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In this paper we will examine the affine algebraic curves defined on the comple-
ment of Fermat curves of degree five or higher in the affine plane. In particular
we will bound the height of integral points over an affine curve outside of an
exceptional set.

1. Introduction

Let C be a complete algebraic curve of genus g over an algebraically closed field
k of characteristic 0, and U ⊂C be a nonempty open subset of C . The goal of this
paper is to analyze morphisms

φ :U → P2
k \ V (z(xn

+ yn
− zn)),

where V (z(xn
+ yn
− zn)) is the zero set of the polynomial z(xn

+ yn
− zn) and

[x : y : z] are the projective coordinates in P2
k . Alternatively we can think of such

functions as U -points on the variety P2
k\V (z(x

n
+yn
−zn)). We will call projective

curves defined by equations of the form xn
+yn
−zn
=0 Fermat curves of degree n.

A conjecture of Vojta [1987, Conjecture 3.4.3 and Proposition 4.1.2] implies
that the set of integral points on the complement of a degree 4 divisor with normal
crossings in P2

k is not Zariski dense. Here instead of studying points over Z we
will be looking at the split function field case of Vojta’s conjecture and studying
points over U . Corvaja and Zannier [2008] have proven the particular case when
the divisor consists of two lines and a conic section meeting only with normal
crossings. This was one of the remaining borderline cases, the other two being the
union of a cubic and a line, and a quartic.

The divisor defined by (z(xn
+ yn
− zn)) has degree n+1 and normal crossings,

so we should expect that the set of U -points is not Zariski dense for n ≥ 3. The
techniques employed in this paper are able to establish results for n ≥ 5. A coun-
terexample is given for the case n= 2, leaving the cases n= 3 and n= 4 unsettled.
In particular we will establish the following theorem:
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Theorem 1.1. Let C be a smooth complete algebraic curve of genus g over an
algebraically closed field k of characteristic 0. Let U ⊂ C be a nonempty open
subset and m = #(C \U ). For n ≥ 5 and any morphism φ : U → P2

k \ V (z(xn
+

yn
− zn)) either

h(φ∗(x/z), φ∗(y/z), 1)≤
3(m+max{2g− 2, 0})

n− 4
,

or Im(φ)⊂ V ((xn
+ yn)(xn

− zn)(yn
− zn)).

Here h is the height function over the function field of the curve C and φ∗ :
OP2

k
(P2

k \ V (z(xn
+ yn

− zn))) → OC(U ) is the morphism of regular functions
associated to φ. Note that the complement of the line defined by z = 0 can be
identified with A2

k . Therefore we can also interpret our main result as a height
bound for U -points on the complement of an affine Fermat curve in A2

k .
In order to establish this bound we will translate the problem into one of solving

a diophantine equation over OC(U ). Indeed, let φ :U→ P2
\V (z(xn

+ yn
− zn));

then φ∗((x/z)n+(y/z)n−1)∈OC(U )∗ is a unit. For convenience let X =φ∗(x/z),
Y = φ∗(y/z), which after substituting gives us the equation

Xn
+ Y n

− 1= u

for some u ∈ OC(U )∗. Therefore we can restate our main theorem as follows:

Theorem 1.2. Let C be a smooth complete algebraic curve of genus g over an
algebraically closed field k of characteristic 0. Let U ⊂ C be a nonempty open
subset and m = #(C \U ). If X, Y ∈ OC(U ) and u ∈ OC(U )∗ satisfy

Xn
+ Y n

− 1= u

for some n ≥ 5, then

h(X, Y, 1)≤
3(m+max{2g− 2, 0})

n− 4
(1)

or (Xn
+ Y n)(Xn

− 1)(Y n
− 1)= 0.

It is this version of the theorem that we will prove. After some background
material is introduced in the next section, Theorem 1.2 will be proved in Section 3.

2. Preliminaries

The main theorems we will need in order to prove (1) are Mason’s theorem and
its generalization by Masser and Brownawell. Before introducing these theorems,
however, we will need to define some terms.

For each point p on a complete algebraic curve C there exists a discrete valuation
vp : OC,p → Z ∪ {∞}, which maps a function that is regular at p to its order of
vanishing at p. Such valuations naturally extend to the function field K of C .
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We will use these valuations to define heights which will generalize the notion of
degree to a set of rational functions on an algebraic curve.

Definition 2.1. The height of any finite collection u1, u2, . . . , un ∈ K , not all iden-
tically 0, is defined by

h(u1, u2, . . . , un)=−
∑
p∈C

min
1≤ j≤n

vp(u j )

and has the following properties:

(i) For any nonzero α ∈ K ,

h(αu1, αu2, . . . , αun)= h(u1, u2, . . . , un).

(ii) For any j ,

h(u1, . . . , u j , . . . , un)≥ h(u1, . . . , u j−1, u j+1, . . . , un).

(iii) For any positive integer q,

h(uq
1, uq

2, . . . , uq
n)= qh(u1, u2, . . . , un).

Remark 2.2. Without note we will use the fact that replacing any function in the
collection with its negative does not change the height. Likewise any permutation
of the collection of functions will not change their height.

When the ui are polynomials without any common zero, their height is simply
the maximum of their degrees. In this sense height generalizes the notion of degree.

Definition 2.3. For {u1, u2, . . . , un} ⊆ K we define the support to be

Supp{u1, u2, . . . , un} = {p ∈ C : vp(ui ) 6= 0 for some 1≤ i ≤ n},

that is, the set of points where at least one ui has a zero or pole.

Mason’s theorem and its generalizations give an inequality between the height
of a set of linearly dependent rational functions and their support. The particular
version that we will need is this:

Theorem 2.4 [Brownawell and Masser 1986, Theorem B]. Let u1, u2, . . . , un ∈ K
be such that u1+u2+· · ·+un = 0 with no nonempty proper subset of the ui adding
to 0, and define γs =

1
2(s− 1)(s− 2) for s ≥ 1 and 0 otherwise. Then

h(u1, u2, . . . , un)≤ γn max{2g− 2, 0}+
∑
p∈C

(γn − γr(p)),

where r(p) is the number of ui not supported at p.

The specialization of this result to the case of three rational functions will be
convenient to have:
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Theorem 2.5 (Mason’s theorem). Let n = 3 and assume the hypothesis and nota-
tion of Theorem 2.4. Then

h(u1, u2, u3)≤max{2g− 2, 0}+ # Supp{u1, u2, u3}.

3. Main results

Throughout this section we will assume that C is a smooth complete curve of genus
g over an algebraically closed field of characteristic 0, U ⊂ C is a nonempty open
subset, m = #(C \U ), and X, Y ∈ OC(U ) are regular functions on U .

As noted in Section 1 it suffices to study the solutions to the equation

Xn
+ Y n

− 1= u,

where u ∈OC(U )∗. By Theorem 2.4 we can bound the height, h(Xn, Y n,−1,−u),
in terms of an expression involving the number of points in the support of each of
these functions. For convenience define

S1 = Supp{X} ∩Supp{Y } ∩U,

S2 = (Supp{X, Y } \ S1)∩U.
(2)

Then we have the following cases:

(i) If p ∈ S1, precisely 2 of the functions are not supported at p, so r(p) = 2.
Hence γ4− γr(p) = γ4− γ2 = 3− 0= 3.

(ii) If p ∈ S2, precisely 3 of the functions are not supported at p so γ4−γr(p)= 2.

(iii) If p ∈ C \U we have γ4− γr(p) ≤ 3, since γr(p) ≥ 0 by definition for any p.

(iv) For all remaining points, p /∈ Supp{X, Y, u}, so γ4− γr(p) = 0.

Thus, provided no nonempty proper subset of {Xn, Y n,−1,−u} adds to 0, we have

h(Xn, Y n,−1,−u)≤ 3 max{2g− 2, 0}+ 3#S1+ 2#S2+ 3#(C \U ). (3)

By definition #(C\U )=m, which is fixed by the choice of U . In order to bound the
height it suffices to establish bounds on #S1 and #S2. Rather than directly bounding
the size of these sets we will instead bound the quantity 2#S1+ #S2. In particular
we will show that 2#S1 + #S2 ≤ 2h(X, Y, 1). It is necessary to first establish a
theorem on the addition of heights. We begin with a fact about minimums.

Lemma 3.1. For any real numbers x1, x2, . . . , xn, y1, y2, . . . , ym ,

min
1≤i≤n
{xi }+ min

1≤ j≤m
{y j } = min

1≤i≤n
1≤ j≤m

{xi + y j }.
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Proof. Let x be the minimum of the xi s, y be the minimum of the y j s, and x p+ yq

be the minimum of the (xi + y j )s. Then x ≤ x p and y ≤ yq , so x + y ≤ x p + yq .
On the other hand, x + y ∈ {xi + y j }. Therefore x + y ≥ x p + yq , and equality
holds. �

We are now able to come up with an alternate interpretation for the addition of
heights.

Corollary 3.2. Let f1, . . . , fn and g1, . . . , gm be rational functions on an alge-
braic curve C where at least one fi and one g j are not identically 0. Then

h( f1, f2, . . . , fn)+ h(g1, g2, . . . , gm)=−
∑
p∈C

min
1≤i≤n
1≤ j≤m

{vp( fi )+ vp(g j )}.

Proof. Immediate by Lemma 3.1 and the definition of the height function. �

The utility of Corollary 3.2 comes from interpreting it as a type of distributive
property. We can see this by noting vp( fi )+ vp(g j ) = vp( fi g j ). The particular
case that we are interested in is

h(X, Y, 1)+ h(X, Y, 1)= h(X2, XY, X, Y 2, Y, 1). (4)

We can now proceed to bound the quantity 2#S1+ #S2.

Proposition 3.3. Suppose that neither X nor Y is identically 0. Then

2#S1+ #S2 ≤ 2h(X, Y, 1).

Proof. As a result of Corollary 3.2 and Equation (4),

2h(X, Y, 1)= h(X2, XY, X, Y 2, Y, 1).

By property (i) of heights (Definition 2.1) we can multiply through by (XY )−1,
giving

2h(X, Y, 1)= h
( X

Y
, 1,

1
Y
,

Y
X
,

1
X
,

1
XY

)
.

Now by the definition of height, this is equal to

−

∑
p∈C

min
{
vp

( X
Y

)
, vp

( 1
Y

)
, vp

(Y
X

)
, vp

( 1
X

)
, vp

( 1
XY

)
, 0
}
.

After distributing the negative, we get∑
p∈C

max
{
vp

(Y
X

)
, vp(Y ), vp

( X
Y

)
, vp(X), vp(XY ), 0

}
.

For each p ∈ S1 we have vp(XY ) ≥ 2 and for each p ∈ S2 either vp(X) ≥ 1 or
vp(Y ) ≥ 1. Since every term of the sum is nonnegative and S1 ∩ S2 is empty, it
follows that 2#S1+ #S2 ≤ 2h(X, Y, 1). �
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The previous proposition required the assumption that neither X nor Y was
identically 0. This is necessary as # Supp{0} = ∞. However, Theorem 1.2 still
holds if either X or Y is 0. In fact a stronger bound holds.

Proposition 3.4. Suppose that Xn
+Y n
−1 is a unit on U for some n ≥ 3 and that

at least one of X or Y is 0; then

h(X, Y, 1)≤
m+max{2g− 2, 0}

n− 2
.

Proof. If both X and Y are 0 the inequality trivially holds. Without a loss of
generality we may assume X 6= 0 and Y = 0, in which case X satisfies the equation
Xn
− 1 − u = 0 for some unit u ∈ OC(U )∗. Applying Theorem 2.5 we get the

inequality

h(Xn,−1,−u)≤max{2g− 2, 0}+ # Supp{X, 1, u}.

By an argument similar to the proof of Proposition 3.3, #(Supp{X}∩U )≤2h(X, 1).
Therefore we have

h(Xn,−1,−u)≤max{2g− 2, 0}+m+ 2h(X, 1).

By properties (ii) and (iii) of heights (Definition 2.1),

(n− 2)h(X,−1)≤max{2g− 2, 0}+m.

Since h(X, 0,−1)= h(X,−1) and Y = 0,

h(X, Y, 1)≤
m+max{2g− 2, 0}

n− 2
,

as claimed. �

Now that we have bounds established we are able to give a proof of Theorem 1.2,
from which Theorem 1.1 immediately follows.

Proof of Theorem 1.2. We only need to demonstrate the case where neither X nor Y
is 0, since otherwise Proposition 3.4 gives a stronger inequality. If some nonempty
proper subset of {Xn, Y n,−1,−u} adds to 0 then (Xn

+ Y n)(Xn
− 1)(Y n

− 1) =
0. Therefore we suppose that no nonempty proper subset adds to 0 and apply
Theorem 2.4 to get (3):

h(Xn, Y n,−1,−u)≤ 3 max{2g− 2, 0}+ 3#S1+ 2#S2+ 3#(C \U ).

Next we simplify this inequality by applying properties (ii) and (iii) of heights:

nh(X, Y, 1)≤ 3 max{2g− 2, 0}+ 3#S1+ 2#S2+ 3#(C \U ).
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Since 3#S1+ 2#S2 ≤ 2(2#S1+ #S2) we can apply Proposition 3.3 to get

nh(X, Y, 1)≤ 3 max{2g− 2, 0}+ 4h(X, Y, 1)+ 3m.

Provided n ≥ 5 we can solve for h(X, Y, 1) and get

h(X, Y, 1)≤
3(m+max{2g− 2, 0})

n− 4
. �

4. Discussion

In Theorem 1.1 we were able to get a height bound provided n ≥ 5 and that the
image of the curve is not contained within a certain set. In this section we will give
a geometric interpretation of this exceptional set as well as a proof that no bound
can exist when n = 2.

Recall that a flex of an algebraic curve is a simple point where the tangent line
intersects with multiplicity three or higher. Flexes can be computed by finding the
zeroes of the Hessian of the defining function in the projective plane (see [Kunz
2005, Theorem 9.7] for details). In the case of Fermat curves the Hessian is∣∣∣∣∣∣

n(n−1)xn−2 0 0
0 n(n−1)yn−2 0
0 0 −n(n−1)zn−2

∣∣∣∣∣∣ ,
which is equal to −n3(n− 1)3xn−2 yn−2zn−2. Therefore all of the flexes lie along
the lines x = 0, y = 0, and z = 0. Substituting each of these into the Fermat
equation gives us yn

− zn
= 0, xn

− zn
= 0, and xn

+ yn
= 0 respectively. Each of

these equations in turn determines n flexes on the Fermat curve for a total of 3n
flexes. Additionally each of these three equations defines the union of n lines in
projective space with each line being tangent to a flex. Returning to the statement
of Theorem 1.1 we can see that the exceptional set V ((xn

+ yn)(xn
− zn)(yn

− zn))

is just the union of the lines tangent to the 3n flexes of the curve.
We can also see that the exclusion of this exceptional set is necessary. For

example, let ζ ∈ k be such that ζ n
= 1. Then for each positive integer q the

morphism
φq : P

1
k \ {0,∞}→ P2

k \ V (z(xn
+ yn
− zn))

given by [u : v] 7→ [uq
: ζvq

: vq
] is well-defined and has its image contained

within the zero set of yn
− zn . Since q can be any positive integer there cannot be

a bound on the height. A similar argument holds for the other components of the
exceptional set.

Finally we will show that such height bounds cannot exist if n = 2. Let C =
P1

k and U = C\{∞, 0} with coordinate ring OC(U ) = k[t, t−1
]. Consider the
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diophantine equation
X2
+ Y 2

− 1= tq ,

where X, Y ∈ k[t, t−1
] and q is any odd positive integer. We can rewrite this as

(X + iY )(X − iY )= 1+ tq . We then set

X + iY = 1+ t and X − iY =
q−1∑
j=0

(−1) j t j .

Solving for X and Y gives

X =
1
2

(
1+ t +

q−1∑
j=0

(−1) j t j
)

and Y =−
i
2

(
1+ t −

q−1∑
j=0

(−1) j t j
)
.

Since q can be arbitrarily large, h(X, Y, 1) is unbounded. Moreover the family of
rational curves defined by (X, Y ) as q varies is not contained in any proper closed
subset of A2

k . Therefore no similar result can hold for n = 2.
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