, induced by $\left\{v_{2}\right\}$. Vertex v_{1} is the only white neighbor of vertex v_{3} in the subgraph of G induced by $W_{1}^{\prime} \cup B^{\prime}$ and v_{2} is the only white neighbor of vertex v_{3} in the subgraph of G induced by $W_{2}^{\prime} \cup B^{\prime}$. Therefore, $v_{3} \rightarrow v_{1}$ and $v_{3} \rightarrow v_{2}$; see Figure 2(c). Now, the entire graph has been forced black, as shown in Figure 2(d), and since the process was started by a single black vertex, $\mathrm{Z}_{+}(G) \leq 1$. However, at least one vertex must be colored to begin the zero forcing process. Therefore, $\mathrm{Z}_{+}(G)=1$.

Let G be a graph and S the smallest subset of $V(G)$ such that $G-S$ is disconnected. Then $|S|=\kappa(G)$ is called the vertex connectivity of G. A clique covering of G is a set of induced subgraphs $\left\{S_{i}\right\}$ of G such that each S_{i} is complete and $E(G)=\bigcup E\left(S_{i}\right)$. The clique cover number of a graph G, denoted $\operatorname{cc}(G)$, is the minimum of $\left|\left\{S_{i}\right\}\right|$ over all $\left\{S_{i}\right\}$ clique coverings of G.

In [Booth et al. 2008] $\mathrm{M}_{+}(G)$ was determined for every graph G of order at most 6 . Use of published software (Zq.py; see [Butler and Grout 2011]) for computing $\mathrm{Z}_{+}(G)$ establishes $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$ for $|G| \leq 6$. We developed a program (see [Osborne and Warnberg 2011a]) in the open-source computer mathematics software system Sage (sagemath.org) to compute bounds for positive semidefinite maximum nullity. The program uses Zq.py [Butler and Grout 2011] and known results for computing positive semidefinite maximum nullity. These results are summarized in Section 2. A detailed description of the program may be found in Appendix A. Sections 2 and 3 provide a survey of techniques for computing positive semidefinite minimum rank.

In Section 3 we determine $\mathrm{M}_{+}(G)$ for $|G| \leq 7$ and show $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$ for all such graphs. For all but 13 graphs of order $7, \mathrm{M}_{+}(G)$ can be computed by the program. We then established $\mathrm{M}_{+}(G)$ for the remaining 13 graphs by utilizing orthogonal representation to find a positive semidefinite matrix A with $\mathscr{G}(A)=G$ and nullity of $A=\mathrm{Z}_{+}(G)$. This establishes that $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$ for each graph G of order at most 7. These matrices are listed in Appendix B.

2. Known results used by the program to establish positive semidefinite minimum rank/maximum nullity

Note that all of our parameters sum over the connected components of a disconnected graph. Given its relation to the positive semidefinite zero forcing number, the following results are given in terms of positive semidefinite maximum nullity. However, given a graph $G, \mathrm{M}_{+}(G)+\mathrm{mr}_{+}(G)=|G|$, so all of the following results may easily be translated to positive semidefinite minimum rank.

Theorem 2.1 [Ekstrand et al. 2013]. Let G be a graph.
(i) $\mathrm{Z}_{+}(G)=1$ if and only if $\mathrm{M}_{+}(G)=1$.
(ii) $\mathrm{Z}_{+}(G)=2$ if and only if $\mathrm{M}_{+}(G)=2$.
(iii) $\mathrm{Z}_{+}(G)=3$ implies $\mathrm{M}_{+}(G)=3$.

Corollary 2.2. If $\mathrm{Z}_{+}(G) \geq 3$, then $\mathrm{M}_{+}(G) \geq 3$.
Observation 2.3 [Ekstrand et al. 2013]. $\mathrm{Z}_{+}(G)=|G|-1$ if and only if $\mathrm{M}_{+}(G)=$ $|G|-1$.

Note that the only graph G having $\mathrm{Z}_{+}(G)=|G|-1$ is K_{n}, the complete graph on n vertices.

For a chordal graph G, it was shown in [Booth et al. 2008] that $\operatorname{cc}(G)=\mathrm{mr}_{+}(G)$, in [Hackney et al. 2009] it was shown that $O S(G)=\operatorname{cc}(G)$, and in [Barioli et al. 2010] it was shown that $\mathrm{Z}_{+}(G)+O S(G)=|G|$, where $O S(G)$ is the ordered subgraph number of G (see [Mitchell et al. 2010] for the definition of $O S(G)$). Thus $\mathrm{Z}_{+}(G)=\mathrm{M}_{+}(G)$, which gives the next theorem.

Theorem 2.4 [Barioli et al. 2010; Booth et al. 2008; Hackney et al. 2009]. If G is chordal, then $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$.

Example 2.5. Consider graph G551 in Figure 3, left. Sets of vertices of size 1 or 2 are clearly not positive semidefinite zero forcing sets, so $\mathrm{Z}_{+}(G 551) \geq 3$. Notice that choosing an initial set of 3 black vertices that are all nonadjacent does not force anything. By symmetry this reduces to two cases. In the first case we choose $\{1,2\}$ as our adjacent black vertices and as our third we choose any of the remaining vertices and notice that the graph will not be forced. Similarly, choosing $\{1,3\}$ as our adjacent black vertices and any of the remaining vertices as our third also fails to force the graph. Thus, $\mathrm{Z}_{+}(G 551) \geq 4$. Observe that $\{1,3,4,5\}$ forms a positive semidefinite zero forcing set meaning $\mathrm{Z}_{+}(G 551) \leq 4$, hence $\mathrm{Z}_{+}(G 551)=4$. However, G551 is chordal as its largest cycle is size 3. Therefore, by Theorem 2.4 $\mathrm{M}_{+}(G 551)=4$.

Theorem 2.6 [Lovász et al. 1989; 2000]. For every graph $G, \kappa(G) \leq \mathrm{M}_{+}(G)$.

Figure 3. Graphs $G 551$ (left) and $G 128$ (right).
Example 2.7. By inspection, removing any one vertex from graph $G 128$ (see Figure 3, right) will not result in a disconnected graph. Therefore, $\kappa(G) \geq 2$. Further, $\{3,4\}$ forms a positive semidefinite zero forcing set for G128. Thus, $\mathrm{Z}_{+}(G) \leq 2$. This gives $2 \leq \kappa(G) \leq \mathrm{M}_{+}(G) \leq \mathrm{Z}_{+}(G) \leq 2$.

For a graph G the neighborhood of $v \in V(G)$ is

$$
N_{G}(v)=\{w \in V(G) \mid v \text { is adjacent to } w\} .
$$

Vertices v and w are called duplicate vertices if $N_{G}(v) \cup\{v\}=N_{G}(w) \cup\{w\}$.
Proposition 2.8 [Ekstrand et al. 2013]. If v and w are duplicate vertices in a connected graph G with $|G| \geq 3$, then $\mathrm{Z}_{+}(G-v)=\mathrm{Z}_{+}(G)-1$.

Proposition 2.9 [Booth et al. 2008]. If v and w are duplicate vertices in a connected graph G with $|G| \geq 3$, then $\mathrm{mr}_{+}(G-v)=\mathrm{mr}_{+}(G)$.

Recall that for any graph $G, \mathrm{mr}_{+}(G)+\mathrm{M}_{+}(G)=|G|$, which gives the following corollary.
Corollary 2.10. If v and w are duplicate vertices in a connected graph G with $|G| \geq 3$, then $\mathrm{M}_{+}(G-v)=\mathrm{M}_{+}(G)-1$.
Example 2.11. In graph $G 1196$ (see Figure 4, left) notice that 2 and 4 are duplicate vertices, as are vertices 3 and 5. Removal of vertices 2 and 3 results in a graph that is isomorphic to graph $G 43$ (see Figure 4, right). $\mathrm{Z}_{+}(G 43)=2$ thus $\mathrm{M}_{+}(G 43)=2$ by Theorem 2.1. Therefore, $\mathrm{M}_{+}(G 1196)=4$ by Corollary 2.10 .

Cut-vertex reduction is a standard technique in the study of minimum rank. A vertex v of a connected graph G is a cut-vertex if $G-v$ is disconnected. Suppose $G_{i}, i=1, \ldots, h$, are graphs of order at least two, there is a vertex v such that for all $i \neq j, G_{i} \cap G_{j}=\{v\}$, and $G=\cup_{i=1}^{h} G_{i}$ (if $h \geq 2$, then clearly v is a cut-vertex of G). Then it is observed in [van der Holst 2009] that

$$
\mathrm{mr}_{+}(G)=\sum_{i=1}^{h} \mathrm{mr}_{+}\left(G_{i}\right)
$$

Figure 4. Graphs $G 1196$ (left) and G43 (right).

Figure 5. Graph G419.

Because $\mathrm{mr}_{+}(G)+\mathrm{M}_{+}(G)=|G|$, this is equivalent to

$$
\begin{equation*}
\mathrm{M}_{+}(G)=\left(\sum_{i=1}^{h} \mathrm{M}_{+}\left(G_{i}\right)\right)-h+1 \tag{1}
\end{equation*}
$$

It is shown in [Mitchell et al. 2010] that

$$
O S(G)=\sum_{i=1}^{h} O S\left(G_{i}\right)
$$

Since $O S(G)+\mathrm{Z}_{+}(G)=|G|$ (shown in [Barioli et al. 2010]), this is equivalent to

$$
\begin{equation*}
\mathrm{Z}_{+}(G)=\left(\sum_{i=1}^{h} \mathrm{Z}_{+}\left(G_{i}\right)\right)-h+1 \tag{2}
\end{equation*}
$$

Example 2.12. Equation (2) can be used to compute $\mathrm{Z}_{+}(G 419)$ and $\mathrm{M}_{+}(G 419)$ (see Figure 5(a)). Notice that vertex 5 is a cut vertex of the graph since removing it results in a disconnected graph with 3 components, namely H_{1}, H_{2} and H_{3}. When vertex 5 is reconnected to each of our components it is easy to see that $G_{i} \cap G_{j}=\{5\}$ for $i, j \in\{1,2,3\}$ with $i \neq j$, as illustrated by Figures 5(c)-(e). It is also clear that $\cup_{i=1}^{3} G_{i}=G 419, \mathrm{Z}_{+}\left(G_{1}\right)=2, \mathrm{Z}_{+}\left(G_{2}\right)=1$, and $\mathrm{Z}_{+}\left(G_{3}\right)=2$. Thus, by

Figure 6. Graphs $G 200$ (left) and $G 1090$ (right).
Equation (2), $\mathrm{Z}_{+}(G 419)=2+1+2-3+1=3$. A similar argument shows that $\mathrm{M}_{+}(G 419)=3$.

Observe that if $\kappa(G)=1$, there exists a cut vertex. The next result is an immediate consequence of the cut-vertex reduction Equations (1) and (2).
Observation 2.13 [Ekstrand et al. 2013]. Suppose $G_{i}, i=1, \ldots, h$ are graphs, there is a vertex v such that for all $i \neq j, G_{i} \cap G_{j}=\{v\}$, and $G=\bigcup_{i=1}^{h} G_{i}$. If $\mathrm{M}_{+}\left(G_{i}\right)=\mathrm{Z}_{+}\left(G_{i}\right)$ for all $i=1, \ldots, h$, then $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$.

Observation 2.14 [Hackney et al. 2009]. If G is a graph then $\operatorname{cc}(G) \geq \mathrm{mr}_{+}(G)$.
Corollary 2.15. $|G|-\operatorname{cc}(G) \leq \mathrm{M}_{+}(G)$.
Example 2.16. In Figure 6, left, notice that graph $G 200$ is not complete so

$$
\mathrm{mr}_{+}(G 200) \geq 2
$$

Also, note that the subgraphs induced by $S_{1}=\{1,2,3,4,5\}$ and $S_{2}=\{4,5,6\}$ are complete and $E(G 200)=E\left(S_{1}\right) \cup E\left(S_{2}\right)$ so $\operatorname{cc}(G 200) \leq 2$, hence $\mathrm{mr}_{+}(G 200)=2$.

In [Booth et al. 2008] the tree size of a graph G, denoted ts (G), is defined to be the number of vertices in a maximum induced tree of G. Also from [Booth et al. 2008], if T is a maximum induced tree and w is a vertex not belonging to T, denote by $\mathscr{E}(w)$ the set of all edges of all paths in T between every pair of vertices of T that are adjacent to w. The following theorem was established by Booth et al. [2008].
Theorem 2.17 [Booth et al. 2008]. For a connected graph G,

$$
\begin{equation*}
\operatorname{mr}_{+}(G)=\operatorname{ts}(G)-1 \tag{3}
\end{equation*}
$$

if the following condition holds: there exists a maximum induced tree T such that for u and w not on $T, \mathscr{E}(u) \cap \mathscr{E}(w) \neq \varnothing$ if and only if u and w are adjacent in G.

Note that Equation (3) may be rewritten as $\mathrm{M}_{+}(G)=|G|-\operatorname{ts}(G)+1$.

Example 2.18. To illustrate the previous theorem we consider graph $G 1090$ (see Figure 6, right). To find ts(G1090) notice that $G 1090$ has two disjoint, induced K_{3} 's, namely the graphs induced by vertex sets $\{1,2,3\}$ and $\{5,6,7\}$. This means in order to find an induced tree, removal of one vertex from each K_{3} is required. By inspection, removal of any of the nine pairs $\{\{1,5\},\{1,6\},\{1,7\},\{2,5\}, \ldots,\{3,7\}\}$ results in a graph with a cycle, thus $\operatorname{ts}(G 1090) \leq 4$. However, the subgraph induced by $\{1,4,5,6\}$ is a tree (call it T), hence $\operatorname{ts}(G 1090)=4$. We show T satisfies the condition of Theorem 2.17. The vertices not in $G 1090-T$ are 2, 3, and 7, which are all adjacent in $G 1090$.

$$
\mathscr{E}(2)=\{(1,6),(5,6),(4,5)\}=\mathscr{E}(3) \quad \text { and } \quad \mathscr{E}(7)=\{(5,6)\}
$$

Therefore, $\mathscr{E}(2) \cap \mathscr{E}(3) \cap \mathscr{E}(7) \neq \varnothing$ and the condition holds because $\{2,3,7\}$ are pairwise adjacent. Thus $\mathrm{M}_{+}(G 1090)=4$.

3. Computation of positive semidefinite maximum nullity of graphs of order 7 or less

The program developed by Osborne and Warnberg [2011a] implements the results from Section 2. Running the program on all graphs of order 7 or less yielded positive semidefinite maximum nullity for 1239 of 1252 graphs. It may be noted that the positive semidefinite maximum nullity was already known for the 208 graphs of order 6 or less (see [Booth et al. 2008]). However, the program was able to successfully compute the positive semidefinite maximum nullity for these graphs without referencing this information. For the remaining 13 graphs, the method of orthogonal representations was used to construct a matrix representation exhibiting nullity equal to the positive semidefinite zero forcing number. These matrices are shown in Appendix B.

A set $\vec{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ in \mathbb{R}^{d} is an orthogonal representation of the graph G if for $i \neq j$, the dot product of \vec{v}_{i} with \vec{v}_{j} is nonzero if the vertices i and j are adjacent, and zero otherwise. If $\vec{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an orthogonal representation of the graph G in \mathbb{R}^{d} and $B=\left[\vec{v}_{1} \ldots \vec{v}_{n}\right]$, then $B^{T} B \in \mathscr{S}_{+}(G)$ and rank $B^{T} B \leq d$. Thus, if a representation is found in \mathbb{R}^{d} then $\mathrm{mr}_{+}(G) \leq d$ and $\mathrm{M}_{+}(G) \geq|G|-d$.

Example 3.1. Consider graph $G 17$ in Figure 7, left. Note that when we refer to a graph in the form $G 17$ we are using notation from [Read and Wilson 1998]. To start constructing an orthogonal representation for $G 17$ let $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbb{R}^{2}$ correspond to vertices $1,2,3$ and 4 respectively. Choose as many disjoint vertices as possible, say 1 and 4 . By definition $v_{1} \cdot v_{4}=0$ so let $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v_{4}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. To find v_{2} and v_{3}, set

$$
v_{2}=\left[\begin{array}{c}
c a_{2} \\
b_{2}
\end{array}\right] \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
a_{3} \\
b_{3}
\end{array}\right] .
$$

Figure 7. Graph $G 17$ (left); A, a matrix representation of $G 17$ (right).

Figure 8. Möbius ladder on 8 vertices.

Now, v_{2} is adjacent to v_{1} and v_{4} so $v_{1} \cdot v_{2} \neq 0$ and $v_{2} \cdot v_{4} \neq 0$. Thus $a_{2} \neq 0 \neq b_{2}$. Similarly, $a_{3} \neq 0 \neq b_{3}$. Since v_{2} and v_{3} are not adjacent, we know $v_{2} \cdot v_{3}=$ $a_{2} a_{3}+b_{2} b_{3}=0$. With these restrictions it is clear that $a_{2}=a_{3}=b_{2}=1$ and $b_{3}=-1$ is a solution and an orthogonal representation construction is complete. This gives

$$
B=\left[\begin{array}{rrrr}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right] \quad \text { and } \quad B^{T} B=A
$$

(see Figure 7, right). By construction, $\operatorname{rank}(A)=2$. Thus $\mathrm{mr}_{+}(G 17) \leq 2$ and $\mathrm{M}_{+}(G 17) \geq|G|-2=2$. Observe that $\{1,2\}$ forms a positive semidefinite zero forcing set for graph $G 17$ hence $\mathrm{Z}_{+}(G 17) \leq 2$. Finally, $2 \leq \mathrm{M}_{+}(G 17) \leq \mathrm{Z}_{+}(G 17) \leq 2$.

In every case, positive semidefinite maximum nullity was found to equal the positive semidefinite zero forcing number. This has established the next result.
Theorem 3.2. If G is a graph with 7 or fewer vertices, then $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$.
See [Osborne and Warnberg 2011b] for a complete spreadsheet containing positive semidefinite maximum nullity and zero forcing number for all graphs with 7 or fewer vertices.

Corollary 3.3. Suppose $G_{i}, i=1, \ldots, h$, are graphs with $\left|G_{i}\right| \leq 7$, there is a vertex v such that for all $i \neq j, G_{i} \cap G_{j}=\{v\}$, and $G=\bigcup_{i=1}^{h} G_{i}$. Then $\mathrm{M}_{+}(G)=\mathrm{Z}_{+}(G)$.
Proof. Apply Theorem 3.2 to Observation 2.13.
Note that Theorem 3.2 cannot be extended to graphs with more than 7 vertices as $\mathrm{Z}_{+}\left(V_{8}\right)=4$ and $\mathrm{M}_{+}\left(V_{8}\right)=3$ (shown in [Mitchell et al. 2010]), where V_{8} is the Möbius ladder on 8 vertices (see Figure 8).

Appendix A: Method used by the program

The program uses the following general method:
(1) Separate the graph into its connected components and work on each component separately. Results will be summed before reporting.
(2) Compute $\mathrm{Z}_{+}(G)$.
(a) If $\mathrm{Z}_{+}(G) \leq 3$, apply the results of Theorem 2.1.
(b) Else, use Corollary 2.2 to establish a lower bound for $\mathrm{M}_{+}(G)$.
(3) If $\mathrm{Z}_{+}(G)=|G|-1$, apply the results of Observation 2.3.
(4) If G is chordal, apply Theorem 2.4.
(5) Compute the vertex connectivity of $G(\kappa(G))$.
(a) If $\kappa(G)=\mathrm{Z}_{+}(G)$, apply Theorem 2.6.
(b) Else, if $\kappa(G)$ is a tighter bound for $\mathrm{M}_{+}(G)$, improve the lower bound.
(6) If there are duplicate vertices in the graph, discard all but one copy by applying Corollary 2.10 and returning to step 2.
(7) Apply the cut-vertex formula iteratively by applying Equation (1) and returning to step 2 for each component.
(8) Compute the clique cover number of G.
(a) If $|G|-\operatorname{cc}(G)=\mathrm{Z}_{+}(G)$, apply Corollary 2.15 .
(b) Else, if $\operatorname{cc}(G)$ is a tighter bound for $\mathrm{M}_{+}(G)$, improve the lower bound.
(9) Apply Theorem 2.17 to determine if $\mathrm{M}_{+}(G)=|G|-\operatorname{ts}(G)+1$.

Appendix B: Matrix representations

Each of the following thirteen matrices satisfies null $(A)=4=\mathrm{Z}_{+}(G)$.

$$
\left[\begin{array}{rrrrrrr}
2 & -1 & -1 & 0 & 1 & 1 & 0 \\
-1 & 1 & 1 & 0 & 0 & 0 & 1 \\
-1 & 1 & 2 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 2 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 2
\end{array}\right]
$$

(continued on next page)

$$
\left[\begin{array}{rrrrrrr}
1 & -1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & -1 & 3 & 1 & 0 \\
1 & 0 & 2 & -2 & 1 & 0 & -1 \\
0 & -1 & -2 & 5 & 0 & 1 & 3 \\
0 & 3 & 1 & 0 & 5 & 2 & 1 \\
0 & 1 & 0 & 1 & 2 & 1 & 1 \\
0 & 0 & -1 & 3 & 1 & 1 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 0 & -1 & 4 & 0 & -1 & 0 \\
0 & 1 & 4 & 2 & 0 & 0 & 1 \\
-1 & 4 & 33 & 0 & -4 & -15 & 0 \\
4 & 2 & 0 & 21 & 1 & 0 & 3 \\
0 & 0 & -4 & 1 & 1 & 4 & 1 \\
-1 & 0 & -15 & 0 & 4 & 17 & 4 \\
0 & 1 & 0 & 3 & 1 & 4 & 2
\end{array}\right]
$$

$$
G 1100
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 2 & 0 & 3 & 0 \\
1 & 6 & 7 & 0 & -1 & 0 & 1 \\
1 & 7 & 10 & -1 & -3 & 0 & 0 \\
2 & 0 & -1 & 5 & 1 & 7 & 0 \\
0 & -1 & -3 & 1 & 2 & 0 & 1 \\
3 & 0 & 0 & 7 & 0 & 11 & -1 \\
0 & 1 & 0 & 0 & 1 & -1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 1 & 0 & -1 & 0 \\
1 & 3 & 2 & 0 & 1 & 0 & 1 \\
1 & 2 & 2 & 2 & 1 & 0 & 0 \\
1 & 0 & 2 & 6 & 1 & 0 & -2 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & -2 & 0 & 0 & 1
\end{array}\right]
$$

(continued on next page)

$$
\left[\begin{array}{rrrrrrr}
1 & 1 & -1 & 0 & 0 & 0 & 0 \\
1 & 3 & -2 & 1 & 1 & 3 & 0 \\
-1 & -2 & 6 & -2 & 1 & 0 & 3 \\
0 & 1 & -2 & 1 & 0 & 1 & -1 \\
0 & 1 & 1 & 0 & 1 & 2 & 1 \\
0 & 3 & 0 & 1 & 2 & 5 & 1 \\
0 & 0 & 3 & -1 & 1 & 1 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrrrr}
2 & 1 & -3 & 0 & 3 & -1 & 0 \\
1 & 1 & -2 & 0 & 2 & 0 & 1 \\
-3 & -2 & 30 & 5 & 0 & 1 & -1 \\
0 & 0 & 5 & 1 & 1 & 0 & 0 \\
3 & 2 & 0 & 1 & 6 & -1 & 1 \\
-1 & 0 & 1 & 0 & -1 & 1 & 1 \\
0 & 1 & -1 & 0 & 1 & 1 & 2
\end{array}\right]
$$

G 1137

$$
\left[\begin{array}{rrrrrrr}
3 & 1 & -3 & 1 & 3 & 1 & 0 \\
1 & 1 & 2 & 0 & 2 & 0 & 1 \\
-3 & 2 & 21 & -4 & 0 & -1 & 0 \\
1 & 0 & -4 & 1 & 1 & 0 & 1 \\
3 & 2 & 0 & 1 & 5 & 0 & 3 \\
1 & 0 & -1 & 0 & 0 & 1 & -2 \\
0 & 1 & 0 & 1 & 3 & -2 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 2 & 1 & 1 & 1 & 0 & 0 \\
2 & 6 & 1 & 0 & 0 & 2 & 1 \\
1 & 1 & 2 & 3 & 0 & -1 & 0 \\
1 & 0 & 3 & 5 & -1 & -2 & 0 \\
1 & 0 & 0 & -1 & 11 & -2 & -3 \\
0 & 2 & -1 & -2 & -2 & 2 & 1 \\
0 & 1 & 0 & 0 & -3 & 1 & 1
\end{array}\right]
$$

(continued on next page)

$$
\left[\begin{array}{rrrrrrr}
2 & -3 & 1 & 0 & 1 & 1 & 0 \\
-3 & 6 & -1 & 0 & -1 & 0 & 1 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 3 & 2 & 3 & 1 \\
1 & -1 & 0 & 2 & 2 & 3 & 1 \\
1 & 0 & 0 & 3 & 3 & 5 & 2 \\
0 & 1 & 0 & 1 & 1 & 2 & 1
\end{array}\right]
$$

G 1168

$$
\left[\begin{array}{rrrrrrr}
1 & 1 & 3 & 0 & 2 & 0 & 0 \\
1 & 6 & 0 & -2 & 0 & -1 & 1 \\
3 & 0 & 14 & 2 & 0 & 3 & 1 \\
0 & -2 & 2 & 1 & -1 & 1 & 0 \\
2 & 0 & 0 & -1 & 21 & -5 & -4 \\
0 & -1 & 3 & 1 & -5 & 2 & 1 \\
0 & 1 & 1 & 0 & -4 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrrrr}
1 & -4 & 1 & 1 & 0 & 0 & 0 \\
-4 & 21 & -2 & 0 & 1 & -3 & -1 \\
1 & -2 & 2 & 2 & 1 & -1 & 0 \\
1 & 0 & 2 & 6 & -1 & -3 & -2 \\
0 & 1 & 1 & -1 & 2 & 0 & 1 \\
0 & -3 & -1 & -3 & 0 & 2 & 1 \\
0 & -1 & 0 & -2 & 1 & 1 & 1
\end{array}\right]
$$

$$
G 1202
$$

$$
\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 0 & 0 & 1 & -3 \\
1 & 3 & 1 & 1 & 1 & 4 & 0 \\
1 & 1 & 3 & 3 & 1 & 0 & -4 \\
0 & 1 & 3 & 5 & 2 & 0 & 0 \\
0 & 1 & 1 & 2 & 1 & 1 & 1 \\
1 & 4 & 0 & 0 & 1 & 6 & 2 \\
-3 & 0 & -4 & 0 & 1 & 2 & 14
\end{array}\right]
$$

G 1205

Acknowledgements

The authors would like to acknowledge the participants in the Early Graduate Research class 2011, led by L. Hogben, held at Iowa State University: J. Ekstrand, C. Erickson, D. Hay, R. Johnson, N. Kingsley, T. Peters, J. Roat, and A. Ross.

References

[Barioli et al. 2010] F. Barioli, W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, B. Shader, P. van den Driessche, and H. van der Holst, "Zero forcing parameters and minimum rank problems", Linear Algebra Appl. 433:2 (2010), 401-411. MR 2011g:15002 Zbl 1209.05139
[Booth et al. 2008] M. Booth, P. Hackney, B. Harris, C. R. Johnson, M. Lay, L. H. Mitchell, S. K. Narayan, A. Pascoe, K. Steinmetz, B. D. Sutton, and W. Wang, "On the minimum rank among positive semidefinite matrices with a given graph", SIAM J. Matrix Anal. Appl. 30:2 (2008), 731-740. MR 2009g: 15003 Zbl 1226.05151
[Butler and Grout 2011] S. Butler and J. Grout, "Zq.py", 2011, https://github.com/jasongrout/ minimum_rank/blob/master/Zq.py.
[Ekstrand et al. 2013] J. Ekstrand, C. Erickson, H. T. Hall, D. Hay, L. Hogben, R. Johnson, N. Kingsley, S. Osborne, T. Peters, J. Roat, A. Ross, D. D. Row, N. Warnberg, and M. Young, "Positive semidefinite zero forcing", Linear Algebra Appl. 439:7 (2013), 1862-1874. MR 3090441 Zbl 1283.05165
[Hackney et al. 2009] P. Hackney, B. Harris, M. Lay, L. H. Mitchell, S. K. Narayan, and A. Pascoe, "Linearly independent vertices and minimum semidefinite rank", Linear Algebra Appl. 431:8 (2009), 1105-1115. MR 2011a:15016 Zbl 1188.05085
[van der Holst 2009] H. van der Holst, "On the maximum positive semi-definite nullity and the cycle matroid of graphs", Electron. J. Linear Algebra 18 (2009), 192-201. MR 2010g:05216 Zbl 1173.05031
[Lovász et al. 1989] L. Lovász, M. Saks, and A. Schrijver, "Orthogonal representations and connectivity of graphs", Linear Algebra Appl. 114/115 (1989), 439-454. MR 90k:05095 Zbl 0681.05048
[Lovász et al. 2000] L. Lovász, M. Saks, and A. Schrijver, "A correction: "Orthogonal representations and connectivity of graphs" [Linear Algebra Appl. 114/115 (1989), 439-454; MR 90k:05095, Zbl 0681.05048]", Linear Algebra Appl. 313:1-3 (2000), 101-105. MR 2001g:05070 Zbl 0954.05032
[Mitchell et al. 2010] L. H. Mitchell, S. K. Narayan, and A. M. Zimmer, "Lower bounds in minimum rank problems", Linear Algebra Appl. 432:1 (2010), 430-440. MR 2010m:15004 Zbl 1220.05077
[Osborne and Warnberg 2011a] S. Osborne and N. Warnberg, "Program for calculating bounds of positive semidefinite maximum nullity of a graph using Sage", 2011, https://github.com/sosborne/ psd_min_rank/blob/master/msr_program.py.
[Osborne and Warnberg 2011b] S. Osborne and N. Warnberg, "Spreadsheet of positive semidefinite maximum nullity and zero forcing number of graphs with 7 or fewer vertices", 2011, https:// github.com/sosborne/psd_min_rank/blob/master/data/MpZpSpreadsheet.csv.
[Read and Wilson 1998] R. C. Read and R. J. Wilson, An atlas of graphs, Oxford University Press, 1998. MR 2000a:05001 Zbl 0908.05001

sosborne@iastate.edu	Department of Mathematics, lowa State University,
Ames, IA 50011, United States	
warnberg@iastate.edu	Department of Mathematics, lowa State University,
	Ames, IA 50011, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BoARD OF EDITORS			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $\$ 120 /$ year for the electronic version, and $\$ 165 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2014 Mathematical Sciences Publishers
Infinite cardinalities in the Hausdorff metric geometry 585Alexander Zupan
Computing positive semidefinite minimum rank for small graphs 595Steven Osborne and Nathan Warnberg
The complement of Fermat curves in the plane 611Seth Dutter, Melissa Haire and Ariel SetnikerQuadratic forms representing all primes619
Justin DeBenedetto
Counting matrices over a finite field with all eigenvalues in the field 627Lisa Kaylor and David Offner
A not-so-simple Lie bracket expansion 647Julie Beier and McCabe Olsen
On the omega values of generators of embedding dimension-three 657
numerical monoids generated by an intervalScott T. Chapman, Walter Puckett and Katy Shour
Matrix coefficients of depth-zero supercuspidal representations of 669 GL(2)Andrew Knightly and Carl RagsdaleThe sock matching problem691Sarah Gilliand, Charles Johnson, Sam Rush andDeborah Wood
Superlinear convergence via mixed generalized quasilinearization 699method and generalized monotone methodVinchencia Anderson, Courtney Bettis, ShalaBrown, JacQkis Davis, Naeem Tull-Walker, VinodhChellamuthu and Aghalaya S. Vatsala

[^0]: MSC2010: primary 05C50; secondary 15A03.
 Keywords: zero forcing number, maximum nullity, minimum rank, positive semidefinite, zero forcing, graph, matrix.

